Articles | Volume 14, issue 7
https://doi.org/10.5194/tc-14-2495-2020
https://doi.org/10.5194/tc-14-2495-2020
Research article
 | 
31 Jul 2020
Research article |  | 31 Jul 2020

Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble

Lawrence Mudryk, María Santolaria-Otín, Gerhard Krinner, Martin Ménégoz, Chris Derksen, Claire Brutel-Vuilmet, Mike Brady, and Richard Essery

Related authors

Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024,https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Evaluation of the Snow CCI Snow Covered Area Product within a Mountain Snow Water Equivalent Reanalysis
Haorui Sun, Yiwen Fang, Steven Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3213,https://doi.org/10.5194/egusphere-2024-3213, 2024
Short summary
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024,https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Benchmarking of SWE products based on outcomes of the SnowPEx+ Intercomparison Project
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
EGUsphere, https://doi.org/10.5194/egusphere-2023-3014,https://doi.org/10.5194/egusphere-2023-3014, 2024
Short summary
Assessment of Arctic seasonal snow cover rates of change
Chris Derksen and Lawrence Mudryk
The Cryosphere, 17, 1431–1443, https://doi.org/10.5194/tc-17-1431-2023,https://doi.org/10.5194/tc-17-1431-2023, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Climate Interactions
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023,https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Changes in March mean snow water equivalent since the mid-20th century and the contributing factors in reanalyses and CMIP6 climate models
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023,https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Spatio-temporal reconstruction of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western Canada (1981–2019) using climate reanalyses and machine learning
Matteo Guidicelli, Matthias Huss, Marco Gabella, and Nadine Salzmann
The Cryosphere, 17, 977–1002, https://doi.org/10.5194/tc-17-977-2023,https://doi.org/10.5194/tc-17-977-2023, 2023
Short summary
Impacts of snow assimilation on seasonal snow and meteorological forecasts for the Tibetan Plateau
Wei Li, Jie Chen, Lu Li, Yvan J. Orsolini, Yiheng Xiang, Retish Senan, and Patricia de Rosnay
The Cryosphere, 16, 4985–5000, https://doi.org/10.5194/tc-16-4985-2022,https://doi.org/10.5194/tc-16-4985-2022, 2022
Short summary
Synoptic control over winter snowfall variability observed in a remote site of Apennine Mountains (Italy), 1884–2015
Vincenzo Capozzi, Carmela De Vivo, and Giorgio Budillon
The Cryosphere, 16, 1741–1763, https://doi.org/10.5194/tc-16-1741-2022,https://doi.org/10.5194/tc-16-1741-2022, 2022
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P.: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present, J. Hydrometeorol., 4, 1147–1167, 2003. 
Allchin, M. I. and Déry, S. J.: Shifting Spatial and Temporal Patterns in the Onset of Seasonally Snow-Dominated Conditions in the Northern Hemisphere, 1972–2017, J. Climate, 32, 4981–5001, https://doi.org/10.1175/JCLI-D-18-0686.1, 2019. 
Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G., Huffman, G., Bolvin, D., Adler, R., Gardner, A., Lambrigtsen, B., and Fetzer, E.: Status of high-latitude precipitation estimates from observations and reanalyses, J. Geophys. Res.-Atmos., 121, 4468– 4486, https://doi.org/10.1002/2015JD024546, 2016. 
Berghuijs, W., Woods, R., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change, 4, 583–586, https://doi.org/10.1038/NCLIMATE2246, 2014. 
Brown, R. D.: Northern Hemisphere snow cover variability and change, 1915–1997, J. Climate, 13, 2339–2355, 2000. 
Download
Short summary
We analyze how well updated state-of-the-art climate models reproduce observed historical snow cover extent and snow mass and how they project that these quantities will change up to the year 2100. Overall the updated models better represent historical snow extent than previous models, and they simulate stronger historical trends in snow extent and snow mass. They project that spring snow extent will decrease by 8 % for each degree Celsius that the global surface air temperature increases.