Articles | Volume 14, issue 7
The Cryosphere, 14, 2313–2330, 2020
The Cryosphere, 14, 2313–2330, 2020
Research article
22 Jul 2020
Research article | 22 Jul 2020

Lateral meltwater transfer across an Antarctic ice shelf

Rebecca Dell et al.

Related authors

The 32-year record-high surface melt in 2019/2020 on the northern George VI Ice Shelf, Antarctic Peninsula
Alison F. Banwell, Rajashree Tri Datta, Rebecca L. Dell, Mahsa Moussavi, Ludovic Brucker, Ghislain Picard, Christopher A. Shuman, and Laura A. Stevens
The Cryosphere, 15, 909–925,,, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Shelf
Ongoing grounding line retreat and fracturing initiated at the Petermann Glacier ice shelf, Greenland, after 2016
Romain Millan, Jeremie Mouginot, Anna Derkacheva, Eric Rignot, Pietro Milillo, Enrico Ciraci, Luigi Dini, and Anders Bjørk
The Cryosphere, 16, 3021–3031,,, 2022
Short summary
Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations
Johannes Feldmann, Ronja Reese, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1927–1940,,, 2022
Short summary
Surface melt on the Shackleton Ice Shelf, East Antarctica (2003–2021)
Dominic Saunderson, Andrew Mackintosh, Felicity McCormack, Richard Selwyn Jones, and Ghislain Picard
The Cryosphere Discuss.,,, 2022
Revised manuscript accepted for TC
Short summary
Basal melt of the southern Filchner Ice Shelf, Antarctica
Ole Zeising, Daniel Steinhage, Keith W. Nicholls, Hugh F. J. Corr, Craig L. Stewart, and Angelika Humbert
The Cryosphere, 16, 1469–1482,,, 2022
Short summary
Automatic delineation of cracks with Sentinel-1 interferometry for monitoring ice shelf damage and calving
Ludivine Libert, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 1523–1542,,, 2022
Short summary

Cited articles

Arnold, N. and Rees, G.: Effects of digital elevation model spatial resolution on distributed calculations of solar radiation loading on a high arctic glacier, J. Glaciol., 55, 973–984,, 2009. 
Arnold, N. S., Banwell, A. F., and Willis, I. C.: High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet, The Cryosphere, 8, 1149–1160,, 2014. 
Arthur, J., Stokes, C., Jamieson, S., Carr, J., and Leeson, A.: Recent understanding of Antarctic supraglacial lakes using satellite remote sensing, Prog. Phys. Geogr.,, online first, 2020. 
Banwell, A.: Glaciology: Ice-shelf stability questioned, Nature, 544, 306–307,, 2017. 
Banwell, A. F. and MacAyeal, D. R.: Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes, Antarct. Sci., 27, 587–597,, 2015. 
Short summary
A semi-automated method is developed from pre-existing work to track surface water bodies across Antarctic ice shelves over time, using data from Sentinel-2 and Landsat 8. This method is applied to the Nivlisen Ice Shelf for the 2016–2017 melt season. The results reveal two large linear meltwater systems, which hold 63 % of the peak total surface meltwater volume on 26 January 2017. These meltwater systems migrate towards the ice shelf front as the melt season progresses.