Articles | Volume 14, issue 6
The Cryosphere, 14, 1809–1827, 2020
The Cryosphere, 14, 1809–1827, 2020

Research article 09 Jun 2020

Research article | 09 Jun 2020

The added value of high resolution in estimating the surface mass balance in southern Greenland

Willem Jan van de Berg et al.

Related authors

Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G
Max Brils, Peter Kuipers Munneke, Willem Jan van de Berg, and Michiel van den Broeke
Geosci. Model Dev. Discuss.,,, 2021
Preprint under review for GMD
Short summary
Impact of radiation penetration on Antarctic surface melt and subsurface snow temperatures in RACMO2.3p3
Christiaan Timo van Dalum, Willem Jan van de Berg, and Michiel Roland van den Broeke
The Cryosphere Discuss.,,, 2021
Preprint under review for TC
Short summary
What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates
Ruth Mottram, Nicolaj Hansen, Christoph Kittel, J. Melchior van Wessem, Cécile Agosta, Charles Amory, Fredrik Boberg, Willem Jan van de Berg, Xavier Fettweis, Alexandra Gossart, Nicole P. M. van Lipzig, Erik van Meijgaard, Andrew Orr, Tony Phillips, Stuart Webster, Sebastian B. Simonsen, and Niels Souverijns
The Cryosphere, 15, 3751–3784,,, 2021
Short summary
Impact of updated radiative transfer scheme in snow and ice in RACMO2.3p3 on the surface mass and energy budget of the Greenland ice sheet
Christiaan T. van Dalum, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 15, 1823–1844,,, 2021
Short summary
GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958,,, 2020
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
Modeling the Greenland englacial stratigraphy
Andreas Born and Alexander Robinson
The Cryosphere, 15, 4539–4556,,, 2021
Short summary
Upstream flow effects revealed in the EastGRIP ice core using Monte Carlo inversion of a two-dimensional ice-flow model
Tamara Annina Gerber, Christine Schøtt Hvidberg, Sune Olander Rasmussen, Steven Franke, Giulia Sinnl, Aslak Grinsted, Daniela Jansen, and Dorthe Dahl-Jensen
The Cryosphere, 15, 3655–3679,,, 2021
Short summary
Proper orthogonal decomposition of ice velocity identifies drivers of flow variability at Sermeq Kujalleq (Jakobshavn Isbræ)
David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias
The Cryosphere Discuss.,,, 2021
Preprint under review for TC
Short summary
Indication of high basal melting at the EastGRIP drill site on the Northeast Greenland Ice Stream
Ole Zeising and Angelika Humbert
The Cryosphere, 15, 3119–3128,,, 2021
Short summary
Brief communication: Reduction in the future Greenland ice sheet surface melt with the help of solar geoengineering
Xavier Fettweis, Stefan Hofer, Roland Séférian, Charles Amory, Alison Delhasse, Sébastien Doutreloup, Christoph Kittel, Charlotte Lang, Joris Van Bever, Florent Veillon, and Peter Irvine
The Cryosphere, 15, 3013–3019,,, 2021
Short summary

Cited articles

Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., van den Broeke, M. R., Lenaerts, J. T. M., van Wessem, J. M., van de Berg, W. J., and Fettweis, X.: Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes, The Cryosphere, 13, 281–296,, 2019. a
Andreas, E. L.: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184, 1987. a, b, c, d
Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, F03011,, 2010. a
Bales, R. C., McConnell, J. R., Mosley-Thompson, E., and Csatho, B.: Accumulation over the Greenland ice sheet from historical and recent records, J. Geophys. Res., 106, 33813–33825, 2001. a
Bales, R. C., Guo, Q., Shen, D., McConnell, J. R., Du, G., Burkhart, J. F., Spikes, V. B., Hanna, E., and Cappelen, J.: Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data, J. Geophys. Res., 114, D06116,, 2009. a
Short summary
In times of increasing computer power, atmospheric models that estimate the surface mass balance of the Greenland can be run with increasing resolution. However, at which resolution is the error no longer determined by the lacking resolution but by model shortcomings? In this manuscript we show that for the majority of the southern part of the Greenland Ice Sheet, our study area, a model resolution of 20 km is sufficient although finer model resolutions are still beneficial.