Articles | Volume 14, issue 4
The Cryosphere, 14, 1259–1271, 2020
https://doi.org/10.5194/tc-14-1259-2020
The Cryosphere, 14, 1259–1271, 2020
https://doi.org/10.5194/tc-14-1259-2020
Research article
20 Apr 2020
Research article | 20 Apr 2020

Going with the floe: tracking CESM Large Ensemble sea ice in the Arctic provides context for ship-based observations

Alice K. DuVivier et al.

Related authors

Antarctic sea ice over the past 130 000 years – Part 1: a review of what proxy records tell us
Xavier Crosta, Karen E. Kohfeld, Helen C. Bostock, Matthew Chadwick, Alice Du Vivier, Oliver Esper, Johan Etourneau, Jacob Jones, Amy Leventer, Juliane Müller, Rachael H. Rhodes, Claire S. Allen, Pooja Ghadi, Nele Lamping, Carina B. Lange, Kelly-Anne Lawler, David Lund, Alice Marzocchi, Katrin J. Meissner, Laurie Menviel, Abhilash Nair, Molly Patterson, Jennifer Pike, Joseph G. Prebble, Christina Riesselman, Henrik Sadatzki, Louise C. Sime, Sunil K. Shukla, Lena Thöle, Maria-Elena Vorrath, Wenshen Xiao, and Jiao Yang
Clim. Past, 18, 1729–1756, https://doi.org/10.5194/cp-18-1729-2022,https://doi.org/10.5194/cp-18-1729-2022, 2022
Short summary
Antarctic atmospheric boundary layer observations with the Small Unmanned Meteorological Observer (SUMO)
John J. Cassano, Melissa A. Nigro, Mark W. Seefeldt, Marwan Katurji, Kelly Guinn, Guy Williams, and Alice DuVivier
Earth Syst. Sci. Data, 13, 969–982, https://doi.org/10.5194/essd-13-969-2021,https://doi.org/10.5194/essd-13-969-2021, 2021
Short summary
Evaluation of the atmosphere–land–ocean–sea ice interface processes in the Regional Arctic System Model version 1 (RASM1) using local and globally gridded observations
Michael A. Brunke, John J. Cassano, Nicholas Dawson, Alice K. DuVivier, William J. Gutowski Jr., Joseph Hamman, Wieslaw Maslowski, Bart Nijssen, J. E. Jack Reeves Eyre, José C. Renteria, Andrew Roberts, and Xubin Zeng
Geosci. Model Dev., 11, 4817–4841, https://doi.org/10.5194/gmd-11-4817-2018,https://doi.org/10.5194/gmd-11-4817-2018, 2018
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022,https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020
Yu Liang, Haibo Bi, Haijun Huang, Ruibo Lei, Xi Liang, Bin Cheng, and Yunhe Wang
The Cryosphere, 16, 1107–1123, https://doi.org/10.5194/tc-16-1107-2022,https://doi.org/10.5194/tc-16-1107-2022, 2022
Short summary
Perspectives on future sea ice and navigability in the Arctic
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482, https://doi.org/10.5194/tc-15-5473-2021,https://doi.org/10.5194/tc-15-5473-2021, 2021
Short summary
Improving model-satellite comparisons of sea ice melt onset with a satellite simulator
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-331,https://doi.org/10.5194/tc-2021-331, 2021
Revised manuscript accepted for TC
Short summary
Lasting impact of winds on Arctic sea ice through the ocean's memory
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021,https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary

Cited articles

Alexander, M. A.: The Atmospheric Response to Realistic Arctic Sea Ice Anomalies in an AGCM during Winter, J. Clim., 17, 890–905, https://doi.org/10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2, 2004. 
Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it?, WIRES Clim. Change, 6, 277–286, https://doi.org/10.1002/wcc.337, 2015. 
Barnhart, K. R., Miller, C. R., Overeem, I., and Kay, J. E.: Mapping the future expansion of Arctic open water, Nat. Clim. Change, 6, 280–285, https://doi.org/10.1038/nclimate2848, 2015. 
Bitz, C. M. and Roe, G. H.: A Mechanism for the High Rate of Sea Ice Thinning in the Arctic Ocean, J. Clim., 17, 3623–3632, https://doi.org/10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2, 2004. 
Blanchard-Wrigglesworth, E., Bitz, C. M., and Holland, M. M.: Influence of initial conditions and climate forcing on predicting Arctic sea ice, Geophys. Res. Lett., 38, L18503, https://doi.org/10.1029/2011GL048807, 2011. 
Download
Short summary
In autumn 2019, a ship will be frozen into the Arctic sea ice for a year to study system changes. We analyze climate model data from a group of experiments and follow virtual sea ice floes throughout a year. The modeled sea ice conditions along possible tracks are highly variable. Observations that sample a wide range of sea ice conditions and represent the variety and diversity in possible conditions are necessary for improving climate model parameterizations over all types of sea ice.