Articles | Volume 13, issue 7
https://doi.org/10.5194/tc-13-1889-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-13-1889-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age
Department of Geography, University of Zurich, 8057 Zurich,
Switzerland
Tobias Bolch
Department of Geography, University of Zurich, 8057 Zurich,
Switzerland
now at: School of Geography and Sustainable Development, University of St
Andrews, St Andrews, KY16 9A, Scotland, UK
Andrea Walter
Department of Geography, University of Zurich, 8057 Zurich,
Switzerland
Andreas Vieli
Department of Geography, University of Zurich, 8057 Zurich,
Switzerland
Related authors
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Nico Mölg, Tobias Bolch, Philipp Rastner, Tazio Strozzi, and Frank Paul
Earth Syst. Sci. Data, 10, 1807–1827, https://doi.org/10.5194/essd-10-1807-2018, https://doi.org/10.5194/essd-10-1807-2018, 2018
Short summary
Short summary
Knowledge about the size and location of glaciers is essential to understand impacts of climatic changes on the natural environment. Therefore, we have produced an inventory of all glaciers in some of the largest glacierized mountain regions worldwide. Many large glaciers are covered by a rock (debris) layer, which also changes their reaction to climatic changes. Thus, we have also mapped this debris layer for all glaciers. We have mapped almost 28000 glaciers covering ~35000 km2.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-255, https://doi.org/10.5194/essd-2024-255, 2024
Preprint under review for ESSD
Short summary
Short summary
This study compiled a near-complete inventory of glacier mass changes across the eastern Tibetan Plateau using topographical maps. This data enhances our understanding of glacier change variability before 2000. When combined with existing research, our dataset provides a nearly five-decade record of mass balance, aiding hydrological simulations and assessments of mountain glacier contributions to sea-level rise.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere, 17, 1299–1306, https://doi.org/10.5194/tc-17-1299-2023, https://doi.org/10.5194/tc-17-1299-2023, 2023
Short summary
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-473, https://doi.org/10.5194/essd-2022-473, 2023
Preprint withdrawn
Short summary
Short summary
In this study, we presented a nearly complete inventory of glacier mass change dataset across the eastern Tibetan Plateau by using topographical maps, which will enhance the knowledge on the heterogeneity of glacier change before 2000. Our dataset, in combination with the published results, provide a nearly five decades mass balance to support hydrological simulation, and to evaluate the contribution of mountain glacier loss to sea level.
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023, https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Short summary
We characterized short-lived episodes of ice mélange weakening (IMW) at the front of three major Greenland outlet glaciers. Through a continuous detection at the front of Kangerdlugssuaq Glacier during the June-to-September period from 2018 to 2021, we found that 87 % of the IMW episodes occurred prior to a large-scale calving event. Using a simple model for ice mélange motion, we further characterized the IMW process as self-sustained through the existence of an IMW–calving feedback.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021, https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021, https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Short summary
Debris-covered glaciers have a greater extent than their debris-free counterparts due to insulation from the debris cover. However, the transient response to climate change remains poorly understood. We use a numerical model that couples ice dynamics and debris transport and varies the climate signal. We find that debris cover delays the transient response, especially for the extent. However, adding cryokarst features near the terminus greatly enhances the response.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020, https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Short summary
This work indicates all glaciers in the Pamir that surged between 1988 and 2018 as revealed by different remote sensing data, mainly Landsat imagery. We found ~ 200 surging glaciers for the entire mountain range and detected the minimum and maximum extents of most of them. The smallest surging glacier is ~ 0.3 km2. This inventory is important for further research on the surging behaviour of glaciers and has to be considered when processing glacier changes (mass, area) of the region.
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 14, 1051–1066, https://doi.org/10.5194/tc-14-1051-2020, https://doi.org/10.5194/tc-14-1051-2020, 2020
Short summary
Short summary
Glacier calving plays a key role in the dynamic mass loss of ocean-terminating glaciers in Greenland. Source areas and volumes of 900 individual calving events were analysed for size and timing related to environmental forcings. We found that calving volume distribution and style vary along the calving front and are controlled by the water depth and front geometry. We suggest that in deep water both oceanic melt and subaquatic calving contribute substantially to the frontal mass loss.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst., 9, 1–10, https://doi.org/10.5194/gi-9-1-2020, https://doi.org/10.5194/gi-9-1-2020, 2020
Short summary
Short summary
We report the first-ever in situ measurements of ice flow motion using a remotely controlled drone. We used a quadcopter to land on a highly crevassed area of Eqip Sermia Glacier, Greenland. The drone measured 70 cm of ice displacement over more than 4 h thanks to an accurate onboard GPS. Our study demonstrates that drones have great potential for geoscientists, especially to deploy sensors in hostile environments such as glaciers.
Christoph Rohner, David Small, Jan Beutel, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019, https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Short summary
The recent increase in ice flow and calving rates of ocean–terminating glaciers contributes substantially to the mass loss of the Greenland Ice Sheet. Using in situ reference observations, we validate the satellite–based method of iterative offset tracking of Sentinel–1A data for deriving flow speeds. Our investigations highlight the importance of spatial resolution near the fast–flowing calving front, resulting in significantly higher ice velocities compared to large–scale operational products.
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
Jérome Faillettaz, Martin Funk, Jan Beutel, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 19, 1399–1413, https://doi.org/10.5194/nhess-19-1399-2019, https://doi.org/10.5194/nhess-19-1399-2019, 2019
Short summary
Short summary
We developed a new strategy for real-time early warning of
gravity-driven slope failures (such as landslides, rockfalls, glacier break-off, etc.). This method enables us to investigate natural slope stability based on continuous monitoring and interpretation of seismic waves generated by the potential instability. Thanks to a pilot experiment, we detected typical patterns of precursory events prior to slide events, demonstrating the potential of this method for real-word applications.
Alessandro Cicoira, Jan Beutel, Jérome Faillettaz, Isabelle Gärtner-Roer, and Andreas Vieli
The Cryosphere, 13, 927–942, https://doi.org/10.5194/tc-13-927-2019, https://doi.org/10.5194/tc-13-927-2019, 2019
Short summary
Short summary
Rock glacier flow varies on multiple timescales. The variations have been linked to climatic forcing, but a quantitative understanding is still missing.
We use a 1-D numerical modelling approach coupling heat conduction to a creep model in order to study the influence of temperature variations on rock glacier flow. Our results show that heat conduction alone cannot explain the observed variations. Other processes, likely linked to water, must dominate the short-term velocity signal.
Nico Mölg, Tobias Bolch, Philipp Rastner, Tazio Strozzi, and Frank Paul
Earth Syst. Sci. Data, 10, 1807–1827, https://doi.org/10.5194/essd-10-1807-2018, https://doi.org/10.5194/essd-10-1807-2018, 2018
Short summary
Short summary
Knowledge about the size and location of glaciers is essential to understand impacts of climatic changes on the natural environment. Therefore, we have produced an inventory of all glaciers in some of the largest glacierized mountain regions worldwide. Many large glaciers are covered by a rock (debris) layer, which also changes their reaction to climatic changes. Thus, we have also mapped this debris layer for all glaciers. We have mapped almost 28000 glaciers covering ~35000 km2.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 12, 721–739, https://doi.org/10.5194/tc-12-721-2018, https://doi.org/10.5194/tc-12-721-2018, 2018
Short summary
Short summary
This study investigates the effect of geometrical properties on the stress state and flow regime in the vicinity of the calving front of grounded tidewater glaciers. Our analysis shows that the stress state for simple geometries can be determined solely by the water depth relative to ice thickness. This scaled relationship allows for a simple parametrization to predict calving rates of grounded tidewater glaciers that is simple, physics-based and in good agreement with observations.
Florian Frank, Brian W. McArdell, Nicole Oggier, Patrick Baer, Marc Christen, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 17, 801–815, https://doi.org/10.5194/nhess-17-801-2017, https://doi.org/10.5194/nhess-17-801-2017, 2017
Short summary
Short summary
This study describes a sensitivity analysis of the RAMMS debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. These eroded volumes are sensitive to the initial landslide volume, suggesting that this tool may be useful for both reconstruction of historical events and modeling of debris flow scenarios.
Samuel Weber, Jan Beutel, Jérome Faillettaz, Andreas Hasler, Michael Krautblatter, and Andreas Vieli
The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, https://doi.org/10.5194/tc-11-567-2017, 2017
Short summary
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
Tobias Bolch, Tino Pieczonka, Kriti Mukherjee, and Joseph Shea
The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, https://doi.org/10.5194/tc-11-531-2017, 2017
Short summary
Short summary
Previous geodetic estimates of glacier mass changes in the Karakoram have revealed balanced budgets or a possible slight mass gain since the year ∼ 2000. We used old US reconnaissance imagery and could show that glaciers in the Hunza River basin (Central Karakoram) experienced on average no significant mass changes also since the 1970s. Likewise the glaciers had heterogeneous behaviour with frequent surge activities during the last 40 years.
Johann Müller, Andreas Vieli, and Isabelle Gärtner-Roer
The Cryosphere, 10, 2865–2886, https://doi.org/10.5194/tc-10-2865-2016, https://doi.org/10.5194/tc-10-2865-2016, 2016
Short summary
Short summary
Rock glaciers are landforms indicative of permafrost creep and received considerable attention concerning their dynamical and thermal changes. We use a holistic approach to analyze and model the current and long-term dynamical development of two rock glaciers in the Swiss Alps. The modeling results show the impact of variations in temperature and sediment–ice supply on rock glacier evolution and describe proceeding signs of degradation due to climate warming.
Silvan Ragettli, Tobias Bolch, and Francesca Pellicciotti
The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, https://doi.org/10.5194/tc-10-2075-2016, 2016
Short summary
Short summary
This study presents a multi-temporal dataset of geodetically derived elevation changes on debris-free and debris-covered glaciers in the Langtang valley, Nepalese Himalaya. Overall, we observe accelerated glacier wastage, but highly heterogeneous spatial patterns and temporal trends across glaciers. Accelerations in thinning correlate with the presence of supraglacial cliffs and lakes, whereas thinning rates remained constant or declined on stagnating debris-covered glacier areas.
Michel Wortmann, Tobias Bolch, Valentina Krysanova, and Su Buda
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-272, https://doi.org/10.5194/hess-2016-272, 2016
Revised manuscript not accepted
Martin P. Lüthi and Andreas Vieli
The Cryosphere, 10, 995–1002, https://doi.org/10.5194/tc-10-995-2016, https://doi.org/10.5194/tc-10-995-2016, 2016
Short summary
Short summary
Glaciers flowing into the ocean sometimes release huge pieces of ice and
cause violent tsunami waves which, upon landfall, can cause severe
destruction. During an exceptionally well-documented event at Eqip Sermia,
west Greenland, the collapse of a 200 m high ice cliff caused a tsunami wave
of 50 m height, traveling at a speed exceeding 100 km h−1. This tsunami wave
was filmed from a tour boat, and was simultaneously observed with several
instruments, as was the run-up of 15 m on the shore.
V. Wirz, S. Gruber, R. S. Purves, J. Beutel, I. Gärtner-Roer, S. Gubler, and A. Vieli
Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, https://doi.org/10.5194/esurf-4-103-2016, 2016
F. Frank, B. W. McArdell, C. Huggel, and A. Vieli
Nat. Hazards Earth Syst. Sci., 15, 2569–2583, https://doi.org/10.5194/nhess-15-2569-2015, https://doi.org/10.5194/nhess-15-2569-2015, 2015
Short summary
Short summary
The sudden onset of large and erosive debris flows has been observed recently in different catchments in Switzerland, implicating the importance of erosion for debris flow modelling. Therefore, an erosion model was established based on field data (relationship between maximum shear stress and erosion depth and rate) of several debris flows measured at the Illgraben. Erosion model tests at the Spreitgraben showed considerable improvements in runout pattern as well as hydrograph propagation.
N. Holzer, S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch
The Cryosphere, 9, 2071–2088, https://doi.org/10.5194/tc-9-2071-2015, https://doi.org/10.5194/tc-9-2071-2015, 2015
Short summary
Short summary
Investigations of glacier mass-balance and area changes at Muztagh Ata (eastern Pamir) are based on Hexagon KH-9 (1973), ALOS-PRISM (2009), Pléiades (2013) and Landsat 7 ETM+/SRTM-3 (2000). Surface velocities of Kekesayi Glacier are derived by TerraSAR-X (2011) amplitude tracking. Glacier variations differ spatially and temporally, but on average not significantly for the entire massif. Stagnant Kekesayi and other debris-covered glaciers indicate no visual length changes, but clear down-wasting.
D. H. Shangguan, T. Bolch, Y. J. Ding, M. Kröhnert, T. Pieczonka, H. U. Wetzel, and S. Y. Liu
The Cryosphere, 9, 703–717, https://doi.org/10.5194/tc-9-703-2015, https://doi.org/10.5194/tc-9-703-2015, 2015
Short summary
Short summary
Glacier velocity, glacier area, surface elevation and mass changes of the Southern and Northern Inylchek Glacier were investigated by using multi-temporal space-borne data sets. The mass balance of both SIG and NIG was negative(-0.43 ± 0.10 m w.e. a-1 and -0.25 ± 0.10 m w.e. a-1) from ~1975 to 2007. The thinning at the lake dam was higher, likely caused by calving into Lake Merzbacher. Thus, glacier thinning and glacier flow are significantly influenced by the lake.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014, https://doi.org/10.5194/hess-18-4077-2014, 2014
S. Thakuri, F. Salerno, C. Smiraglia, T. Bolch, C. D'Agata, G. Viviano, and G. Tartari
The Cryosphere, 8, 1297–1315, https://doi.org/10.5194/tc-8-1297-2014, https://doi.org/10.5194/tc-8-1297-2014, 2014
E. M. Enderlin, I. M. Howat, and A. Vieli
The Cryosphere, 7, 1579–1590, https://doi.org/10.5194/tc-7-1579-2013, https://doi.org/10.5194/tc-7-1579-2013, 2013
R. Bhambri, T. Bolch, P. Kawishwar, D. P. Dobhal, D. Srivastava, and B. Pratap
The Cryosphere, 7, 1385–1398, https://doi.org/10.5194/tc-7-1385-2013, https://doi.org/10.5194/tc-7-1385-2013, 2013
E. M. Enderlin, I. M. Howat, and A. Vieli
The Cryosphere, 7, 1007–1015, https://doi.org/10.5194/tc-7-1007-2013, https://doi.org/10.5194/tc-7-1007-2013, 2013
P. Rastner, T. Bolch, N. Mölg, H. Machguth, R. Le Bris, and F. Paul
The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012, https://doi.org/10.5194/tc-6-1483-2012, 2012
Related subject area
Discipline: Glaciers | Subject: Alpine Glaciers
Unprecedented 21st century glacier loss on Mt. Hood, Oregon, USA
Distributed surface mass balance of an avalanche-fed glacier
Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery
Brief communication: Recent estimates of glacier mass loss for western North America from laser altimetry
The Aneto glacier's (Central Pyrenees) evolution from 1981 to 2022: ice loss observed from historic aerial image photogrammetry and remote sensing techniques
Modelling point mass balance for the glaciers of the Central European Alps using machine learning techniques
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Brief communication: Non-linear sensitivity of glacier mass balance to climate attested by temperature-index models
Halving of Swiss glacier volume since 1931 observed from terrestrial image photogrammetry
Land- to lake-terminating transition triggers dynamic thinning of a Bhutanese glacier
Brief communication: A framework to classify glaciers for water resource evaluation and management in the Southern Andes
Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020
Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Brief communication: Do 1.0, 1.5, or 2.0 °C matter for the future evolution of Alpine glaciers?
A new automatic approach for extracting glacier centerlines based on Euclidean allocation
Spatially and temporally resolved ice loss in High Mountain Asia and the Gulf of Alaska observed by CryoSat-2 swath altimetry between 2010 and 2019
Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps
Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates
Small-scale spatial variability in bare-ice reflectance at Jamtalferner, Austria
Numerical modeling of the dynamics of the Mer de Glace glacier, French Alps: comparison with past observations and forecasting of near-future evolution
Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements
Possible biases in scaling-based estimates of glacier change: a case study in the Himalaya
Spatial and temporal variations in glacier aerodynamic surface roughness during the melting season, as estimated at the August-one ice cap, Qilian mountains, China
Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area)
Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014
Glacier thickness estimations of alpine glaciers using data and modeling constraints
Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble
Robust uncertainty assessment of the spatio-temporal transferability of glacier mass and energy balance models
Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: abundance, speciation and implications
Numerical reconstructions of the flow and basal conditions of the Rhine glacier, European Central Alps, at the Last Glacial Maximum
Nicolas Bakken-French, Stephen J. Boyer, B. Clay Southworth, Megan Thayne, Dylan H. Rood, and Anders E. Carlson
The Cryosphere, 18, 4517–4530, https://doi.org/10.5194/tc-18-4517-2024, https://doi.org/10.5194/tc-18-4517-2024, 2024
Short summary
Short summary
Repeat photography, field mapping, and remote sensing find that glaciers on Mt. Hood, Oregon, have lost about 25 % of their area in the first 2 decades of the 21st century and 17 % of their area in the last 7–8 years. The 21st century recession rate is more than 3 times faster than the 20th century average and 1.9 times faster than the fastest period of retreat within the 20th century. This unprecedented retreat corresponds to regional summer warming of 1.7–1.8°C relative to the early 1900s.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-1733, https://doi.org/10.5194/egusphere-2024-1733, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60-70% and that accounting for this effect results in less ice loss by the end of the century.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Brian Menounos, Alex Gardner, Caitlyn Florentine, and Andrew Fountain
The Cryosphere, 18, 889–894, https://doi.org/10.5194/tc-18-889-2024, https://doi.org/10.5194/tc-18-889-2024, 2024
Short summary
Short summary
Glaciers in western North American outside of Alaska are often overlooked in global studies because their potential to contribute to changes in sea level is small. Nonetheless, these glaciers represent important sources of freshwater, especially during times of drought. We show that these glaciers lost mass at a rate of about 12 Gt yr-1 for about the period 2013–2021; the rate of mass loss over the period 2018–2022 was similar.
Ixeia Vidaller, Eñaut Izagirre, Luis Mariano del Rio, Esteban Alonso-González, Francisco Rojas-Heredia, Enrique Serrano, Ana Moreno, Juan Ignacio López-Moreno, and Jesús Revuelto
The Cryosphere, 17, 3177–3192, https://doi.org/10.5194/tc-17-3177-2023, https://doi.org/10.5194/tc-17-3177-2023, 2023
Short summary
Short summary
The Aneto glacier, the largest glacier in the Pyrenees, has shown continuous surface and ice thickness losses in the last decades. In this study, we examine changes in its surface and ice thickness for 1981–2022 and the remaining ice thickness in 2020. During these 41 years, the glacier has shrunk by 64.7 %, and the ice thickness has decreased by 30.5 m on average. The mean ice thickness in 2022 was 11.9 m, compared to 32.9 m in 1981. The results highlight the critical situation of the glacier.
Ritu Anilkumar, Rishikesh Bharti, Dibyajyoti Chutia, and Shiv Prasad Aggarwal
The Cryosphere, 17, 2811–2828, https://doi.org/10.5194/tc-17-2811-2023, https://doi.org/10.5194/tc-17-2811-2023, 2023
Short summary
Short summary
Our analysis demonstrates the capability of machine learning models in estimating glacier mass balance in terms of performance metrics and dataset availability. Feature importance analysis suggests that ablation features are significant. This is in agreement with the predominantly negative mass balance observations. We show that ensemble tree models typically depict the best performance. However, neural network models are preferable for biased inputs and kernel-based models for smaller datasets.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Christian Vincent and Emmanuel Thibert
The Cryosphere, 17, 1989–1995, https://doi.org/10.5194/tc-17-1989-2023, https://doi.org/10.5194/tc-17-1989-2023, 2023
Short summary
Short summary
Temperature-index models have been widely used for glacier mass projections in the future. The ability of these models to capture non-linear responses of glacier mass balance (MB) to high deviations in air temperature and solid precipitation has recently been questioned by mass balance simulations employing advanced machine-learning techniques. Here, we confirmed that temperature-index models are capable of detecting non-linear responses of glacier MB to temperature and precipitation changes.
Erik Schytt Mannerfelt, Amaury Dehecq, Romain Hugonnet, Elias Hodel, Matthias Huss, Andreas Bauder, and Daniel Farinotti
The Cryosphere, 16, 3249–3268, https://doi.org/10.5194/tc-16-3249-2022, https://doi.org/10.5194/tc-16-3249-2022, 2022
Short summary
Short summary
How glaciers have responded to climate change over the last 20 years is well-known, but earlier data are much more scarce. We change this in Switzerland by using 22 000 photographs taken from mountain tops between the world wars and find a halving of Swiss glacier volume since 1931. This was done through new automated processing techniques that we created. The data are interesting for more than just glaciers, such as mapping forest changes, landslides, and human impacts on the terrain.
Yota Sato, Koji Fujita, Hiroshi Inoue, Akiko Sakai, and Karma
The Cryosphere, 16, 2643–2654, https://doi.org/10.5194/tc-16-2643-2022, https://doi.org/10.5194/tc-16-2643-2022, 2022
Short summary
Short summary
We investigate fluctuations in Bhutanese lake-terminating glaciers focusing on the dynamics change before and after proglacial lake formation at Thorthormi Glacier (TG) based on photogrammetry, satellite, and GPS surveys. The thinning rate of TG became double compared to before proglacial lake formation, and the flow velocity has also sped up considerably. Those changes would be due to the reduction in longitudinal ice compression by the detachment of the glacier terminus from the end moraine.
Nicole Schaffer and Shelley MacDonell
The Cryosphere, 16, 1779–1791, https://doi.org/10.5194/tc-16-1779-2022, https://doi.org/10.5194/tc-16-1779-2022, 2022
Short summary
Short summary
Over the last 2 decades the importance of Andean glaciers, particularly as water resources, has been recognized in both scientific literature and the public sphere. This has led to the inclusion of glaciers in environmental impact assessment and the development of glacier protection laws. We propose three categories that group glaciers based on their environmental sensitivity to hopefully help facilitate the effective application of these measures and evaluation of water resources in general.
Levan G. Tielidze, Gennady A. Nosenko, Tatiana E. Khromova, and Frank Paul
The Cryosphere, 16, 489–504, https://doi.org/10.5194/tc-16-489-2022, https://doi.org/10.5194/tc-16-489-2022, 2022
Short summary
Short summary
The new Caucasus glacier inventory derived from manual delineation of glacier outlines based on medium-resolution (Landsat, Sentinel) and high-resolution (SPOT) satellite imagery shows the accelerated glacier area loss over the last 2 decades (2000–2020). This new glacier inventory will improve our understanding of climate change impacts at a regional scale and support related modelling studies by providing high-quality validation data.
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021, https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Short summary
We present and compare different geostatistical methods for underglacial bedrock interpolation. Variogram-based interpolations are compared with a multipoint statistics approach on both test cases and real glaciers. Using the modeled bedrock, the ice volume for the Scex Rouge and Tsanfleuron glaciers (Swiss Alps) was estimated to be 113.9 ± 1.6 million cubic meters. Complex karstic geomorphological features are reproduced and can be used to improve the precision of underglacial flow estimation.
Daniela Festi, Margit Schwikowski, Valter Maggi, Klaus Oeggl, and Theo Manuel Jenk
The Cryosphere, 15, 4135–4143, https://doi.org/10.5194/tc-15-4135-2021, https://doi.org/10.5194/tc-15-4135-2021, 2021
Short summary
Short summary
In our study we dated a 46 m deep ice core retrieved from the Adamello glacier (Central Italian Alps). We obtained a timescale combining the results of radionuclides 210Pb and 137Cs with annual layer counting derived from pollen and refractory black carbon concentrations. Our results indicate that the surface of the glacier is older than the drilling date of 2016 by about 20 years, therefore revealing that the glacier is at high risk of collapsing under current climate warming conditions.
Loris Compagno, Sarah Eggs, Matthias Huss, Harry Zekollari, and Daniel Farinotti
The Cryosphere, 15, 2593–2599, https://doi.org/10.5194/tc-15-2593-2021, https://doi.org/10.5194/tc-15-2593-2021, 2021
Short summary
Short summary
Recently, discussions have focused on the difference in limiting the increase in global average temperatures to below 1.0, 1.5, or 2.0 °C compared to preindustrial levels. Here, we assess the impacts that such different scenarios would have on both the future evolution of glaciers in the European Alps and the water resources they provide. Our results show that the different temperature targets have important implications for the changes predicted until 2100.
Dahong Zhang, Xiaojun Yao, Hongyu Duan, Shiyin Liu, Wanqin Guo, Meiping Sun, and Dazhi Li
The Cryosphere, 15, 1955–1973, https://doi.org/10.5194/tc-15-1955-2021, https://doi.org/10.5194/tc-15-1955-2021, 2021
Short summary
Short summary
Glacier centerlines are crucial input for many glaciological applications. We propose a new algorithm to derive glacier centerlines and implement the corresponding program in Python language. Application of this method to 48 571 glaciers in the second Chinese glacier inventory automatically yielded the corresponding glacier centerlines with an average computing time of 20.96 s, a success rate of 100 % and a comprehensive accuracy of 94.34 %.
Livia Jakob, Noel Gourmelen, Martin Ewart, and Stephen Plummer
The Cryosphere, 15, 1845–1862, https://doi.org/10.5194/tc-15-1845-2021, https://doi.org/10.5194/tc-15-1845-2021, 2021
Short summary
Short summary
Glaciers and ice caps are currently the largest contributor to sea level rise. Global monitoring of these regions is a challenging task, and significant differences remain between current estimates. This study looks at glacier changes in High Mountain Asia and the Gulf of Alaska using a new technique, which for the first time makes the use of satellite radar altimetry for mapping ice mass loss over mountain glacier regions possible.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Leif S. Anderson, William H. Armstrong, Robert S. Anderson, and Pascal Buri
The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, https://doi.org/10.5194/tc-15-265-2021, 2021
Short summary
Short summary
Many glaciers are thinning rapidly beneath debris cover (loose rock) that reduces melt, including Kennicott Glacier in Alaska. This contradiction has been explained by melt hotspots, such as ice cliffs, scattered within the debris cover. However, at Kennicott Glacier declining ice flow explains the rapid thinning. Through this study, Kennicott Glacier is now the first glacier in Alaska, and the largest glacier globally, where melt across its debris-covered tongue has been rigorously quantified.
Lea Hartl, Lucia Felbauer, Gabriele Schwaizer, and Andrea Fischer
The Cryosphere, 14, 4063–4081, https://doi.org/10.5194/tc-14-4063-2020, https://doi.org/10.5194/tc-14-4063-2020, 2020
Short summary
Short summary
When glaciers become snow-free in summer, darker glacier ice is exposed. The ice surface is darker than snow and absorbs more radiation, which increases ice melt. We measured how much radiation is reflected at different wavelengths in the ablation zone of Jamtalferner, Austria. Due to impurities and water on the ice surface there are large variations in reflectance. Landsat 8 and Sentinel-2 surface reflectance products do not capture the full range of reflectance found on the glacier.
Vincent Peyaud, Coline Bouchayer, Olivier Gagliardini, Christian Vincent, Fabien Gillet-Chaulet, Delphine Six, and Olivier Laarman
The Cryosphere, 14, 3979–3994, https://doi.org/10.5194/tc-14-3979-2020, https://doi.org/10.5194/tc-14-3979-2020, 2020
Short summary
Short summary
Alpine glaciers are retreating at an accelerating rate in a warming climate. Numerical models allow us to study and anticipate these changes, but the performance of a model is difficult to evaluate. So we compared an ice flow model with the long dataset of observations obtained between 1979 and 2015 on Mer de Glace (Mont Blanc area). The model accurately reconstructs the past evolution of the glacier. We simulate the future evolution of Mer de Glace; it could retreat by 2 to 6 km by 2050.
Gregory Church, Melchior Grab, Cédric Schmelzbach, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, https://doi.org/10.5194/tc-14-3269-2020, 2020
Short summary
Short summary
In this field study, we repeated ground-penetrating radar measurements over an active englacial channel network that transports meltwater through the glacier. We successfully imaged the englacial meltwater pathway and were able to delimitate the channel's shape. Meltwater from the glacier can impact the glacier's dynamics if it reaches the ice–bed interface, and therefore monitoring these englacial drainage networks is important to understand how these networks behave throughout a season.
Argha Banerjee, Disha Patil, and Ajinkya Jadhav
The Cryosphere, 14, 3235–3247, https://doi.org/10.5194/tc-14-3235-2020, https://doi.org/10.5194/tc-14-3235-2020, 2020
Short summary
Short summary
Simple models of glacier dynamics based on volume–area scaling underestimate climate sensitivity and response time of glaciers. Consequently, they may predict a faster response and a smaller long-term glacier loss. These biases in scaling models are established theoretically and are analysed in detail by simulating the step response of a set of 703 Himalayan glaciers separately by three different models: a scaling model, a 2-D shallow-ice approximation model, and a linear-response model.
Junfeng Liu, Rensheng Chen, and Chuntan Han
The Cryosphere, 14, 967–984, https://doi.org/10.5194/tc-14-967-2020, https://doi.org/10.5194/tc-14-967-2020, 2020
Short summary
Short summary
Glacier surface roughness during melting season was observed by manual and automatic photogrammetry. Surface roughness was larger at the snow and ice transition zone than in fully snow- or ice-covered areas. Persistent snowfall and rainfall both reduce surface roughness. High or rising turbulent heat as a component of surface energy balance tended to produce a smooth ice surface; low or decreasing turbulent heat tended to produce a rougher surface.
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, https://doi.org/10.5194/tc-14-925-2020, 2020
Short summary
Short summary
We observed very low glacier thickness changes over the last decades at very-high-elevation glaciated areas on Mont Blanc. Conversely, measurements performed in deep boreholes since 1994 reveal strong changes in englacial temperature reaching 1.5 °C at a depth of 50 m. We conclude that at such very high elevations, current changes in climate do not lead to visible changes in glacier thickness but cause invisible changes within the glacier in terms of englacial temperatures.
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Lisbeth Langhammer, Melchior Grab, Andreas Bauder, and Hansruedi Maurer
The Cryosphere, 13, 2189–2202, https://doi.org/10.5194/tc-13-2189-2019, https://doi.org/10.5194/tc-13-2189-2019, 2019
Short summary
Short summary
We have developed a novel procedure for glacier thickness estimations that combines traditional glaciological modeling constraints with ground-truth data, for example, those obtained with ground-penetrating radar (GPR) measurements. This procedure is very useful for determining ice volume when only limited data are available. Furthermore, we outline a strategy for acquiring GPR data on glaciers, such that the cost/benefit ratio is optimized.
Harry Zekollari, Matthias Huss, and Daniel Farinotti
The Cryosphere, 13, 1125–1146, https://doi.org/10.5194/tc-13-1125-2019, https://doi.org/10.5194/tc-13-1125-2019, 2019
Short summary
Short summary
Glaciers in the European Alps play an important role in the hydrological cycle, act as a source for hydroelectricity and have a large touristic importance. We model the future evolution of all glaciers in the Alps with a novel model that combines both ice flow and melt processes. We find that under a limited warming scenario about one-third of the present-day ice volume will still be present by the end of the century, while under strong warming more than 90 % of the volume will be lost by 2100.
Tobias Zolles, Fabien Maussion, Stephan Peter Galos, Wolfgang Gurgiser, and Lindsey Nicholson
The Cryosphere, 13, 469–489, https://doi.org/10.5194/tc-13-469-2019, https://doi.org/10.5194/tc-13-469-2019, 2019
Short summary
Short summary
A mass and energy balance model was subjected to sensitivity and uncertainty analysis on two different Alpine glaciers. The global sensitivity analysis allowed for a mass balance measurement independent assessment of the model sensitivity and functioned as a reduction of the model free parameter space. A novel approach of a multi-objective optimization estimates the uncertainty of the simulated mass balance and the energy fluxes. The final model uncertainty is up to 1300 kg m−3 per year.
Matthew Olson and Summer Rupper
The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, https://doi.org/10.5194/tc-13-29-2019, 2019
Short summary
Short summary
Solar radiation is the largest energy input for most alpine glaciers. However, many models oversimplify the influence of topographic shading. Also, no systematic studies have explored the variable impact of shading on glacier ice. We find that shading can significantly impact modeled solar radiation, particularly at low elevations, at high latitudes, and for glaciers with a north/south orientation. Excluding the effects of shading will overestimate modeled solar radiation for alpine glaciers.
Michael Sigl, Nerilie J. Abram, Jacopo Gabrieli, Theo M. Jenk, Dimitri Osmont, and Margit Schwikowski
The Cryosphere, 12, 3311–3331, https://doi.org/10.5194/tc-12-3311-2018, https://doi.org/10.5194/tc-12-3311-2018, 2018
Short summary
Short summary
The fast retreat of Alpine glaciers since the mid-19th century documented in photographs is used as a symbol for the human impact on global climate, yet the key driving forces remain elusive. Here we argue that not industrial soot but volcanic eruptions were responsible for an apparently accelerated deglaciation starting in the 1850s. Our findings support a negligible role of human activity in forcing glacier recession at the end of the Little Ice Age, highlighting the role of natural drivers.
Zhiyuan Cong, Shaopeng Gao, Wancang Zhao, Xin Wang, Guangming Wu, Yulan Zhang, Shichang Kang, Yongqin Liu, and Junfeng Ji
The Cryosphere, 12, 3177–3186, https://doi.org/10.5194/tc-12-3177-2018, https://doi.org/10.5194/tc-12-3177-2018, 2018
Short summary
Short summary
Cryoconites from glaciers on the Tibetan Plateau and surrounding area were studied for iron oxides. We found that goethite is the predominant iron oxide form. Using the abundance, speciation and optical properties of iron oxides, the total light absorption was quantitatively attributed to goethite, hematite, black carbon and organic matter. Such findings are essential to understand the relative significance of anthropogenic and natural impacts.
Denis Cohen, Fabien Gillet-Chaulet, Wilfried Haeberli, Horst Machguth, and Urs H. Fischer
The Cryosphere, 12, 2515–2544, https://doi.org/10.5194/tc-12-2515-2018, https://doi.org/10.5194/tc-12-2515-2018, 2018
Short summary
Short summary
As part of an integrative study about the safety of repositories for radioactive waste under ice age conditions in Switzerland, we modeled the flow of ice of the Rhine glacier at the Last Glacial Maximum to determine conditions at the ice–bed interface. Results indicate that portions of the ice lobes were at the melting temperature and ice was sliding, two conditions necessary for erosion by glacier. Conditions at the bed of the ice lobes were affected by climate and also by topography.
Cited articles
Agisoft LLC: PhotoScan, Agisoft, Software: version 1.2, 2016.
Anderson, L. S. and Anderson, R. S.: Modeling debris-covered glaciers: response to steady debris deposition, The Cryosphere, 10, 1105–1124, https://doi.org/10.5194/tc-10-1105-2016, 2016.
Anderson, L. S. and Anderson, R. S.: Debris thickness patterns on
debris-covered glaciers, Geomorphology, 311, 1–12,
https://doi.org/10.1016/j.geomorph.2018.03.014, 2018.
Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Guo, W., Liu, S.,
Immerzeel, W., and Shrestha, B.: The glaciers of the Hindu Kush Himalayas:
Current status and observed changes from the 1980s to 2010, Int.
J. Water Resour. D., 31, 161–173,
https://doi.org/10.1080/07900627.2015.1005731, 2015.
Banerjee, A.: Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate, The Cryosphere, 11, 133–138, https://doi.org/10.5194/tc-11-133-2017, 2017.
Banerjee, A. and Shankar, R.: On the response of Himalayan glaciers to
climate change, J. Glaciol., 59, 480–490, https://doi.org/10.3189/2013JoG12J130, 2013.
Bauder, A. (Ed.): The Swiss Glaciers: 2013/14 and 2014/15, Glaciological
Report, 135/136, Cryospheric Commission of the Swiss Acadamey of Sciences,
Zürich, Switzerland, 2017.
Bauder, A., Funk, M., and Huss, M.: Ice-volume changes of selected glaciers
in the Swiss Alps since the end of the 19th century, Ann. Glaciol., 46,
145–149, https://doi.org/10.3189/172756407782871701, 2007.
Benn, D. I. and Lehmkuhl, F.: Mass balance and equilibrium-line altitudes of
glaciers in high-mountain environments, Quatern. Int., 65–66,
15–29, https://doi.org/10.1016/S1040-6182(99)00034-8, 2000.
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L.
I., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of
debris-covered glaciers in the Mount Everest region to recent warming, and
implications for outburst flood hazards, Earth-Sci. Rev., 114,
156–174, https://doi.org/10.1016/j.earscirev.2012.03.008, 2012.
Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha, S. C.: Glacier
changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote
sensing, J. Glaciol., 57, 543–556, https://doi.org/10.3189/002214311796905604, 2011.
Bhambri, R., Bolch, T., and Chaujar, R. K.: Frontal recession of Gangotri
Glacier, Garhwal Himalayas, from 1965 to 2006, measured through
high-resolution remote sensing data, Curr. Sci., 102, 489–494,
https://doi.org/10.5167/uzh-59630, 2012.
Bhattacharya, A., Bolch, T., Mukherjee, K., Pieczonka, T., Kropáček,
J. A. N., and Buchroithner, M. F.: Overall recession and mass budget of
Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 using remote sensing
data, J. Glaciol., 62, 1115–1133, https://doi.org/10.1017/jog.2016.96, 2016.
Bolch, T., Buchroithner, M., Pieczonka, T., and Kunert, A.: Planimetric and
volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using
Corona, Landsat TM and ASTER data, J. Glaciol., 54, 592–600,
https://doi.org/10.3189/002214308786570782, 2008a.
Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., and Bajracharya, S.: Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery, Nat. Hazards Earth Syst. Sci., 8, 1329–1340, https://doi.org/10.5194/nhess-8-1329-2008, 2008b.
Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers
in western Canada, 1985–2005, Remote Sens. Environ., 114, 127–137,
https://doi.org/10.1016/j.rse.2009.08.015, 2010.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.
G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and
Stoffel, M.: The state and fate of Himalayan glaciers, Science, 336, 310–314, https://doi.org/10.1126/science.1215828, 2012.
Brock, B., Rivera, A., Casassa, G., Bown, F., and Acuña, C.: The surface
energy balance of an active ice-covered volcano: Villarrica Volcano,
southern Chile, Ann. Glaciol., 45, 104–114, https://doi.org/10.3189/172756407782282372,
2007.
Brun, F., Buri, P., Miles, E. S., Wagnon, P., Steiner, J., Berthier, E.,
Ragettli, S., Kraaijenbrink, P., Immerzeel, W. W., and Pellicciotti, F.:
Quantifying volume loss from ice cliffs on debris-covered glaciers using
high-resolution terrestrial and aerial photogrammetry, J. Glaciol., 62,
684–695, https://doi.org/10.1017/jog.2016.54, 2016.
Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., Vincent, C., Reverchon, C., Shrestha, D., and Arnaud, Y.: Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya, The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, 2018.
Buri, P., Pellicciotti, F., Steiner, J. F., Miles, E. S., and Immerzeel, W.
W.: A grid-based model of backwasting of supraglacial ice cliffs on
debris-covered glaciers, Ann. Glaciol., 57, 199–211,
https://doi.org/10.3189/2016AoG71A059, 2016.
Caduff, R., Schlunegger, F., Kos, A., and Wiesmann, A.: A review of
terrestrial radar interferometry for measuring surface change in the
geosciences, Earth Surf. Proc. Land., 40, 208–228,
https://doi.org/10.1002/esp.3656, 2015.
Capt, M., Bosson, J.-B., Fischer, M., Micheletti, N., and Lambiel, C.:
Decadal evolution of a very small heavily debris-covered glacier in an
Alpine permafrost environment, J. Glaciol., 62, 535–551,
https://doi.org/10.1017/jog.2016.56, 2016.
Carturan, L., Filippi, R., Seppi, R., Gabrielli, P., Notarnicola, C., Bertoldi, L., Paul, F., Rastner, P., Cazorzi, F., Dinale, R., and Dalla Fontana, G.: Area and volume loss of the glaciers in the Ortles-Cevedale group (Eastern Italian Alps): controls and imbalance of the remaining glaciers, The Cryosphere, 7, 1339–1359, https://doi.org/10.5194/tc-7-1339-2013, 2013.
Cogley, J. G.: Present and future states of Himalaya and Karakoram glaciers,
Ann. Glaciol., 52, 69–73, https://doi.org/10.3189/172756411799096277, 2011.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
D'Agata, C. and Zanutta, A.: Reconstruction of the recent changes of a debris-covered glacier (Brenva Glacier, Mont Blanc Massif, Italy) using indirect sources: Methods, results and validation, Global Planet. Change, 56, 57–68, https://doi.org/10.1016/j.gloplacha.2006.07.021, 2007.
Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow,
P. W., Berthier, E., Vincent, C., Wagnon, P., and Trouvé, E.:
Twenty-first century glacier slowdown driven by mass loss in High Mountain
Asia, Nat. Geosci., 12, 22–27, https://doi.org/10.1038/s41561-018-0271-9, 2019.
Deline, P.: Change in surface debris cover on Mont Blanc massif glaciers
after the “Little Ice Age” termination, Holocene, 15, 302–309,
https://doi.org/10.1191/0959683605hl809rr, 2005.
Diolaiuti, G., D'Agata, C., Meazza, A., Zanutta, A., and Smiraglia, C.:
Recent (1975–2003) changes in the Miage debris-covered glacier tongue (Mont
Blanc, Italy) from analysis of aerial photos and maps, Geogr. Fis. Dinam.
Quat., 32, 117–127, 2009.
Dobhal, D. P., Mehta, M., and Srivastava, D.: Influence of debris cover on
terminus retreat and mass changes of Chorabari Glacier, Garhwal region,
central Himalaya, India, J. Glaciol., 59, 961–971,
https://doi.org/10.3189/2013JoG12J180, 2013.
eCognition Essentials 1.3: Trimble Germany GmbH, 2016.
Escher-Vetter, H., Kuhn, M., and Weber, M.: Four decades of winter mass
balance of Vernagtferner and Hintereisferner, Austria: Methodology and
results, Ann. Glaciol., 50, 87–95, https://doi.org/10.3189/172756409787769672, 2009.
Fahnestock, M. A., Scambos, T. A., and Bindschadler, R. A.: Semi-automated
ice velocity determination from satellite imagery, Eos, 73, 493, 1992.
Fischer, A.: Comparison of direct and geodetic mass balances on a multi-annual time scale, The Cryosphere, 5, 107–124, https://doi.org/10.5194/tc-5-107-2011, 2011.
Fischer, M., Huss, M., and Hoelzle, M.: Surface elevation and mass changes of all Swiss glaciers 1980–2010, The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, 2015.
Füllemann, C., Begert, M., Croci-Maspoli, M., and Brönnimann, S.:
Digitalisieren und Homogenisieren von historischen Klimadaten des Swiss NBCN
– Resultate aus DigiHom, Arbeitsberichte der MeteoSchweiz, 236, 48 pp.,
2011.
Gardelle, J., Berthier, E., and Arnaud, Y.: Slight mass gain of Karakoram
glaciers in the early twenty-first century, Nat. Geosci., 5, 322–325,
https://doi.org/10.1038/NGEO1450, 2012.
Gibson, M. J., Glasser, N. F., Quincey, D. J., Rowan, A. V., and
Irvine-Fynn, T. D.: Changes in glacier surface cover on Baltoro glacier,
Karakoram, north Pakistan, 2001–2012, J. Maps, 13, 100–108,
https://doi.org/10.1080/17445647.2016.1264319, 2017.
GLAMOS: Swiss glacier monitoring network – Length variation, available at:
http://swiss-glaciers.glaciology.ethz.ch/index.html, last access: 7 December
2018.
Graf, J. H.: Die schweizerische Landesvermessung 1832–1864: Geschichte der
Dufourkarte, https://doi.org/10.3931/e-rara-41134, 1896.
Granshaw, F. D. and Fountain, A.: Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA, J. Glaciol., 52, 251–256, https://doi.org/10.3189/172756506781828782, 2006.
Hall, D. K., Bayr, K. J., Schöner, W., Bindschadler, R. A., and Chien,
J. Y. L.: Consideration of the errors inherent in mapping historical glacier
positions in Austria from the ground and space (1893–2001), Remote Sens.
Environ., 86, 566–577, https://doi.org/10.1016/S0034-4257(03)00134-2, 2003.
Hambrey, M. J., Quincey, D. J., Glasser, N. F., Reynolds, J. M., Richardson,
S. J., and Clemmens, S.: Sedimentological, geomorphological and dynamic
context of debris-mantled glaciers, Mount Everest (Sagarmatha) region,
Nepal, Quaternary Sci. Rev., 27, 2361–2389,
https://doi.org/10.1016/j.quascirev.2008.08.010, 2008.
Hirschi, E., Auchmann, R., Martius, O., and Brönnimann, S.: The
1945–1949 droughts in Switzerland, in: Weather extremes during the past 140
years, edited by: Brönnimann, S. and Martius, O., Geographica Bernensia,
G89, Bern, 81–90, 2013.
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013.
Huss, M., Hock, R., Bauder, A., and Funk, M.: 100-year mass changes in the
Swiss Alps linked to the Atlantic Multidecadal Oscillation, Geophys. Res.
Lett., 37, L10501, https://doi.org/10.1029/2010GL042616, 2010.
Immerzeel, W. W., Kraaijenbrink, P. D. A., Shea, J. M., Shrestha, A. B.,
Pellicciotti, F., Bierkens, M. F. P., and de Jong, S. M.: High-resolution
monitoring of Himalayan glacier dynamics using unmanned aerial vehicles,
Remote Sens. Environ., 150, 93–103, https://doi.org/10.1016/j.rse.2014.04.025,
2014.
Inoue, J.: Mass Budget of Khumbu Glacier, Journal of the Japanese Society of
Snow and Ice, 39, 15–19, https://doi.org/10.5331/seppyo.39.Special_15,
1977.
Jóhannesson, T., Raymond, C., and Waddington, E.: Time–Scale for
Adjustment of Glaciers to Changes in Mass Balance, J. Glaciol., 35,
355–369, https://doi.org/10.3189/S002214300000928X, 1989.
Jouvet, G., Huss, M., Funk, M., and Blatter, H.: Modelling the retreat of
Grosser Aletschgletscher, Switzerland, in a changing climate, J. Glaciol.,
57, 1033–1045, https://doi.org/10.3189/002214311798843359, 2011.
Juen, M., Mayer, C., Lambrecht, A., Han, H., and Liu, S.: Impact of varying debris cover thickness on ablation: a case study for Koxkar Glacier in the Tien Shan, The Cryosphere, 8, 377–386, https://doi.org/10.5194/tc-8-377-2014, 2014.
Kääb, A.: Combination of SRTM3 and repeat ASTER data for deriving
alpine glacier flow velocities in the Bhutan Himalaya, Remote Sens.
Environ., 94, 463–474, https://doi.org/10.1016/j.rse.2004.11.003, 2005.
Kääb, A.: Glacier Volume Changes Using ASTER Satellite Stereo and
ICESat GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Svalbard,
IEEE T. Geosci. Remote, 46, 2823–2830,
https://doi.org/10.1109/TGRS.2008.2000627, 2008.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in
the Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324, 2012.
Kellerer-Pirklbauer, A., Lieb, G. K., Avian, M., and Gspurning, J.: The
response of partially debris-covered valley glaciers to climate change: The
example of the pasterze glacier (austria) in the period 1964 to 2006,
Geogr. Ann. A, 90, 269–285,
https://doi.org/10.1111/j.1468-0459.2008.00345.x, 2008.
Kirkbride, M. P. and Deline, P.: The formation of supraglacial debris covers
by primary dispersal from transverse englacial debris bands, Earth Surf.
Proc. Land., 38, 1779–1792, https://doi.org/10.1002/esp.3416, 2013.
Koblet, T., Gärtner-Roer, I., Zemp, M., Jansson, P., Thee, P., Haeberli, W., and Holmlund, P.: Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) – Part 1: Determination of length, area, and volume changes, The Cryosphere, 4, 333–343, https://doi.org/10.5194/tc-4-333-2010, 2010.
Kohler, J., James, T. D., Murray, T., Nuth, C., Brandt, O., Barrand, N. E.,
Aas, H. F., and Luckman, A.: Acceleration in thinning rate on western
Svalbard glaciers, Geophys. Res. Lett., 34, F04007,
https://doi.org/10.1029/2007GL030681, 2007.
Kraaijenbrink, P. D. A., Shea, J. M., Pellicciotti, F., Jong, S. D., and
Immerzeel, W. W.: Object-based analysis of unmanned aerial vehicle imagery
to map and characterise surface features on a debris-covered glacier, Remote
Sens. Environ., 186, 581–595, https://doi.org/10.1016/j.rse.2016.09.013, 2016.
Lamsal, D., Fujita, K., and Sakai, A.: Surface lowering of the debris-covered area of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975, as revealed by Hexagon KH-9 and ALOS satellite observations, The Cryosphere, 11, 2815–2827, https://doi.org/10.5194/tc-11-2815-2017, 2017.
Magnússon, E., Muñoz-Cobo Belart, J., Pálsson, F., Ágústsson, H., and Crochet, P.: Geodetic mass balance record with rigorous uncertainty estimates deduced from aerial photographs and lidar data – Case study from Drangajökull ice cap, NW Iceland, The Cryosphere, 10, 159–177, https://doi.org/10.5194/tc-10-159-2016, 2016.
Mattson, L. E., Gardner, J. S., and Young, G. J.: Ablation on Debris Covered
Glaciers: an Example from the Rakhiot Glacier, Punjab, Himalaya, in:
Kathmandu Symposium 1992 – Snow and Glacier Hydrology, edited by: Young, G. J.,
Kathmandu, 218, 289–296, 1993.
MeteoSwiss: Normwertkarte Niederschlag 1981–2010, MeteoSwiss, available at: https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/climate-normals/norm-value-charts.html?filters=precip_8110_yy (last access: 10 July 2019), 2014.
Miles, E. S., Pellicciotti, F., Willis, I. C., Steiner, J. F., Buri, P., and
Arnold, N. S.: Refined energy-balance modelling of a supraglacial pond,
Langtang Khola, Nepal, Ann. Glaciol., 57, 29–40, https://doi.org/10.3189/2016AoG71A421,
2016.
Mölg, N. and Bolch, T.: Structure-from-Motion Using Historical Aerial
Images to Analyse Changes in Glacier Surface Elevation, Remote Sensing, 9,
1021, https://doi.org/10.3390/rs9101021, 2017.
Nakawo, M., Iwata, S., Watanabe, O., and Yoshida, M.: Processes which
Distribute Supraglacial Debris on the Khumbu Glacier, Nepal Himalaya, Ann.
Glaciol., 8, 129–131, https://doi.org/10.3189/S0260305500001294, 1986.
Nakawo, M., Yabuki, H., and Sakai, A.: Characteristics of Khumbu Glacier,
Nepal Himalaya: Recent change in the debris-covered area, Ann. Glaciol., 28,
118–122, https://doi.org/10.3189/172756499781821788, 1999.
National Snow and Ice Data Center: Glacier Photograph Collection, Version 1,
NSIDC: National Snow and Ice Data Center, Boulder, Colorado, USA,
https://doi.org/10.7265/N5/NSIDC-GPC-2009-12, 2002, updated 2015.
Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer
using meteorological data, J. Glaciol., 52, 463–470,
https://doi.org/10.3189/172756506781828584, 2006.
Nienow, P., Sharp, M., and Willis, I.: Seasonal changes in the morphology of
the subglacial drainage system, Haut Glacier d'Arolla, Switzerland, Earth
Surf. Proc. Land., 23, 825–843,
https://doi.org/10.1002/(SICI)1096-9837(199809)23:9<825::AID-ESP893>3.0.CO;2-2, 1998.
Nuimura, T., Fujita, K., Yamaguchi, S., and Sharma, R. R.: Elevation changes
of glaciers revealed by multitemporal digital elevation models calibrated by
GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008, J. Glaciol., 58,
648–656, https://doi.org/10.3189/2012JoG11J061, 2012.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Ogilvie, I. H.: The Effect of Superglacial Débris on the Advance and
Retreat of Some Canadian Glaciers, J. Geol., 12, 722–743,
1904.
Östrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence
of Ice Cores in Moraine Ridges, Geogr. Ann., 41, 228–230, 1959.
Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K.,
Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko,
G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer,
K., Steffen, S., and Winsvold, S.: On the accuracy of glacier outlines
derived from remote-sensing data, Ann. Glaciol., 54, 171–182,
https://doi.org/10.3189/2013AoG63A296, 2013.
Pellicciotti, F., Stephan, C., Miles, E., Herreid, S., Immerzeel, W. W., and
Bolch, T.: Mass-balance changes of the debris-covered glaciers in the
Langtang Himal, Nepal, from 1974 to 1999, J. Glaciol., 61, 373–386,
https://doi.org/10.3189/2015JoG13J237, 2015.
Pieczonka, T. and Bolch, T.: Region-wide glacier mass budgets and area
changes for the Central Tien Shan between ∼1975 and 1999
using Hexagon KH-9 imagery, Global Planet. Change, 128, 1–13,
https://doi.org/10.1016/j.gloplacha.2014.11.014, 2015.
Pieczonka, T., Bolch, T., Junfeng, W., and Shiyin, L.: Heterogeneous mass
loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by
1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery, Remote Sens.
Environ., 130, 233–244, https://doi.org/10.1016/j.rse.2012.11.020, 2013.
Pix4D: Pix4Dmapper pro, Pix4D, Version 4.4, available at: http://www.pix4d.com (last access: 10 July 2019), 2016.
Quincey, D. J. and Glasser, N. F.: Morphological and ice-dynamical changes
on the Tasman Glacier, New Zealand, 1990–2007, Global Planet. Change,
68, 185–197, https://doi.org/10.1016/j.gloplacha.2009.05.003, 2009.
Quincey, D. J., Luckman, A., and Benn, D.: Quantification of Everest region
glacier velocities between 1992 and 2002, using satellite radar
interferometry and feature tracking, J. Glaciol., 55, 596–606,
https://doi.org/10.3189/002214309789470987, 2009.
Ragettli, S., Bolch, T., and Pellicciotti, F.: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal, The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, 2016.
Rastner, P., Joerg, P. C., Huss, M., and Zemp, M.: Historical analysis and
visualization of the retreat of Findelengletscher, Switzerland, 1859–2010,
Global Planet. Change, 145, 67–77,
https://doi.org/10.1016/j.gloplacha.2016.07.005, 2016.
Reid, H. F.: Zmutt Glacier. From the Glacier Photograph Collection, NSIDC:
National Snow and Ice Data Center, Boulder, Colorado, USA,
available at: https://nsidc.org/data/glacier_photo (last access: 21 August
2018), 1894.
Reid, T. D. and Brock, B. W.: Assessing ice-cliff backwasting and its
contribution to total ablation of debris-covered Miage glacier, Mont Blanc
massif, Italy, J. Glaciol., 60, 3–13, https://doi.org/10.3189/2014JoG13J045, 2014.
Röhl, K.: Characteristics and evolution of supraglacial ponds on
debris-covered Tasman Glacier, New Zealand, J. Glaciol., 54, 867–880,
https://doi.org/10.3189/002214308787779861, 2008.
Rounce, D. R., King, O., McCarthy, M., Shean, D. E., and Salerno, F.: Quantifying Debris Thickness of Debris-Covered Glaciers in the Everest Region of Nepal Through Inversion of a Subdebris Melt Model, J. Geophys. Res., 123, 1094–1115, https://doi.org/10.1029/2017JF004395, 2018.
Rowan, A. V., Egholm, D. L., Quincey, D. J., and Glasser, N. F.: Modelling
the feedbacks between mass balance, ice flow and debris transport to predict
the response to climate change of debris-covered glaciers in the Himalaya,
Earth Planet. Sc. Lett., 430, 427–438,
https://doi.org/10.1016/j.epsl.2015.09.004, 2015.
Sakai, A., Takeuchi, N., Fujita, K., and Nakawo, M.: Role of supraglacial
pond in the ablation process of a debris-covered glacier in the Nepal
Himalayas, in: Debris-Covered Glaciers, edited by: Nakawo, M., Raymond, C. F., and
Fountain, A., Debris-Covered Glaciers, Seattle, 13–15 September, IAHS
publication, IAHS, Wallingford, Oxfordshire, 264, 119–130, 2000.
Sakai, A., Nakawo, M., and Fujita, K.: Distribution Characteristics and
Energy Balance of Ice Cliffs on Debris-covered Glaciers, Nepal Himalaya,
Arct. Antarct. Alp. Res., 34, 12–19,
https://doi.org/10.1080/15230430.2002.12003463, 2002.
Sapiano, J. J., Harrison, W. D., and Echelmeyer, K. A.: Elevation, volume
and terminus changes of nine glaciers in North America, J. Glaciol., 44,
119–135, https://doi.org/10.3189/S0022143000002410, 1998.
Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler, R. A.:
Application of image cross-correlation to the measurement of glacier
velocity using satellite image data, Remote Sens. Environ., 42,
177–186, https://doi.org/10.1016/0034-4257(92)90101-O, 1992.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable
response of Himalayan glaciers to climate change affected by debris cover,
Nat. Geosci., 4, 156–159, https://doi.org/10.1038/NGEO1068, 2011.
Schmidli, J.: Reconstruction and analysis of mesoscale precipitation in the
Alps for the 20th century, Doctoral Thesis at ETH Zurich, https://doi.org/10.3929/ethz-a-004137916, 2000.
SenseFly SA: Bee classic, available at: https://www.sensefly.com/drone/ebee-mapping-drone/ (last access: 10 July 2019), Parrot Company, 2016.
Siedler, A.: Rekonstruktion von Gletscherhöhenmodellen, Master Thesis, Cartography and Geoinformatics, ETH Zürich, Zürich, 2011.
Sold, L., Huss, M., Machguth, H., Joerg, P. C., Leysinger Vieli, G.,
Linsbauer, A., Salzmann, N., Zemp, M., and Hoelzle, M.: Mass Balance
Re-analysis of Findelengletscher, Switzerland; Benefits of Extensive Snow
Accumulation Measurements, Front. Earth Sci., 4, 319,
https://doi.org/10.3389/feart.2016.00018, 2016.
Stocker-Waldhuber, M., Fischer, A., Helfricht, K., and Kuhn, M.: Ice flow velocity as a sensitive indicator of glacier state, The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-37, in review, 2018.
Stokes, C. R., Popovnin, V., Aleynikov, A., Gurney, S. D., and Shahgedanova,
M.: Recent glacier retreat in the Caucasus Mountains, Russia, and associated
increase in supraglacial debris cover and supra-/proglacial lake
development, Ann. Glaciol., 46, 195–203, https://doi.org/10.3189/172756407782871468,
2007.
Swisstopo: DHM25. Das landesweite digitale Höhenmodell, available at: https://www.swisstopo.admin.ch/de/home/products/height/dhm25.html (last access: 10 July 2019), 2005.
Swisstopo: Swissimage. Das digitale Farborthophotomosaik der Schweiz, available at:
https://www.swisstopo.admin.ch/content/swisstopo-internet/de/home/products/images/ortho/swissimage/_jcr_content/contentPar/tabs/items/dokumente/tabPar/downloadlist/downloadItems/588_1464190449870.download/infosi201003deu.pdf, last access: 21 August 2018, 2010.
Swisstopo: Hintergrundinformation zur Siegfriedkarte, available at:
https://www.swisstopo.admin.ch/de/wissen-fakten/karten-und-mehr/historische-kartenwerke/siegfriedkarte.html,
last access: 3 October 2018a.
Swisstopo: Topographic maps, aerial images, digital terrain models, available at:
https://www.swisstopo.admin.ch/, last access: 7 December 2018b.
Thomson, M. H., Kirkbride, M. P., and Brock, B. W.: Twentieth century
surface elevation change of the Miage Glacier, Italian Alps, in: Debris
Covered Glaciers, International Association of Hydrologic Sciences
Publication Workshop at Seattle, 264, 219–225, 2000.
van Woerkom, T., Steiner, J. F., Kraaijenbrink, P. D. A., Miles, E. S., and Immerzeel, W. W.: Sediment supply from lateral moraines to a debris-covered glacier in the Himalaya, Earth Surf. Dynam., 7, 411–427, https://doi.org/10.5194/esurf-7-411-2019, 2019.
Vincent, C., Soruco, A., Six, D., and Le Meur, E.: Glacier thickening and
decay analysis from 50 years of glaciological observations performed on
Glacier d'Argentière, Mont Blanc area, France, Ann. Glaciol., 50,
73–79, https://doi.org/10.3189/172756409787769500, 2009.
Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Soruco, A., Arnaud, Y., Brun, F., Berthier, E., and Sherpa, S. F.: Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal, The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, 2016.
Werner, C., Strozzi, T., Wiesmann, A., and Wegmuller, U.: Gamma's portable
radar interferometer, Symposium on Deformation Measurement and Analysis,
2008.
Wolf, J. R.: Die Geschichte der Vermessung der Schweiz, Commission von S.
Höhr, Zürich, 1879.
World Glacier Monitoring Service: Fluctuations of Glaciers Database, 2017.
Ye, Q., Bolch, T., Naruse, R., Wang, Y., Zong, J., Wang, Z., Zhao, R., Yang,
D., and Kang, S.: Glacier mass changes in Rongbuk catchment on Mt.
Qomolangma from 1974 to 2006 based on topographic maps and ALOS PRISM data,
J. Hydrol., 530, 273–280, https://doi.org/10.1016/j.jhydrol.2015.09.014,
2015.
Zemp, M., Thibert, E., Huss, M., Stumm, D., Rolstad Denby, C., Nuth, C., Nussbaumer, S. U., Moholdt, G., Mercer, A., Mayer, C., Joerg, P. C., Jansson, P., Hynek, B., Fischer, A., Escher-Vetter, H., Elvehøy, H., and Andreassen, L. M.: Reanalysing glacier mass balance measurement series, The Cryosphere, 7, 1227–1245, https://doi.org/10.5194/tc-7-1227-2013, 2013.
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar...