Articles | Volume 13, issue 7
https://doi.org/10.5194/tc-13-1767-2019
https://doi.org/10.5194/tc-13-1767-2019
Research article
 | Highlight paper
 | 
04 Jul 2019
Research article | Highlight paper |  | 04 Jul 2019

Converting snow depth to snow water equivalent using climatological variables

David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken

Related authors

Changing snow water storage in natural snow reservoirs
Christina Marie Aragon and David F. Hill
Hydrol. Earth Syst. Sci., 28, 781–800, https://doi.org/10.5194/hess-28-781-2024,https://doi.org/10.5194/hess-28-781-2024, 2024
Short summary
Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations
Ryan L. Crumley, David F. Hill, Katreen Wikstrom Jones, Gabriel J. Wolken, Anthony A. Arendt, Christina M. Aragon, Christopher Cosgrove, and Community Snow Observations Participants
Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021,https://doi.org/10.5194/hess-25-4651-2021, 2021
Short summary
A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020,https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
What's streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels
Katherine A. Serafin, Peter Ruggiero, Kai Parker, and David F. Hill
Nat. Hazards Earth Syst. Sci., 19, 1415–1431, https://doi.org/10.5194/nhess-19-1415-2019,https://doi.org/10.5194/nhess-19-1415-2019, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Trends in the annual snow melt-out day over the French Alps and Pyrenees from 38 years of high-resolution satellite data (1986–2023)
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
The Cryosphere, 19, 2407–2429, https://doi.org/10.5194/tc-19-2407-2025,https://doi.org/10.5194/tc-19-2407-2025, 2025
Short summary
Sublimation measurements of tundra and taiga snowpack in Alaska
Kelsey A. Stockert, Eugénie S. Euskirchen, and Svetlana L. Stuefer
The Cryosphere, 19, 1739–1755, https://doi.org/10.5194/tc-19-1739-2025,https://doi.org/10.5194/tc-19-1739-2025, 2025
Short summary
Insights into microphysical and optical properties of typical mineral dust within industrial-polluted snowpack via wet/dry deposition in Changchun, Northeastern China
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-124,https://doi.org/10.5194/egusphere-2025-124, 2025
Short summary
SPASS – new gridded climatological snow datasets for Switzerland: Potential and limitations
Christoph Marty, Adrien Michel, Tobias Jonas, Cynthia Steijn, Regula Muelchi, and Sven Kotlarski
EGUsphere, https://doi.org/10.5194/egusphere-2025-413,https://doi.org/10.5194/egusphere-2025-413, 2025
Short summary
An examination of changes in autumn Eurasian snow cover and its relationship with the winter Arctic Oscillation using 20th Century Reanalysis version 3
Gareth J. Marshall
The Cryosphere, 19, 663–683, https://doi.org/10.5194/tc-19-663-2025,https://doi.org/10.5194/tc-19-663-2025, 2025
Short summary

Cited articles

Alford, D.: Density variations in alpine snow, J. Glaciol., 6, 495–503, https://doi.org/10.3189/S0022143000019717, 1967. 
Avanzi, F., De Michele, C., and Ghezzi, A.: On the performances of empirical regressions for the estimation of bulk snow density, Geogr. Fis. Din. Quat., 38, 105–112, https://doi.org/10.4461/GFDQ.2015.38.10, 2015. 
Beaumont, R.: Mt. Hood pressure pillow snow gage, J. Appl. Meteorol., 4, 626–631, https://doi.org/10.1175/1520-0450(1965)004<0626:MHPPSG>2.0.CO;2, 1965. 
Beaumont, R. and Work, R.: Snow sampling results from three samplers, Hydrolog. Sci. J., 8, 74–78, https://doi.org/10.1080/02626666309493359, 1963. 
Burakowski, E. A., Wake, C. P., Stampone, M., and Dibb, J.: Putting the Capital “A” in CoCoRAHS: An Experimental Program to Measure Albedo using the Community Collaborative Rain Hail and Snow (CoCoRaHS) Network, Hydrol. Process., 27, 3024–3034, https://doi.org/10.1002/hyp.9825, 2013. 
Download
Short summary
We present a new statistical model for converting snow depths to water equivalent. The only variables required are snow depth, day of year, and location. We use the location to look up climatological parameters such as mean winter precipitation and mean temperature difference (difference between hottest month and coldest month). The model is simple by design so that it can be applied to depth measurements anywhere, anytime. The model is shown to perform better than other widely used approaches.
Share