Articles | Volume 13, issue 7
https://doi.org/10.5194/tc-13-1767-2019
https://doi.org/10.5194/tc-13-1767-2019
Research article
 | Highlight paper
 | 
04 Jul 2019
Research article | Highlight paper |  | 04 Jul 2019

Converting snow depth to snow water equivalent using climatological variables

David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken

Related authors

Changing Snow Water Storage in Natural Snow Reservoirs
Christina Marie Aragon and David Foster Hill
EGUsphere, https://doi.org/10.5194/egusphere-2023-596,https://doi.org/10.5194/egusphere-2023-596, 2023
Short summary
Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations
Ryan L. Crumley, David F. Hill, Katreen Wikstrom Jones, Gabriel J. Wolken, Anthony A. Arendt, Christina M. Aragon, Christopher Cosgrove, and Community Snow Observations Participants
Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021,https://doi.org/10.5194/hess-25-4651-2021, 2021
Short summary
A regional hindcast model simulating ecosystem dynamics, inorganic carbon chemistry, and ocean acidification in the Gulf of Alaska
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020,https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
What's streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels
Katherine A. Serafin, Peter Ruggiero, Kai Parker, and David F. Hill
Nat. Hazards Earth Syst. Sci., 19, 1415–1431, https://doi.org/10.5194/nhess-19-1415-2019,https://doi.org/10.5194/nhess-19-1415-2019, 2019
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023,https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023,https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia
Xuemei Li, Xinyu Liu, Kaixin Zhao, Xu Zhang, and Lanhai Li
The Cryosphere, 17, 2437–2453, https://doi.org/10.5194/tc-17-2437-2023,https://doi.org/10.5194/tc-17-2437-2023, 2023
Short summary
The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023,https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022,https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary

Cited articles

Alford, D.: Density variations in alpine snow, J. Glaciol., 6, 495–503, https://doi.org/10.3189/S0022143000019717, 1967. 
Avanzi, F., De Michele, C., and Ghezzi, A.: On the performances of empirical regressions for the estimation of bulk snow density, Geogr. Fis. Din. Quat., 38, 105–112, https://doi.org/10.4461/GFDQ.2015.38.10, 2015. 
Beaumont, R.: Mt. Hood pressure pillow snow gage, J. Appl. Meteorol., 4, 626–631, https://doi.org/10.1175/1520-0450(1965)004<0626:MHPPSG>2.0.CO;2, 1965. 
Beaumont, R. and Work, R.: Snow sampling results from three samplers, Hydrolog. Sci. J., 8, 74–78, https://doi.org/10.1080/02626666309493359, 1963. 
Burakowski, E. A., Wake, C. P., Stampone, M., and Dibb, J.: Putting the Capital “A” in CoCoRAHS: An Experimental Program to Measure Albedo using the Community Collaborative Rain Hail and Snow (CoCoRaHS) Network, Hydrol. Process., 27, 3024–3034, https://doi.org/10.1002/hyp.9825, 2013. 
Download
Short summary
We present a new statistical model for converting snow depths to water equivalent. The only variables required are snow depth, day of year, and location. We use the location to look up climatological parameters such as mean winter precipitation and mean temperature difference (difference between hottest month and coldest month). The model is simple by design so that it can be applied to depth measurements anywhere, anytime. The model is shown to perform better than other widely used approaches.