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Abstract. We present a simple method that allows snow
depth measurements to be converted to snow water equiv-
alent (SWE) estimates. These estimates are useful to indi-
viduals interested in water resources, ecological function,
and avalanche forecasting. They can also be assimilated into
models to help improve predictions of total water volumes
over large regions. The conversion of depth to SWE is partic-
ularly valuable since snow depth measurements are far more
numerous than costlier and more complex SWE measure-
ments. Our model regresses SWE against snow depth (h),
day of water year (DOY) and climatological (30-year nor-
mal) values for winter (December, January, February) pre-
cipitation (PPTWT), and the difference (TD) between mean
temperature of the warmest month and mean temperature of
the coldest month, producing a power-law relationship. Re-
lying on climatological normals rather than weather data for
a given year allows our model to be applied at measurement
sites lacking a weather station. Separate equations are ob-
tained for the accumulation and the ablation phases of the
snowpack. The model is validated against a large database of
snow pillow measurements and yields a bias in SWE of less
than 2 mm and a root-mean-squared error (RMSE) in SWE of
less than 60 mm. The model is additionally validated against
two completely independent sets of data: one from western
North America and one from the northeastern United States.
Finally, the results are compared with three other models for

bulk density that have varying degrees of complexity and that
were built in multiple geographic regions. The results show
that the model described in this paper has the best perfor-
mance for the validation data sets.

1 Introduction

In many parts of the world, snow plays a leading-order role
in the hydrological cycle (USACE, 1956; Mote et al., 2018).
Accurate information about the spatial and temporal distri-
bution of snow water equivalent (SWE) is useful to many
stakeholders (water resource planners, avalanche forecasters,
aquatic ecologists, etc.), but can be time consuming and ex-
pensive to obtain.

Snow pillows (Beaumont, 1965) are a well-established
tool for measuring SWE at fixed locations. Figure 1 pro-
vides a conceptual sketch of the variation in SWE with time
over a typical water year. A comparatively long accumula-
tion phase is followed by a short ablation phase. While sim-
ple in operation, snow pillows are relatively large in size
and they need to be installed prior to the onset of the sea-
son’s snowfall. This limits their ability to be rapidly or op-
portunistically deployed. Additionally, snow pillow instal-
lations tend to require vehicular access, limiting their loca-
tions to relatively simple topography. Finally, snow pillow
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1768 D. F. Hill et al.: Converting snow depth to SWE

Figure 1. Conceptual sketch of the evolution of snow water equiva-
lent (SWE) over the course of a water year (black line). Also shown
is the evolution of SWE with snowpack depth over a water year
(red line). Note the hysteresis loop due to the densification of the
snowpack.

sites are not representative of the lowest or highest eleva-
tion bands within mountainous regions (Molotch and Bales,
2006). In the western United States (USA), the Natural Re-
sources Conservation Service (NRCS) operates a large net-
work of snow telemetry (SNOTEL) sites, featuring snow
pillows. The NRCS also operates the smaller Soil Climate
Analysis Network (SCAN), which provides the only, and
very limited, snow pillow SWE measurements in the eastern
United States.

SWE can also be measured manually, using a snow cor-
ing device that measures the weight of a known volume of
snow to determine snow density (Church, 1933). These mea-
surements are often one-off measurements, or in the case of
“snow courses” they are repeated weekly or monthly as a
transect of measurements at a given location. The simplic-
ity and portability of coring devices expand the range over
which measurements can be collected, but it can be chal-
lenging to apply these methods to deep snowpacks due to
the limited length of standard coring devices. Note that there
are numerous different styles of coring devices, including
the Adirondack sampler and the Mt. Rose or Federal sam-
pler (Church and Marr, 1937). The NRCS operates a large
network of snow course sites (USDA, 2011) in the western
United States.

There are a number of issues that affect the accuracy of
both snow pillow and snow coring measurements. With cor-
ing measurements, if the coring device is not carefully ex-
tracted, a portion of the core may fall out of the device. Or,
snow may become compressed in the coring device during
insertion. These effects have led to varying conclusions, with
some studies (e.g., Sturm et al., 2010) showing a low SWE
bias and other studies (e.g., Goodison, 1978) showing a high
SWE bias. As noted by Johnson et al. (2015) a good rule of
thumb is that coring devices are accurate to around ± 10 %.

Also, studies comparing different styles of snow samplers re-
port statistically different results, suggesting that SWE mea-
surements are sensitive to the design of the specific coring
device, such as the presence of holes or slots, the device
material, etc. (Beaumont and Work, 1963; Dixon and Boon,
2012). With snow pillows, some studies (e.g., Goodison et
al., 1981) note that ice bridging can lead to low biases in
measured SWE, with the snow surrounding the pillow partly
supporting the snow over the pillow. Other studies (Johnson
and Marks, 2004; Dressler et al., 2006; Johnson et al., 2015)
note a more complex situation with SWE underreported at
times, but overreported at other times. Note that when snow
pillow data are evaluated, they are most commonly compared
to coring measurements at the same location.

All methods of measuring SWE are challenged by the fact
that SWE is a depth-integrated property of a snowpack. This
is why the snowpack must be weighed, in the case of a snow
pillow, or a core must be extracted from the surface to the
ground. This measurement complexity makes it difficult to
obtain SWE information with the spatial and temporal res-
olution desired for watershed-scale studies. Other snowpack
properties, such as the depth h, are much easier to measure.
For example, using a graduated device such as a meterstick
or an avalanche probe to measure the depth takes only sec-
onds. Automating depth measurements at a fixed location can
easily be done using low-cost ultrasonic devices (Goodison
et al., 1984; Ryan et al., 2008). High-spatial-resolution mea-
surements of snowpack depth are commonly made with lidar.
One example of this is the Airborne Snow Observatory pro-
gram (ASO; Painter et al., 2016). The comparatively high ex-
pense of airborne lidar surveys typically limits measurements
geographically (to a few basins) and temporally (weekly to
monthly interval).

Given the relative ease in obtaining depth measurements,
it is common to use h as a proxy for SWE. Figure 1 shows
a conceptual sketch of the variation in SWE with h over a
typical water year. Noting the arrows on the curve, we see
that SWE is multivalued for each h. This is due to the fact
that the snowpack increases in density throughout the water
year, producing a hysteresis loop in the curve. A large body
of literature exists on the topic of how to convert h to SWE.
It is beyond the scope of this paper to provide a full review of
these “bulk density equations”, where the density is given by
ρb = SWE/h. Instead, we refer readers to the useful com-
parative review by Avanzi et al. (2015). Here, we prefer to
discuss a limited number of previous studies that illustrate
the spectrum of methodologies and complexities that can be
used to determine ρb or SWE.

Many studies express ρb as an increasing function (often
linear) of h. In some cases (e.g., Lundberg et al., 2006) a sec-
ond equation is added where ρb attains a constant value when
a threshold h is exceeded. A single linear equation captures
the process of densification of the snowpack during the ac-
cumulation phase, but performs poorly during the ablation

The Cryosphere, 13, 1767–1784, 2019 www.the-cryosphere.net/13/1767/2019/



D. F. Hill et al.: Converting snow depth to SWE 1769

phase, where depths are decreasing but densities continue to
increase or approach a constant value.

Other approaches choose to parameterize ρb in terms of
time, rather than h. Pistocchi (2016) provides a single equa-
tion while Mizukami and Perica (2008) provide two sets of
equations, one set each for early and late seasons. Each set
contains four equations, each of which is applicable to a par-
ticular “cluster” of stations. This clustering was driven by ob-
served densification characteristics and the resulting clusters
are relatively spatially discontinuous. Jonas et al. (2009) take
the idea of region- (or cluster-) specific equations and extend
it further to provide coefficients that depend on time and el-
evation as well. They use a simple linear equation for ρb in
terms of h and the slope and intercept of the equation are
given as monthly values, with three elevation bins for each
month (36 pairs of coefficients). There is an additional con-
tribution to the intercept (or “offset”) which is region-specific
(one of seven regions).

These classifications, whether based on region, elevation,
or season, are valuable since they acknowledge that all snow
is not equal. McKay and Findlay (1971) discuss the con-
trols that climate and vegetation exert on snow density, and
Sturm et al. (2010) address this directly by developing a
snow density equation where the coefficients depend upon
the “snow class” (five classes). Sturm et al. (1995) explain the
decision tree, based on temperature, precipitation, and wind
speed, that leads to the classification. The temperature met-
ric is the “cooling degree month” calculated during winter
months only. Similarly, only precipitation falling during win-
ter months was used in the classification. Finally, given the
challenges in obtaining high-quality, high-spatial-resolution
wind information, vegetation classification was used as a
proxy. Using climatological values (rather than values for a
given year), Sturm et al. (1995) were able to develop a global
map of snow classification.

There are many other formulations for snow density that
increase in complexity and data requirements. Meloysund
et al. (2007) express ρb in terms of sub-daily measure-
ments of relative humidity, wind characteristics, air pressure,
and rainfall, as well as h and estimates of solar exposure
(“sun hours”). McCreight and Small (2014) use daily snow
depth measurements to develop their regression equation.
They demonstrate improved performance over both Sturm
et al. (2010) and Jonas et al. (2009). However, a key dif-
ference between the McCreight and Small (2014) model
and the others listed above is that the former cannot be ap-
plied to a single snow depth measurement. Instead, it re-
quires a continuous time series of depth measurements at a
fixed location. Further increases in complexity are found in
energy-balance snowpack models (SnowModel, Liston and
Elder, 2006; VIC, Liang et al., 1994; DHSVM, Wigmosta
et al., 1994, others), many of which use multilayer models
to capture the vertical structure of the snowpack. While the
particular details vary, these models generally require high-

temporal-resolution time series of many meteorological vari-
ables as input.

Despite the development of multilayer energy-balance
snow models, there is still a demonstrated need for bulk
density formulations and for vertically integrated data prod-
ucts like SWE. Pagano et al. (2009) review the advantages
and disadvantages of energy-balance models and statistical
models and describe how the NRCS uses SWE (from SNO-
TEL stations) and accumulated precipitation in their statis-
tical models to make daily water supply forecasts. If SWE
information is desired at a location that does not have a SNO-
TEL station, and is not part of a modeling effort, then bulk
density equations and depth measurements are an excellent
choice.

The present paper seeks to generalize the ideas of
Mizukami and Perica (2008), Jonas et al. (2009), and Sturm
et al. (2010). Specifically, our goal is to regress physical
and environmental variables directly into the equations. In
this way, environmental variability is handled in a continu-
ous fashion rather than in a discrete way (model coefficients
based on classes). The main motivation for this comes from
evidence (e.g., Fig. 3 of Alford, 1967) that density can vary
significantly over short distances on a given day. Bulk den-
sity equations that rely solely on time completely miss this
variability and equations that have coarse (model coefficients
varying over either vertical bins or horizontal grids) spatial
resolution may not fully capture it either.

Our approach is most similar to Mizukami and Perica
(2008), Jonas et al. (2009), and Sturm et al. (2010) in that
a minimum of information is needed for the calculations; we
intentionally avoid approaches like Meloysund et al. (2007)
and McCreight and Small (2014). This is because our in-
terests are in converting h measurements to SWE estimates
in areas lacking weather instrumentation. The following sec-
tions introduce the numerous data sets that were used in this
study, outline the regression model adopted, and assess the
performance of the model.

2 Methods

2.1 Data

2.1.1 Snow depth and snow water equivalent

In this section, we list sources of 1970–present snow data
utilized for this study (Table 1). With regards to snow coring
devices, we refer to them using the terminology preferred in
the references describing the data sets.

USA NRCS snow telemetry and soil climate analysis
networks

SNOTEL (Serreze et al., 1999; Dressler et al., 2006) and
SCAN (Schaefer et al., 2007) stations in the contiguous
United States (CONUS) and Alaska typically record sub-
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daily observations of h, SWE, and a variety of weather vari-
ables (Fig. 2a). The periods of record are variable, but the
vast majority of stations have a period of record in excess
of 30 years. For this study, data from all SNOTEL sites
in CONUS and Alaska and northeastern US SCAN sites
(Fig. 2b) were obtained with the exception of sites whose
period of record data were unavailable online. Only stations
with both SWE and h data were retained.

Canada (British Columbia) snow survey data

Goodison et al. (1987) note that Canada has no national digi-
tal archive of snow observations from the many independent
agencies that collect snow data and that snow data are in-
stead managed provincially. The quantity and availability of
the data vary considerably among the provinces. The Water
Management Branch of the British Columbia (BC) Ministry
of the Environment manages a comparatively dense network
of Automated Snow Weather Stations (ASWSs) that measure
SWE, h, accumulated precipitation, and other weather vari-
ables (Fig. 2a). For this study, data from all British Columbia
ASWS sites were initially obtained. As with the NRCS sta-
tions, only ASWS stations with both SWE and h data were
retained.

USA NRCS snow course/aerial marker data

The snow survey program (USDA, 2008) dates to the 1930s
and includes a large number of snow course and aerial marker
sites (Fig. 2c) in western North America. While the measure-
ment frequency is variable, it is most commonly monthly. To
generate a data set for this study, data were extracted using
the National Water and Climate Center Report Generator 2.0.
This allows filtering by time period, elevation band, and other
elements. All sites with data between 1980 and 2018 were in-
cluded (Fig. 2c).

Northeastern US data

In addition to the data from the SCAN sites, snow data for
this project from the northeastern United States come from
two networks and three research sites (Fig. 2b). The Maine
Cooperative Snow Survey (MCSS, 2018) network includes h
and SWE data collected by the Maine Geological Survey, the
United States Geological Survey, and numerous private con-
tributors and contractors. MCSS snow data are collected us-
ing the standard Federal or Adirondack snow sampling tubes
typically on a weekly to biweekly (every other week) sched-
ule throughout the winter and spring, 1951–present. The New
York Snow Survey network data were obtained from the
National Oceanic and Atmospheric Administration’s North-
east Regional Climate Center at Cornell University (NYSS,
2018). Similar to the MCSS, NYSS data are collected us-
ing standard Federal or Adirondack snow sampling tubes on
weekly to biweekly schedules, 1938–present.

The Sleepers River, Vermont Research Watershed in
Danville, Vermont (Shanley and Chalmers, 1999), is a USGS
site that includes 15 stations with long-term weekly records
of h and SWE collected using Adirondack snow tubes. Most
of the periods of record are 1981–present, with a few sta-
tions going back to the 1960s. The sites include topographi-
cally flat openings in conifer stands, old fields with shrub and
grass, a hayfield, a pasture, and openings in mixed softwood–
hardwood forests. The Hubbard Brook Experiment Forest
(Campbell et al., 2010) has collected weekly snow observa-
tions at the Station 2 rain gauge site, 1959–present. Measure-
ment protocol collects 10 samples 2 m apart along a 20 m
transect in a hardwood forest opening about 1/4 ha in size.
At each sample location along the transect, h and SWE are
measured using a Mt. Rose snow tube and the 10 samples are
averaged for each transect. Finally, the Thompson Farm Re-
search site includes a mixed hardwood forest site and an open
pasture site (Burakowski et al., 2013, 2015). Daily (from
2011 to 2018), at each site, a snow core is extracted with
an aluminum tube and weighed (tube+ snow) using a digital
hanging scale. The net weight of the snow is combined with
the depth and the tube diameter to determine ρb, similar to a
Federal or Adirondack sampler.

Chugach Mountains (Alaska) data

In the spring of 2018, we conducted 3 weeks of fieldwork
in the Chugach Mountains in coastal Alaska, near the city
of Valdez (Fig. 2d–e). We measured h using an avalanche
probe at 71 sites along elevational transects during March,
April, and May. The elevational transects ranged between
250 and 1100 m (net change along transect) and were acces-
sible by ski and snowshoe travel. At each site, we measured
h in eight locations within the surrounding 10 m2, resulting
in a total of 550+ snow depth measurements. These 71 sites
were scattered across eight regions in order to capture spatial
gradients that exist in the Chugach Mountains as the wetter,
more dense maritime snow near the coast gradually changes
to drier, less dense snow on the interior side.

Data preprocessing

Figure 3 demonstrates that it is not uncommon for automated
snow pillow measurements to become noisy or nonphysi-
cal, at times reporting large depths when there is no SWE
reported. This is different from instances when physically
plausible but very low densities might be reported; say in
response to early season dry, light snowfalls. It was therefore
desirable to apply some objective, uniform procedure to each
station’s data set in order to remove clear outlier points, while
minimizing the removal of valid data points. We recognize
that there is no accepted standardized method for cleaning
bivariate SWE–h data sets. While Serreze et al. (1999) offer
a procedure for SNOTEL data in their appendix, it is rele-
vant only for precipitation and SWE values, not h. Given the
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Figure 2. Distribution of measurement locations used in this study. (a) Western US and Canada snow pillow locations, with colors indicating
station elevation in meters. (b) Northeastern United States snow pillow and snow course locations, with stations colored according to data
source. (c) Western North America snow course and aerial marker locations, with colors indicating station elevation in meters. (d, e) Mea-
surement sites in the Chugach Mountains, south-central Alaska.

strong correlation between h and SWE, we instead choose to
use common outlier detection techniques for bivariate data.

The Mahalanobis distance (MD; De Maesschalck et
al., 2000) quantifies how far a point lies from the mean of
a bivariate distribution. The distances are in terms of the
number of standard deviations along the respective princi-

pal component axes of the distribution. For highly corre-
lated bivariate data, the MD can be qualitatively thought of
as a measure of how far a given point deviates from an el-
lipse enclosing the bulk of the data. One problem is that the
MD is based on the statistical properties of the bivariate data
(mean, covariance) and these properties can be adversely af-
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Figure 3. Sample time series of SWE and h from the Rex River
(WA) SNOTEL station. Observations of h at times when SWE is
zero are likely spurious.

fected by outlier values. Therefore, it has been suggested
(e.g., Leys et al., 2018) that a “robust” MD (RMD) be cal-
culated. The RMD is essentially the MD calculated based
on statistical properties of the distribution unaffected by the
outliers. This can be done using the minimum covariance de-
terminant (MCD) method as first introduced by Rousseeuw
(1984).

Once RMDs have been calculated for a bivariate data set,
there is the question of how large an RMD must be in or-
der for the data point to be considered an outlier. For bivari-
ate normal data, the distribution of the square of the RMD
is χ2 (Gnanadesikan and Kettenring, 1972), with p (the di-
mension of the data set) degrees of freedom. So, a rule for
identifying outliers could be implemented by selecting as a
threshold some arbitrary quantile (say 0.99) of χ2

p. For the
current study, a threshold quantile of 0.999 was determined
to be an appropriate compromise in terms of removing obvi-
ous outlier points, yet retaining physically plausible results.

A scatter plot of SWE vs. h for the SNOTEL data set from
CONUS and AK reveals many nonphysical points, mostly
when a very large h is reported for a very low SWE (Fig. 4a).
Approximately 0.7 % of the original data points were re-
moved in the preprocessing described above, creating a more
physically plausible scatter plot (Fig. 4b). Note that the out-
lier detection process was applied to each station individ-
ually. The distribution of day of year (DOY) values of re-
moved data points was broad, with a mean of 160 and a stan-
dard deviation of 65. Note that the DOY origin is 1 Octo-
ber. The same procedure was applied to the BC snow pillow,
NRCS snow course, and northeastern US data sets as well
(not shown). Table 1 summarizes useful information about
the numerous data sets described above and indicates the fi-
nal number of data points retained for each. We acknowledge
that our process inevitably removes some valid data points,

but, as a small percentage of an already small 0.7 % removal
rate, we judged this to be acceptable.

2.1.2 Climatological variables

The 30-year climate normals at 1 km resolution for North
America were obtained from the ClimateNA project (Wang
et al., 2016). This project provides grids for minimum, max-
imum, and mean temperature, and total precipitation for a
given month. These grids are based on the PRISM normals
(Daly et al., 1994) and are available for the periods 1961–
1990 and 1981–2010. For this study, the more recent cli-
matology was used. The ClimateNA project also provides
a wide array of derived bioclimatic variables, such as pre-
cipitation as snow (PAS), frost-free period (FFP), mean an-
nual relative humidity (RH), and others. Wang et al. (2012)
summarize these additional variables and how they are de-
rived. Figure 5 shows gridded maps of winter (sum of De-
cember, January, February) precipitation (PPTWT) and the
temperature difference (TD) between the mean temperature
of the warmest month and the mean temperature of the cold-
est month. The latter variable (TD) is a measure of continen-
tality.

2.2 Regression model

In order to demonstrate the varying degrees of influence of
explanatory variables, several regression models were con-
structed. In each case, the model was built by randomly se-
lecting 50 % of the paired SWE–h measurements from the
aggregated CONUS, AK, and BC snow pillow data sets, ex-
cluding the SCAN data. The model was then validated by
applying it to the remaining 50 % of the data set and compar-
ing the modeled SWE to the observed SWE for those points.
We constructed a second version of the regression models by
randomly selecting 50 % of the snow pillow stations and us-
ing all of the data from those stations. The model was then
validated by applying it to the data from the remaining 50 %
of the stations. These two methods provided identical results,
likely due to the very large sample size (N ) of our data set.
In all cases, the p values from the linear regression were 0,
again due to the large sample size. Additional validation was
performed with the northeastern US data sets (SCAN snow
pillow and various snow coring data sets) and the NRCS
snow course/aerial marker data set, which were completely
left out of the model building process.

2.2.1 One-equation model

The simplest equation, and one that is supported by the
strong correlation seen in the portions of Fig. 3 when SWE
is present, is one that expresses SWE as a function of h. A
linear model is attractive in terms of simplicity, but this lim-
its the snowpack to a constant density. An alternative is to
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Figure 4. Scatter plot of SWE vs. h for the complete SNOTEL data set before (a) and after (b) removing data points, following the method
described in the section Chugach Mountains (Alaska) data. Symbols are colored by day of water year (DOY; 1 October is the origin).

Table 1. Summary of information about the data sets used in this study. Data sets in bold font were used to construct the regression model.
The numbers of stations and data points reflect the post-processed data.

Data set name Data set type Number of Number and Precision
percentage (h/SWE)

retained of retained
stations data points

NRCS SNOTEL Snow pillow (SWE), ultrasonic (h) 791 1 900 000 (99.3 %) (12.7 mm/2.5 mm)

NRCS SCAN Snow pillow (SWE), ultrasonic (h) 5 7094 (97.8 %) (12.7 mm/2.5 mm)

British Columbia Snow Survey Snow pillow (SWE), ultrasonic (h) 31 61 000 (97.5 %) (1 cm/1 mm)

NRCS Snow Survey Federal sampler/aerial marker 1085 116 000 (99.6 %) (12.7 mm/2.5 mm) for
manual sampler
(50.8 mm/n/a)
for aerial marker

Maine Geological Survey Adirondack or Federal sampler (SWE and h) 431 28 000 (99.3 %) (12.7 mm/12.7 mm)

Hubbard Brook (Station 2), NH Mt. Rose sampler (SWE and h) 1 704 (99.4 %) (2.5 mm/2.5 mm)

Thompson Farm, NH Snow core (SWE and h) 2 988 (99.4 %) 12.7 mm/12.7 mm)

Sleepers River, VT Adirondack sampler 14 7214 (99.4 %) (12.7 mm/12.7 mm)

New York Snow Survey Adirondack or Federal sampler (SWE and h) 523 44 614 (98.2 %) (12.7 mm/12.7 mm)

Chugach Mountains, AK Avalanche probe (h) 71 71 (100 %) (1 cm)

express SWE as a power law, i.e.,

SWE= Aha1 . (1)

This equation can be log-transformed into

log10 (SWE)= log10 (A)+ a1log10 (h), (2)

which immediately allows for simple linear regression
methods to be applied. With both h and SWE expressed
in millimeters, the obtained coefficients are (A,a1)=

(0.146, 1.102). Information on the performance of the model
will be deferred until the results section.

2.2.2 Two-equation model

Recall from Figs. 1 and 4 that there is a hysteresis loop in the
SWE–h relationship. During the accumulation phase, snow

densities are relatively low. During the ablation phase, the
densities are relatively high. So, the same snowpack depth
is associated with two different SWEs, depending upon the
time of year. The regression equation given above does not
resolve this difference. This can be addressed by developing
two separate regression equations, one for the accumulation
(acc) phase and one for the ablation (abl) phase. This ap-
proach takes the form of

SWEacc = Ah
a1; DOY< DOY∗, (3)

SWEabl = Bh
b1; DOY≥ DOY∗, (4)

where DOY is the number of days from the start of the water-
year, and DOY∗ is the critical or dividing day of water year
separating the two phases. Put another way, DOY∗ is the day
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Figure 5. Gridded maps of winter (December, January, February)
precipitation (PPTWT) and temperature difference (TD) between
the mean of the warmest month and the mean of the coldest month)
for North America. Maps are for the 1981–2010 climatological pe-
riod.

of peak SWE. Interannual variability results in a range of
DOY∗ values for a given site. Additionally, some sites, par-
ticularly the SCAN sites in the northeastern United States,
demonstrate multi-peak SWE profiles in some years. To re-
duce model complexity, however, we investigated the use of
a simple climatological (long-term average) value of DOY∗

at each site. For each snow pillow station, the average DOY∗

was computed over the period of record of that station. Anal-
ysis of all of the stations revealed that this average DOY∗

was relatively well correlated with the climatological mean
April maximum temperature (the average of the daily maxi-
mums recorded in April;R2

= 0.7). However, subsequent re-
gression analysis demonstrated that the SWE estimates were
relatively insensitive to DOY∗ and the best results were ac-
tually obtained when DOY∗ was uniformly set to 180 for all
stations. Again, with both SWE and h in millimeters, the re-
gression coefficients turn out to be (A,a1)= (0.150, 1.082)
and (B,b1)= (0.239, 1.069)

As these two equations are discontinuous at DOY∗, they
are blended smoothly together to produce the final two-
equation model.

SWE= SWEacc
1
2

(
1− tanh

[
0.01

{
DOY−DOY∗

}])
+SWEabl

1
2

(
1+ tanh

[
0.01

{
DOY−DOY∗

}])
(5)

The coefficient 0.01 in the tanh function controls the width
of the blending window and was selected to minimize the
root-mean-square error of the model estimates.

2.2.3 Two-equation model with climate parameters

A final model was constructed by incorporating climatologi-
cal variables. Again, the emphasis in this study is on methods
that can be implemented at locations lacking the time series
of weather variables that might be available at a weather or
SNOTEL station. Climatological normals are unable to ac-
count for interannual variability, but they do preserve the
high spatial gradients in climate that can lead to spatial gradi-
ents in snowpack characteristics. Stepwise linear regression
was used to determine which variables to include in the re-
gression. The initial list of potential variables included was

SWE= f (h, z, PPTWT, PAS,TWT,TD,DOY,RH) , (6)

where z is the elevation (m), PPTWT is the winter (sum
of December, January, February) precipitation (mm), PAS is
mean annual precipitation as snow (mm), TWT is the winter
(December, January, February) mean temperature (◦C), TD is
the difference between the mean temperature of the warmest
month and the mean temperature of the coldest month (◦C),
DOY is the day of water year, and RH is the relative hu-
midity (%). In the stepwise regression, explanatory variables
were accepted only if they improved the adjusted R2 value
by 0.001. The result of the regression yielded

SWEacc = Ah
a1 PPTWTa2 TDa3 DOYa4; DOY< DOY∗, (7)

SWEabl = Bh
b1 PPTWTb2 TDb3 DOYb4; DOY≥ DOY∗, (8)

or, in log-transformed format,

log10 (SWEacc)

= log10 (A)+ a1log10 (h)+ a2log10 (PPTWT)
+ a3log10 (TD)+ a4log10 (DOY) ; DOY< DOY∗, (9)

log10 (SWEabl)

= log10 (B)+ b1log10 (h)+ b2log10 (PPTWT)
+ b3log10 (TD)+ b4log10 (DOY) ; DOY≥ DOY∗, (10)

indicating that only snow depth, winter precipitation, temper-
ature difference, and day of water year were relevant. Man-
ual tests of model construction with other variables included
confirmed that Eqs. (7)–(8) yielded the best results. These
two SWE estimates for the individual (acc and abl) phases
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Table 2. Summary of performance metrics for the three regression
models presented in Sect. 2.2.

Model R2 Bias RMSE
(mm) (mm)

One-equation 0.946 −19.5 102
Two-equation 0.962 −5.1 81
Multivariable two-equation 0.978 −1.2 59

of the snowpack were then blended with Eq. (5) to produce
a single equation for SWE spanning the entire water year.
The obtained regression coefficients were (A,a1,a2,a3,a4)

= (0.0533,0.9480,0.1701,−0.1314,0.2922) and (B,b1,b2,
b3,b4) = (0.0481,1.0395,0.1699,−0.0461,0.1804). The
physical interpretation of these coefficients is straightfor-
ward. For example, both a2 and b2 are greater than zero. So,
for two locations with equal h, DOY, and TD, the location
with greater PPTWT will have a greater SWE and therefore
density. These locations are typically maritime climates with
wetter, denser snow. In contrast, both a3 and b3 are less than
zero. Therefore, for two locations with equal h, DOY, and
PPTWT, the location with greater TD (a more continental
climate) will have a lower density, which is again an ex-
pected result. These trends are similar in concept to Sturm
et al. (2010), whose discrete snow classes (based on climate
classes) indicate which snow will densify more rapidly.

3 Results

A comparison of the three regression models (one-equation
model, Eq. 2; two-equation model, Eqs. 3–5; multivariable
two-equation model, Eqs. 5, 7–8) is provided in Fig. 6. The
left column shows scatter plots of modeled SWE to observed
SWE for the validation data set with the 1 : 1 line shown in
black. Figure 6a, c, and e show distributions of the model
residuals. The vertical lines in Fig. 6b, d, and f show the mean
error, or model bias. Visually, it is clear that the one-equation
model performs relatively poorly with a large negative bias.
This large negative bias is partially overcome by the two-
equation model (Fig. 6c, d). The cloud of points is closer to
the 1 : 1 line and the vertical black line indicating the mean
error is closer to zero. In Fig. 6e, f, we see that the multivari-
able two-equation model yields the best result by far. The
residuals are now evenly distributed with a small bias. Sev-
eral metrics of performance for the three models, including
R2 (Pearson coefficient), bias, and root-mean-square error
(RMSE), are provided in Table 2. Figure 7 shows the distri-
bution of model residuals for the multivariable two-equation
model as a function of DOY.

It is useful to also consider the model errors in a nondi-
mensional way. Therefore, an RMSE was computed at each
station location and normalized by the winter precipitation
(PPTWT) at that location. Figure 8 shows the probability

Figure 6. Two-dimensional histograms (heat maps; a, c, e) of mod-
eled vs. observed SWE and probability density functions (b, d, f) of
the residuals for three simple models applied to the CONUS, AK,
and BC snow pillow data. Warmer colors in the heat maps indicate
greater density of points. The vertical lines in (b, d, f) indicate the
location of the mean residual, or bias. (a, b) One-equation model
(Sect. 2.2.1). (c, d) Two-equation model (Sect. 2.2.2). (e, f) Multi-
variable two-equation model (Sect. 2.2.3).

Figure 7. Heat map of SWE residuals as a function of DOY for the
application of the multivariable two-equation model to the western
North America snow pillow validation data set.
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Figure 8. Probability density function of snow pillow station root-
mean-square error (RMSE) normalized by station winter precipita-
tion (PPTWT) for the application of the multivariable two-equation
model to the western North America snow pillow validation data
set.

Figure 9. Spatial distribution of snow pillow station root-mean-
square error (RMSE) normalized by station winter precipitation
(PPTWT) for the application of the multivariable two-equation
model to the western North America snow pillow validation data
set.

density function of these normalized errors. The average
RMSE is approximately 15 % of PPTWT with most values
falling into the range of 5 %–30 %. The spatial distribution of
these normalized errors is shown in Fig. 9. For the SNOTEL
stations, it appears there is a slight regional trend, in terms of
stations in continental climates (Rockies) having larger rela-
tive errors than stations in maritime climates (Cascades). The
British Columbia stations also show higher relative errors.

Table 3. Model parameters by snow class for Sturm et al. (2010).

Snow class ρmax ρ0 k1 k2
(g cm−3) (g cm−3) (cm−1) (cm−1)

Alpine 0.5975 0.2237 0.0012 0.0038
Maritime 0.5979 0.2578 0.0010 0.0038
Prairie 0.5941 0.2332 0.0016 0.0031
Tundra 0.3630 0.2425 0.0029 0.0049
Taiga 0.2170 0.2170 0.0000 0.0000

3.1 Results for snow classes

A key objective of this study is to regress climatological in-
formation in a continuous rather than a discrete way. The
work by Sturm et al. (2010) therefore provides a valuable
point of comparison. In that study, the authors developed the
following equation for density ρb:

ρb = (ρmax− ρ0)
[
1− e(−k1h−k2DOY)

]
+ ρ0, (11)

where ρ0 is the initial density, ρmax is the maximum or “final”
density (end of water year), k1 and k2 are coefficients, and
DOY in this case begins on 1 January. This means that their
DOY for 1 October is −92. The coefficients vary with snow
class and the values determined by Sturm et al. (2010) are
shown in Table 3.

To make a comparison, the snow class for each SNOTEL
and British Columbia snow survey (rows 1 and 3 of Table 1)
site was determined using a 1 km snow class grid (Sturm et
al., 2010). The aggregated data set from these stations was
made up of 27 % alpine, 14 % maritime, 10 % prairie, 11 %
tundra, and 38 % taiga data points. Equation (11) was then
used to estimate snow density (and then SWE) for every point
in the validation data set described in Sect. 2.2. Figure 10
compares the SWE estimates from the Sturm model and from
the current multivariable, two-equation model (Eqs. 5, 7–8).
The upper left panel of Fig. 10 shows all of the data, and the
remaining panels show the results for each snow class. In all
cases, the current model provides better estimates (narrower
cloud of points; closer to the 1 : 1 line). Plots of the residuals
by snow class are provided in Fig. 11, giving an indication
of the bias of each model for each snow class. Summaries of
the model performance, broken out by snow class, are given
in Table 4. The current model has smaller biases and RMSEs
for each snow class.

3.2 Comparison to Pistocchi (2016)

In order to provide an additional comparison, the simple
model of Pistocchi (2016) was also applied to the validation
data set. His model calculates the bulk density as

ρb = ρ0+K (DOY+ 61) , (12)

where ρ0 has a value of 200 kg m−3 and K has a value of
1 kg m−3. The DOY for this model has its origin at 1 Novem-
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Table 4. Comparison of model performance by Sturm et al. (2010) and the current study.

Model Sturm et al. (2010) Multivariable two-equation model

Snow class R2 Bias (mm) RMSE (mm) R2 Bias (mm) RMSE (mm)

All data 0.928 −29.2 111 0.978 −1.2 59
Alpine 0.973 10.1 55 0.978 −2.7 48
Maritime 0.968 −16.8 109 0.975 −7.8 95
Prairie 0.967 18.7 56 0.971 −0.7 45
Tundra 0.956 −10.5 82 0.974 −2.9 59
Taiga 0.943 −80.0 151 0.978 2.6 54

Figure 10. Comparison of the multivariable, two-equation model
of the current study with the model of Sturm et al. (2010), applied
to the western North America snow pillow validation data set. The
subpanels show modeled SWE vs. observed SWE for all of the data
binned together, as well as for the data broken out by the snow
classes identified by Sturm et al. (1995). The gray symbols show
the Sturm result and the transparent heat maps (warmer colors indi-
cate greater density of points) show the current result.

ber. Application of this model to the validation data set yields
a bias of 55 mm and an RMSE of 94 mm. These results are
comparable to the Sturm et al. (2010) model, with a larger
bias but smaller RMSE.

Figure 11. Comparison of the multivariable, two-equation model
of the current study with the model of Sturm et al. (2010), applied
to the western North America snow pillow validation data set. The
panels show probability density functions of the residuals of the
model fits for all of the data binned together, as well as for the data
broken out by the snow classes identified by Sturm et al. (1995).
The gray lines show the Sturm result and the colored lines show the
current result. The vertical lines show the mean error, or the model
bias, for both the Sturm and current results.
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Table 5. Model coefficients (b,a) for the Jonas et al. (2009) model.

Month b a

z > 2000 m 2000 m> z > 1400 m 1400 m> z

(kg m−3) (kg m−4)

January (206, 52) (208, 47) (235, 31)
February (217, 46) (218, 52) (279, 9)
March (272, 26) (281, 31) (333, 3)
April (331, 9) (354, 15) (347, 25)
May (378, 21) (409, 29) (413, 19)
June (452, 8) – –
July (470, 15) – –
August – – –
September – – –
October – – –
November (206, 47) (183, 35) (149, 37)
December (203, 52) (190, 47) (201, 26)

3.3 Comparison to Jonas et al. (2009)

A final point of comparison can be provided by the model
of Jonas et al. (2009). The full version of that model con-
tains region-specific offset parameters that are not relevant to
North America, so the following partial version of the model
is used (their Eq. 4):

ρb = ah+ b, (13)

where h is inm and the parameters (a, b) vary with elevation
and month as given by Table 5. Note that coefficients are not
given for every month. Application of the Jonas et al. (2009)
model to the snow pillow data set yields a bias of −5 mm
and an RMSE of 69 mm. These results are not directly com-
parable to those of the current model (Table 2, row 3) since
the Jonas et al. (2009) model is unable to compute results
for several months of the year. To make a direct compari-
son to the current model, it is necessary to first remove those
data points (about 5 %). When this is done, the current model
yields a bias of −0.3 mm and an RMSE of 59 mm.

3.4 Results for northeastern United States

The regression equations in this study were developed us-
ing a large collection of snow pillow sites in CONUS, AK,
and BC. The snow pillow sites are limited to locations west
of approximately 105◦W (Fig. 2a). By design, the data sets
from the northeastern United States were left as an entirely
independent validation set. These northeastern sites are ge-
ographically distant from the training data sets, subject to a
very different climate, largely use different methods (snow
coring, with the exception of the SCAN network), and are
generally at much lower elevations than the western sites,
providing an interesting opportunity to test how robust the
current model is.

Figure 12 graphically summarizes the data sets and the
performance of the multivariable two-equation model of the

current study. The RMSE values are comparable to those
found for the western stations, but, given the comparatively
thinner snowpacks in the northeast, represent a larger relative
error (Table 6). The bias of the model is consistently positive,
in contrast to the western stations where the bias was negligi-
ble. Note that Table 6 also includes results from the applica-
tion of the other three models discussed. Sturm et al. (2010)
cannot be applied to several of the data sets since their avail-
able 1 km snow class data set cuts off at −71.6◦ longitude.
The current model and the Jonas et al. (2009) model perform
better than the other two models, with the current model gen-
erally outperforming the Jonas et al. (2009) model. The two
data sets where the Jonas et al. (2009) model has a slightly
better performance are the two smallest data sets (less than
1000 measurements; see Table 1).

3.5 Results for NRCS snow course/aerial marker data

The NRCS snow course and aerial marker data were also left
out of the model building process so they provide an addi-
tional and completely independent comparison of the various
models considered. Recall that these data come from snow
course (coring measurements) and aerial surveys, which are
different measurement methods than the snow pillows, which
provided the data for construction of the current regression
model. Figure 13 shows the aggregated snow course/aerial
marker data set, along with the performance of the multivari-
able two-equation model of the current study. Table 7 sum-
marizes the results and demonstrates that the current model
has the best performance.

4 Discussion

The results presented in this study show that the regression
equation described by Eqs. (5), (7)–(8) is an improvement
(lower bias and RMSE) over other widely used bulk den-
sity equations. The key advantage is that the current method
regresses in relevant parameters directly, rather than using
discrete bins (for snow class, elevation, month of year, etc.),
each with its own set of model coefficients. The comparison
(Figs. 10–11; Table 4) to the model of Sturm et al. (2010)
reveals a peculiar behavior of that model for the taiga snow
class, with a large negative bias in the Sturm estimates. In-
spection of the coefficients provided for that class (Table 3)
shows that the model simply predicts that ρb = ρmax = 0.217
for all conditions.

When our multivariable two-equation model, developed
solely from western North American data, is applied to
northeastern US locations, it produces SWE estimates with
smaller RMSE values and larger biases than the western sta-
tions. When comparing the SWE–h scatter plots of the SNO-
TEL data (Fig. 4b) to those of the east coast data sets (left
column; Fig. 12), it is clear that the northeast data generally
have more scatter. This is confirmed by computing the cor-
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Figure 12. Results from application of the multivariable, two-equation model to numerous northeastern US data sets. The left column shows
the SWE–h data for each data set. Note that the black symbols are points removed during the data preprocessing stage. The remaining
symbols are colored by DOY. The middle column plots heat maps of the model estimates of SWE against the observations of SWE with
the 1 : 1 line included. Warmer colors indicate higher density of points. The right column shows probability density functions of the model
residuals, with the vertical line indicating the mean error, or bias. Individual rows correspond to individual data sets and are labeled.
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Table 6. Performance metrics for various models applied to the northeastern US data sets. Bold font is used to highlight the model with the
best performance for each data set.

Data set name Multivariable, two-equation model Sturm et al. (2010) Jonas et al. (2009) Pistocchi (2015)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

Maine Geological Survey, ME 13.1 34.0 – – 25.1 46.0 59.2 77.1
Hubbard Brook (Station 2), NH 21.8 66.6 34.2 76.9 19.4 65.4 52.0 90.8
Thompson Farm, NH 7.1 20.2 – – 5.6 19.9 20.4 32.3
NRCS SCAN −1.2 39.2 8.4 45.0 −2.8 40.6 23.4 56.9
Sleepers River, VT 14.4 28.2 36.5 48.9 20.4 33.5 55.8 67.1
New York Snow Survey 14.8 31.2 21.0 49.3 16.3 33.0 41.3 56.1

Table 7. Performance metrics for various models applied to the NRCS snow course and aerial marker data set. Bold font is used to highlight
the model with the best performance.

Data set name Multivariable, Sturm et al. (2010) Jonas et al. (2009) Pistocchi (2015)
two-equation model

Bias RMSE Bias RMSE Bias RMSE Bias RMSE
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

NRCS snow course/aerial marker 0 59 −24 123 24 72 71 99

Figure 13. Results from application of the multivariable, two-equation model to the NRCS snow course/aerial marker data set. Panel (a)
shows the SWE–h data. Note that the black symbols are points removed during the data preprocessing stage. The remaining symbols are
colored by DOY. Panel (b) shows a heat map of the model estimates of SWE against the observations of SWE with the 1 : 1 line included.
Warmer colors indicate higher densities of points. Panel (c) shows the probability density function of the model residuals, with the vertical
line indicating the mean error, or bias.

relation coefficients between SWE and h for each data set.
It is unclear if this disparity in correlation is related to mea-
surement methodology or is instead a signal-to-noise ratio
issue. Comparing Figs. 4 and 12 shows the considerable dif-
ference in snowpack depth between the western and north-
eastern data sets. When the western data set is filtered to
include only measurement pairs where h < 1.5 m, the cor-
relation coefficient is reduced to a value consistent with the
northeast data sets. This suggests that the performance of the
current (or other) regression model is not as good at shal-
low snowpack depths. This is also suggested upon examina-
tion of the time series of observed ρb = SWE/h for a given
season at a snow pillow site. Very early in the season, when

the depths are small, the density curve has a lot of variabil-
ity. Later in the season, when depths are greater, the density
curve becomes much smoother. Very late in the season, when
depths are low again, the density curve becomes highly vari-
able again.

Measurement precision and accuracy affect the construc-
tion and use of a regression model. Upon inspection of the
snow pillow data, it was observed that the precision of the
depth measurements was approximately 25 mm and that of
the SWE measurements was approximately 2.5 mm. To test
the sensitivity of the model coefficients to the measurement
precision, the depth values in the training data set were ran-
domly perturbed by ±25 mm and the SWE values were ran-
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domly perturbed by ±2.5 mm and the regression coefficients
were recomputed. This process was repeated numerous times
and the mean values of the perturbed coefficients were ob-
tained. These adjusted coefficients were then used to recom-
pute the SWE values for the validation data set and the bias
and RMSE were found to be −10.5 and 72.7 mm. This rep-
resents a roughly 10 % increase in RMSE, but a considerable
increase in bias magnitude (see Table 4 for the original val-
ues). This sensitivity of the regression analysis to measure-
ment precision underscores the need to have high-precision
measurements for the training data set. Regarding accuracy,
random and systematic errors in the paired SWE–h data used
to construct the regression model will lead to uncertainties in
SWE values predicted by the model. As noted in the intro-
duction, snow pillow errors in SWE estimates do not follow
a simple pattern. Additionally, they are complicated by the
fact that the errors are often computed by comparing snow
pillow data to coring data, which itself is subject to error.
Lacking quantitative information on the distribution of snow
pillow errors, we are unable to quantify the uncertainty in the
SWE estimates.

Another important consideration has to do with the un-
certainty of depth measurements that the model is applied
to. For context, one application of this study is to crowd-
sourced, opportunistic snow depth measurements from pro-
grams like the Community Snow Observations (CSO; Hill
et al., 2018) project. In the CSO program, backcountry
recreational users submit depth measurements, typically
taken with an avalanche probe, using a smartphone in the
field. The measurements are then converted to SWE esti-
mates, which are assimilated into snowpack models. These
depth measurements are “any time, any place” in con-
trast to repeated measurements from the same location, like
snow pillows or snow courses. Most avalanche probes have
centimeter-scale graduated markings, so measurement pre-
cision is not a major issue. A larger problem is the con-
siderable variability in snowpack depth that can exist over
short (meter-scale) distances. The variability of the Chugach
avalanche probe measurements was assessed by taking the
standard deviation of eight depth measurements per site. The
average of this standard deviation over the sites was 22 cm
and the average coefficient of variation (standard deviation
normalized by the mean) over the sites was 15 %. This vari-
ability is a function of the surface roughness of the underly-
ing terrain, and also a function of wind redistribution of snow.
Propagating this uncertainty through the regression equations
yields a slightly higher (16 %) uncertainty in the SWE esti-
mates. CSO participants can do three things to ensure that
their recorded depth measurements are as representative as
possible. First, avoid measurements in areas of significant
wind scour or deposition. Second, avoid measurements in
terrain likely to have significant surface roughness (rocks,
fallen logs, etc.). Third, take several measurements and av-
erage them.

Expansion of CSO measurements in areas lacking SWE
measurements can increase our understanding of the extreme
spatial variability in snow distribution and the inherent un-
certainties associated with modeling SWE in these regions. It
could also prove useful for estimating watershed-scale SWE
in regions like the northeastern United States, which is cur-
rently limited to five automated SCAN sites with historical
SWE measurements for only the past 2 decades. Addition-
ally, historical snow depth measurements are more widely
available in the Global Historical Climatology Network
(GHCN-Daily; Menne et al., 2012), with several records ex-
tending back to the late 1800s. While many of the GHCN
stations are confined to lower elevations with shallower snow
depths, the broader network of quality-controlled snow depth
data paired with daily GHCN temperature and precipitation
measurements could potentially be used to reconstruct SWE
in the eastern United States given additional model develop-
ment and refinement.

5 Conclusions

We have developed a new, easy-to-use method for convert-
ing snow depth measurements to snow water equivalent es-
timates. The key difference between our approach and pre-
vious approaches is that we directly regress in climatologi-
cal variables in a continuous fashion, rather than a discrete
one. Given the abundance of freely available climatological
norms, a depth measurement tagged with coordinates (lati-
tude and longitude) and a time stamp is easily and immedi-
ately converted into SWE.

We developed this model with data from paired SWE–h
measurements from the western United States and British
Columbia. The model was tested against entirely indepen-
dent data (primarily snow course, some snow pillow) from
the northeastern United States and was found to perform
well, albeit with larger biases and root-mean-squared er-
rors. The model was tested against other well-known regres-
sion equations and was found to perform better. The model
was also tested against a large data set of independent snow
course and aerial marker measurements from western North
America. For this second independent test, the current model
outperformed the other models considered.

This model is not a replacement for more sophisticated
snow models that evolve the snowpack based on high-
frequency (e.g., daily or sub-daily) weather data inputs. The
intended purpose of this model is to constrain SWE estimates
in circumstances where snow depth is known, but weather
variables are not, a common issue in sparsely instrumented
areas in North America.
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Data availability. Numerous online data sets were used for this
project and were obtained from the following locations:

NRCS Snow Telemetry, https://www.wcc.nrcs.usda.gov/snow/
SNOTEL-wedata.html (last access: 1 August 2018);

NRCS Soil Climate Analysis Network, https://www.wcc.nrcs.
usda.gov/scan/ (last access: 15 September 2018);

British Columbia Automated Snow Weather Sta-
tions, https://www2.gov.bc.ca/gov/content/environment/
air-land-water/water/water-science-data/water-data-tools/
snow-survey-data/automated-snow-weather-station-data (last
access: 1 October 2018);

Maine Cooperative Snow Survey, https://mgs-maine.opendata.
arcgis.com/datasets/maine-snow-survey-data (last access:
15 October 2018);

New York Snow Survey, http://www.nrcc.cornell.edu/regional/
snowsurvey/snowsurvey.html (last access: 15 October 2018);

Sleepers River Research Watershed, snow data not available
online; request data from contact at https://nh.water.usgs.gov/
project/sleepers/index.htm (last access: 30 October 2018);

Hubbard Brook Experimental Forest, https://hubbardbrook.
org/d/hubbard-brook-data-catalog (last access: 30 October
2018);

Climatological Data, https://adaptwest.databasin.org/pages/
adaptwest-climatena (last access: 1 June 2019);

NRCS snow course/aerial marker data, https://wcc.sc.egov.
usda.gov/reportGenerator/ (last access: 1 June 2019).

A MATLAB function for calculating SWE based on the results
is this paper has been made publicly available at GitHub (https:
//github.com/communitysnowobs/snowdensity).
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