Articles | Volume 13, issue 6
The Cryosphere, 13, 1695–1708, 2019
https://doi.org/10.5194/tc-13-1695-2019
The Cryosphere, 13, 1695–1708, 2019
https://doi.org/10.5194/tc-13-1695-2019

Research article 26 Jun 2019

Research article | 26 Jun 2019

Validation of the sea ice surface albedo scheme of the regional climate model HIRHAM–NAOSIM using aircraft measurements during the ACLOUD/PASCAL campaigns

Evelyn Jäkel et al.

Related authors

The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021,https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Comparison of optical-equivalent snow grain size estimates under Arctic low Sun conditions during PAMARCMiP 2018
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14,https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn
Short summary
Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Veit Helm, Evelyn Jäkel, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020,https://doi.org/10.5194/tc-14-3959-2020, 2020
Short summary
Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions
Johannes Stapf, André Ehrlich, Evelyn Jäkel, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 20, 9895–9914, https://doi.org/10.5194/acp-20-9895-2020,https://doi.org/10.5194/acp-20-9895-2020, 2020
Combining atmospheric and snow radiative transfer models to assess the solar radiative effects of black carbon in the Arctic
Tobias Donth, Evelyn Jäkel, André Ehrlich, Bernd Heinold, Jacob Schacht, Andreas Herber, Marco Zanatta, and Manfred Wendisch
Atmos. Chem. Phys., 20, 8139–8156, https://doi.org/10.5194/acp-20-8139-2020,https://doi.org/10.5194/acp-20-8139-2020, 2020
Short summary

Related subject area

Discipline: Sea ice | Subject: Numerical Modelling
Edge displacement scores
Arne Melsom
The Cryosphere, 15, 3785–3796, https://doi.org/10.5194/tc-15-3785-2021,https://doi.org/10.5194/tc-15-3785-2021, 2021
Short summary
Toward a method for downscaling sea ice pressure for navigation purposes
Jean-François Lemieux, L. Bruno Tremblay, and Mathieu Plante
The Cryosphere, 14, 3465–3478, https://doi.org/10.5194/tc-14-3465-2020,https://doi.org/10.5194/tc-14-3465-2020, 2020
Short summary
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2369–2386, https://doi.org/10.5194/tc-14-2369-2020,https://doi.org/10.5194/tc-14-2369-2020, 2020
Short summary
The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 2: Development and evaluation
Clara Burgard, Dirk Notz, Leif T. Pedersen, and Rasmus T. Tonboe
The Cryosphere, 14, 2387–2407, https://doi.org/10.5194/tc-14-2387-2020,https://doi.org/10.5194/tc-14-2387-2020, 2020
Short summary
Feature-based comparison of sea ice deformation in lead-permitting sea ice simulations
Nils Hutter and Martin Losch
The Cryosphere, 14, 93–113, https://doi.org/10.5194/tc-14-93-2020,https://doi.org/10.5194/tc-14-93-2020, 2020
Short summary

Cited articles

Ahmad, B. and Haider, S.: Parameterization Experiment on the Effect of Temperature on Snow Albedo and Snow Depth, Pak. J. Meteorol., 11, 77–84, 2015. a
Bannehr, L. and Schwiesow, R.: A Technique to Account for the Misalignment of Pyranometers Installed on Aircraft, J. Atmos. Ocean. Technol., 10, 774–777, 1993. a
Choudhury, B. J. and Chang, A. T. C.: The albedo of snow for partially cloudy skies, Bound.-Lay. Meteorol., 20, 371–389, https://doi.org/10.1007/BF00121380, 1981. a, b, c
Crook, J. A. and Forster, P. M.: Comparison of surface albedo feedback in climate models and observations, Geophys. Res. Lett., 41, 1717–1723, https://doi.org/10.1002/2014GL059280, 2014. a
Curry, J.: Introduction to special section: FIRE Arctic Clouds Experiment, J. Geophys. Res., 106, 14985–14987, 2001. a
Download
Short summary
The sea ice surface albedo parameterization of a coupled regional climate model was validated against aircraft measurements performed in May–June 2017 north of Svalbard. The albedo parameterization was run offline from the model using the measured parameters surface temperature and snow depth to calculate the surface albedo and the individual fractions of the ice surface subtypes. An adjustment of the variables and additionally accounting for cloud cover reduced the root-mean-squared error.