Articles | Volume 13, issue 5
Research article
15 May 2019
Research article |  | 15 May 2019

Quantifying the snowmelt–albedo feedback at Neumayer Station, East Antarctica

Constantijn L. Jakobs, Carleen H. Reijmer, Peter Kuipers Munneke, Gert König-Langlo, and Michiel R. van den Broeke

Related authors

Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016)
Jan Melchior van Wessem, Willem Jan van de Berg, Brice P. Y. Noël, Erik van Meijgaard, Charles Amory, Gerit Birnbaum, Constantijn L. Jakobs, Konstantin Krüger, Jan T. M. Lenaerts, Stef Lhermitte, Stefan R. M. Ligtenberg, Brooke Medley, Carleen H. Reijmer, Kristof van Tricht, Luke D. Trusel, Lambertus H. van Ulft, Bert Wouters, Jan Wuite, and Michiel R. van den Broeke
The Cryosphere, 12, 1479–1498,,, 2018
Short summary

Related subject area

Discipline: Ice sheets | Subject: Energy Balance Obs/Modelling
Brief communication: Surface energy balance differences over Greenland between ERA5 and ERA-Interim
Uta Krebs-Kanzow, Christian B. Rodehacke, and Gerrit Lohmann
The Cryosphere, 17, 5131–5136,,, 2023
Short summary
A computationally efficient statistically downscaled 100 m resolution Greenland product from the regional climate model MAR
Marco Tedesco, Paolo Colosio, Xavier Fettweis, and Guido Cervone
The Cryosphere, 17, 5061–5074,,, 2023
Short summary
Impact of the melt–albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple
Maria Zeitz, Ronja Reese, Johanna Beckmann, Uta Krebs-Kanzow, and Ricarda Winkelmann
The Cryosphere, 15, 5739–5764,,, 2021
Short summary
Sensitivity of the surface energy budget to drifting snow as simulated by MAR in coastal Adelie Land, Antarctica
Louis Le Toumelin, Charles Amory, Vincent Favier, Christoph Kittel, Stefan Hofer, Xavier Fettweis, Hubert Gallée, and Vinay Kayetha
The Cryosphere, 15, 3595–3614,,, 2021
Short summary
The diurnal Energy Balance Model (dEBM): a convenient surface mass balance solution for ice sheets in Earth system modeling
Uta Krebs-Kanzow, Paul Gierz, Christian B. Rodehacke, Shan Xu, Hu Yang, and Gerrit Lohmann
The Cryosphere, 15, 2295–2313,,, 2021
Short summary

Cited articles

Amory, C., Gallée, H., Naaim-Bouvet, F., Favier, V., Vignon, E., Picard, G., Trouvilliez, A., Piard, L., Genthon, C., and Bellot, H.: Seasonal Variations in Drag Coefficient over a Sastrugi-Covered Snowfield in Coastal East Antarctica, Bound.-Lay. Meteorol., 164, 107–133,, 2017. a
Andreas, E. L.: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice, Bound.-Lay. Meteorol., 38, 159–184,, 1987. a, b
Bell, R. E., Chu, W., Kingslake, J., Das, I., Tedesco, M., Tinto, K. J., Zappa, C. J., Frezzotti, M., Boghosian, A., and Lee, W. S.: Antarctic ice shelf potentially stabilized by export of meltwater in surface river, Nature, 544, 344–348,, 2017. a
Box, J. E., Fettweis, X., Stroeve, J. C., Tedesco, M., Hall, D. K., and Steffen, K.: Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers, The Cryosphere, 6, 821–839,, 2012. a, b, c
Brandt, R. E. and Warren, S. G.: Solar-heating rates and temperature profiles in Antarctic snow and ice, J. Glaciol., 39, 99–110,, 1993. a
Short summary
We use 24 years of observations at Neumayer Station, East Antarctica, to calculate the surface energy balance and the associated surface melt, which we find to be mainly driven by the absorption of solar radiation. Meltwater can refreeze in the subsurface snow layers, thereby decreasing the surface albedo and hence allowing for more absorption of solar radiation. By implementing an albedo parameterisation, we show that this feedback accounts for a threefold increase in surface melt at Neumayer.