Articles | Volume 12, issue 9
https://doi.org/10.5194/tc-12-2883-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-12-2883-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet
Department of Geosciences, University of Oslo, Oslo, Norway
Silvan Leinss
Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
Jeffrey Kargel
Planetary Science Institute, Tucson, Arizona, USA
Andreas Kääb
Department of Geosciences, University of Oslo, Oslo, Norway
Simon Gascoin
CESBIO, CNES, CNRS, IRD, UPS, Université de Toulouse, Toulouse,
France
Gregory Leonard
Department of Planetary Sciences, University of Arizona, Tucson, USA
Etienne Berthier
LEGOS, CNES, CNRS, IRD, UPS, Université de Toulouse, Toulouse,
France
Alina Karki
Society for Ecological Restoration-Nepal, Kathmandu, Nepal
Tandong Yao
ITP-CAS, Beijing, China
Related authors
Adrien Gilbert, Anna Sinisalo, Tika R. Gurung, Koji Fujita, Sudan B. Maharjan, Tenzing C. Sherpa, and Takehiro Fukuda
The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, https://doi.org/10.5194/tc-14-1273-2020, 2020
A. Gilbert, C. Vincent, D. Six, P. Wagnon, L. Piard, and P. Ginot
The Cryosphere, 8, 689–703, https://doi.org/10.5194/tc-8-689-2014, https://doi.org/10.5194/tc-8-689-2014, 2014
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
The Cryosphere, 18, 5865–5885, https://doi.org/10.5194/tc-18-5865-2024, https://doi.org/10.5194/tc-18-5865-2024, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 65 % by 2100.
Mohd Farooq Azam, Christian Vincent, Smriti Srivastava, Etienne Berthier, Patrick Wagnon, Himanshu Kaushik, Md. Arif Hussain, Manoj Kumar Munda, Arindan Mandal, and Alagappan Ramanathan
The Cryosphere, 18, 5653–5672, https://doi.org/10.5194/tc-18-5653-2024, https://doi.org/10.5194/tc-18-5653-2024, 2024
Short summary
Short summary
Mass balance series on Chhota Shigri Glacier has been reanalysed by combining the traditional mass balance reanalysis framework and a nonlinear model. The nonlinear model is preferred over traditional glaciological methods to compute the mass balances, as the former can capture the spatiotemporal variability in point mass balances from a heterogeneous in situ point mass balance network. The nonlinear model outperforms the traditional method and agrees better with the geodetic estimates.
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquín Muñoz-Cobo Belart, Fanny Brun, Liss M. Andreassen, Brian Menounos, and Charlotte Blondel
The Cryosphere, 18, 5551–5571, https://doi.org/10.5194/tc-18-5551-2024, https://doi.org/10.5194/tc-18-5551-2024, 2024
Short summary
Short summary
Repeat elevation measurements are crucial for monitoring glacier health and to understand how glaciers affect river flows and sea level. Until recently, high-resolution elevation data were mostly available for polar regions and High Mountain Asia. Our project, the Pléiades Glacier Observatory, now provides high-resolution topographies of 140 glacier sites worldwide. This is a novel and open dataset to monitor the impact of climate change on glaciers at high resolution and accuracy.
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3505, https://doi.org/10.5194/egusphere-2024-3505, 2024
Short summary
Short summary
We generated annual maps of snow melt-out day at 20 m resolution over a period of 38 years from ten different satellites. This study fills a knowledge gap on the evolution of mountain snow in Europe by covering a much longer period and by characterizing trends at much higher resolution than previous studies. We found a trend for earlier melt-out with an average reduction of 5.51 days per decade over the French Alps and of 4.04 day per decade over the Pyrenees over the period 1986–2023.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Diego Cusicanqui, Pascal Lacroix, Xavier Bodin, Benjamin Aubrey Robson, Andreas Kääb, and Shelley MacDonell
EGUsphere, https://doi.org/10.5194/egusphere-2024-2393, https://doi.org/10.5194/egusphere-2024-2393, 2024
Short summary
Short summary
This study presents for the first time a robust methodological approach to detect and analyse rock glacier kinematics using 24 years of Landsat 7/8 imagery. Within a small region in the semi-arid andes, 382 movements were monitored showing an average velocity of 0.3 ± 0.07 m yr-1, with rock glaciers moving faster. We highlight the value of integrating optical imagery and radar interferometry supporting monitoring of rock glacier kinematics, using available medium-resolution optical imagery.
Sara Arioli, Ghislain Picard, Laurent Arnaud, Simon Gascoin, Esteban Alonso-González, Marine Poizat, and Mark Irvine
Earth Syst. Sci. Data, 16, 3913–3934, https://doi.org/10.5194/essd-16-3913-2024, https://doi.org/10.5194/essd-16-3913-2024, 2024
Short summary
Short summary
High-accuracy precision maps of the surface temperature of snow were acquired with an uncooled thermal-infrared camera during winter 2021–2022 and spring 2023. The accuracy – i.e., mean absolute error – improved from 1.28 K to 0.67 K between the seasons thanks to an improved camera setup and temperature stabilization. The dataset represents a major advance in the validation of satellite measurements and physical snow models over a complex topography.
Ines Dussaillant, Romain Hugonnet, Matthias Huss, Etienne Berthier, Jacqueline Bannwart, Frank Paul, and Michael Zemp
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-323, https://doi.org/10.5194/essd-2024-323, 2024
Preprint under review for ESSD
Short summary
Short summary
Our research observes glacier mass changes worldwide from 1976 to 2023, revealing an alarming increase in melt, especially in the last decade and a record year 2023. By combining field and satellite observations, we provide annual mass changes for all glaciers in the world, showing significant contributing to global sea level rise. This work underscores the need for ongoing local monitoring and global climate action to mitigate the effects of glacier loss and its broader environmental impacts.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Ange Haddjeri, Matthieu Baron, Matthieu Lafaysse, Louis Le Toumelin, César Deschamps-Berger, Vincent Vionnet, Simon Gascoin, Matthieu Vernay, and Marie Dumont
The Cryosphere, 18, 3081–3116, https://doi.org/10.5194/tc-18-3081-2024, https://doi.org/10.5194/tc-18-3081-2024, 2024
Short summary
Short summary
Our study addresses the complex challenge of evaluating distributed alpine snow simulations with snow transport against snow depths from Pléiades stereo imagery and snow melt-out dates from Sentinel-2 and Landsat-8 satellites. Additionally, we disentangle error contributions between blowing snow, precipitation heterogeneity, and unresolved subgrid variability. Snow transport enhances the snow simulations at high elevations, while precipitation biases are the main error source in other areas.
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024, https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Short summary
Avalanches are important for the mass balance of mountain glaciers, but few data exist on where and when they occur and which glaciers they affect the most. We developed an approach to map avalanches over large glaciated areas and long periods of time using satellite radar data. The application of this method to various regions in the Alps and High Mountain Asia reveals the variability of avalanches on these glaciers and provides key data to better represent these processes in glacier models.
Laura Sourp, Simon Gascoin, Lionel Jarlan, Vanessa Pedinotti, Kat J. Bormann, and Mohamed Wassim Baba
EGUsphere, https://doi.org/10.5194/egusphere-2024-791, https://doi.org/10.5194/egusphere-2024-791, 2024
Short summary
Short summary
An accurate knowledge of the spatial distribution of the snow mass across the landscape is important for water management in mountain catchments. We present a new tool to estimate the snow water resources without ground measurements. We evaluate the output of this tool using accurate airborne measurements in the Sierra Nevada and find that it provides realistic estimates of the snow mass and snow depth at the catchment scale.
Lahoucine Hanich, Ouiaam Lahnik, Simon Gascoin, Adnane Chakir, and Vincent Simonneaux
Proc. IAHS, 385, 387–391, https://doi.org/10.5194/piahs-385-387-2024, https://doi.org/10.5194/piahs-385-387-2024, 2024
Short summary
Short summary
Using a dataset measured with the eddy covariance system (EC) for a period from September 2020 to January 2021 at the Tazaghart plateau, located in the High Atlas of Marrakech, the sublimation was estimated. The average daily sublimation rate measured was 0.41 mm per day. Measured sublimation accounted for 42 % and 40 % of snow ablation, based on the energy and water balances, respectively.
Niranjan Adhikari, Jing Gao, Aibin Zhao, Tianli Xu, Manli Chen, Xiaowei Niu, and Tandong Yao
Atmos. Chem. Phys., 24, 3279–3296, https://doi.org/10.5194/acp-24-3279-2024, https://doi.org/10.5194/acp-24-3279-2024, 2024
Short summary
Short summary
Atmospheric water vapour isotopes at Kathmandu recorded significantly low δ18Ov and δDv values during cyclones Tauktae and Yaas in 2021, originating in the Arabian Sea and Bay of Bengal, respectively. Such depletion was associated with the intense moisture convergence and strong convection near the sampling site. The lower δ18Ov and higher d-excessv values during cyclone Yaas may be attributed to the occurrence of robust downdrafts during the rainfall.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023, https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Short summary
We present the structure and performance of the early warning system (EWS) for glacier collapse and river blockages in the southeastern Tibetan Plateau. The EWS warned of three collapse–river blockage chain events and seven small-scale events. The volume and location of the collapses and the percentage of ice content influenced the velocities of debris flows. Such a study is helpful for understanding the mechanism of glacier hazards and for establishing similar EWSs in other high-risk regions.
Esteban Alonso-González, Simon Gascoin, Sara Arioli, and Ghislain Picard
The Cryosphere, 17, 3329–3342, https://doi.org/10.5194/tc-17-3329-2023, https://doi.org/10.5194/tc-17-3329-2023, 2023
Short summary
Short summary
Data assimilation techniques are a promising approach to improve snowpack simulations in remote areas that are difficult to monitor. This paper studies the ability of satellite-observed land surface temperature to improve snowpack simulations through data assimilation. We show that it is possible to improve snowpack simulations, but the temporal resolution of the observations and the algorithm used are critical to obtain satisfactory results.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Marie Dumont, Simon Gascoin, Marion Réveillet, Didier Voisin, François Tuzet, Laurent Arnaud, Mylène Bonnefoy, Montse Bacardit Peñarroya, Carlo Carmagnola, Alexandre Deguine, Aurélie Diacre, Lukas Dürr, Olivier Evrard, Firmin Fontaine, Amaury Frankl, Mathieu Fructus, Laure Gandois, Isabelle Gouttevin, Abdelfateh Gherab, Pascal Hagenmuller, Sophia Hansson, Hervé Herbin, Béatrice Josse, Bruno Jourdain, Irene Lefevre, Gaël Le Roux, Quentin Libois, Lucie Liger, Samuel Morin, Denis Petitprez, Alvaro Robledano, Martin Schneebeli, Pascal Salze, Delphine Six, Emmanuel Thibert, Jürg Trachsel, Matthieu Vernay, Léo Viallon-Galinier, and Céline Voiron
Earth Syst. Sci. Data, 15, 3075–3094, https://doi.org/10.5194/essd-15-3075-2023, https://doi.org/10.5194/essd-15-3075-2023, 2023
Short summary
Short summary
Saharan dust outbreaks have profound effects on ecosystems, climate, health, and the cryosphere, but the spatial deposition pattern of Saharan dust is poorly known. Following the extreme dust deposition event of February 2021 across Europe, a citizen science campaign was launched to sample dust on snow over the Pyrenees and the European Alps. This campaign triggered wide interest and over 100 samples. The samples revealed the high variability of the dust properties within a single event.
César Deschamps-Berger, Simon Gascoin, David Shean, Hannah Besso, Ambroise Guiot, and Juan Ignacio López-Moreno
The Cryosphere, 17, 2779–2792, https://doi.org/10.5194/tc-17-2779-2023, https://doi.org/10.5194/tc-17-2779-2023, 2023
Short summary
Short summary
The estimation of the snow depth in mountains is hard, despite the importance of the snowpack for human societies and ecosystems. We measured the snow depth in mountains by comparing the elevation of points measured with snow from the high-precision altimetric satellite ICESat-2 to the elevation without snow from various sources. Snow depths derived only from ICESat-2 were too sparse, but using external airborne/satellite products results in spatially richer and sufficiently precise snow depths.
Wei Yang, Huabiao Zhao, Baiqing Xu, Jiule Li, Weicai Wang, Guangjian Wu, Zhongyan Wang, and Tandong Yao
The Cryosphere, 17, 2625–2628, https://doi.org/10.5194/tc-17-2625-2023, https://doi.org/10.5194/tc-17-2625-2023, 2023
Short summary
Short summary
There is very strong scientific and public interest regarding the snow thickness on Mountain Everest. Previously reported snow depths derived by different methods and instruments ranged from 0.92 to 3.5 m. Our measurements in 2022 provide the first clear radar image of the snowpack at the top of Mount Everest. The snow thickness at Earth's summit was averaged to be 9.5 ± 1.2 m. This updated snow thickness is considerably deeper than values reported during the past 5 decades.
Andreas Kääb and Luc Girod
The Cryosphere, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023, https://doi.org/10.5194/tc-17-2533-2023, 2023
Short summary
Short summary
Following the detachment of the 130 × 106 m3 Sedongpu Glacier (south-eastern Tibet) in 2018, the Sedongpu Valley underwent massive large-volume landscape changes. An enormous volume of in total around 330 × 106 m3 was rapidly eroded, forming a new canyon of up to 300 m depth, 1 km width, and almost 4 km length. Such consequences of glacier change in mountains have so far not been considered at this magnitude and speed.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Arthur Bayle, Bradley Z. Carlson, Anaïs Zimmer, Sophie Vallée, Antoine Rabatel, Edoardo Cremonese, Gianluca Filippa, Cédric Dentant, Christophe Randin, Andrea Mainetti, Erwan Roussel, Simon Gascoin, Dov Corenblit, and Philippe Choler
Biogeosciences, 20, 1649–1669, https://doi.org/10.5194/bg-20-1649-2023, https://doi.org/10.5194/bg-20-1649-2023, 2023
Short summary
Short summary
Glacier forefields have long provided ecologists with a model to study patterns of plant succession following glacier retreat. We used remote sensing approaches to study early succession dynamics as it allows to analyze the deglaciation, colonization, and vegetation growth within a single framework. We found that the heterogeneity of early succession dynamics is deterministic and can be explained well by local environmental context. This work has been done by an international consortium.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
He Sun, Tandong Yao, Fengge Su, Wei Yang, Guifeng Huang, and Deliang Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-16, https://doi.org/10.5194/hess-2023-16, 2023
Manuscript not accepted for further review
Short summary
Short summary
Based on field research campaigns since 2017 in the Yarlung Zangbo (YZ) river basin and a well-validated model, our results reveal that large regional differences in runoff regimes and changes exist in the basin. Annual runoff shows decreasing trend in the downstream sub-basin but increasing trends in the upper and middle sub-basins, due to opposing precipitation changes. Glacier runoff plays more important role in annual total runoff in downstream basin.
Esteban Alonso-González, Kristoffer Aalstad, Mohamed Wassim Baba, Jesús Revuelto, Juan Ignacio López-Moreno, Joel Fiddes, Richard Essery, and Simon Gascoin
Geosci. Model Dev., 15, 9127–9155, https://doi.org/10.5194/gmd-15-9127-2022, https://doi.org/10.5194/gmd-15-9127-2022, 2022
Short summary
Short summary
Snow cover plays an important role in many processes, but its monitoring is a challenging task. The alternative is usually to simulate the snowpack, and to improve these simulations one of the most promising options is to fuse simulations with available observations (data assimilation). In this paper we present MuSA, a data assimilation tool which facilitates the implementation of snow monitoring initiatives, allowing the assimilation of a wide variety of remotely sensed snow cover information.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022, https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary
Short summary
On 7 February 2021, a large rock–ice avalanche occurred in Chamoli, Indian Himalaya. The resulting debris flow swept down the nearby valley, leaving over 200 people dead or missing. We use a range of satellite datasets to investigate how the collapse area changed prior to collapse. We show that signs of instability were visible as early 5 years prior to collapse. However, it would likely not have been possible to predict the timing of the event from current satellite datasets.
Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek
The Cryosphere, 16, 2859–2879, https://doi.org/10.5194/tc-16-2859-2022, https://doi.org/10.5194/tc-16-2859-2022, 2022
Short summary
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022, https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Short summary
Glacier surges are widespread in the Karakoram and have been intensely studied using satellite data and DEMs. We use time series of such datasets to study three glacier surges in the same region of the Karakoram. We found strongly contrasting advance rates and flow velocities, maximum velocities of 30 m d−1, and a change in the surge mechanism during a surge. A sensor comparison revealed good agreement, but steep terrain and the two smaller glaciers caused limitations for some of them.
Bas Altena, Andreas Kääb, and Bert Wouters
The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022, https://doi.org/10.5194/tc-16-2285-2022, 2022
Short summary
Short summary
Repeat overflights of satellites are used to estimate surface displacements. However, such products lack a simple error description for individual measurements, but variation in precision occurs, since the calculation is based on the similarity of texture. Fortunately, variation in precision manifests itself in the correlation peak, which is used for the displacement calculation. This spread is used to make a connection to measurement precision, which can be of great use for model inversion.
Isabelle Gärtner-Roer, Nina Brunner, Reynald Delaloye, Wilfried Haeberli, Andreas Kääb, and Patrick Thee
The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022, https://doi.org/10.5194/tc-16-2083-2022, 2022
Short summary
Short summary
We intensely investigated the Gruben site in the Swiss Alps, where glaciers and permafrost landforms closely interact, to better understand cold-climate environments. By the interpretation of air photos from 5 decades, we describe long-term developments of the existing landforms. In combination with high-resolution positioning measurements and ground surface temperatures, we were also able to link these to short-term changes and describe different landform responses to climate forcing.
S. Kaushik, S. Leinss, L. Ravanel, E. Trouvé, Y. Yan, and F. Magnin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 325–332, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-325-2022, 2022
Tazio Strozzi, Andreas Wiesmann, Andreas Kääb, Thomas Schellenberger, and Frank Paul
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-44, https://doi.org/10.5194/essd-2022-44, 2022
Revised manuscript not accepted
Short summary
Short summary
Knowledge on surface velocity of glaciers and ice caps contributes to a better understanding of a wide range of processes related to glacier dynamics, mass change and response to climate. Based on the release of historical satellite radar data from various space agencies we compiled nearly complete mosaics of winter ice surface velocities for the 1990's over the Eastern Arctic. Compared to the present state, we observe a general increase of ice velocities along with a retreat of glacier fronts.
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Paul Willem Leclercq, Andreas Kääb, and Bas Altena
The Cryosphere, 15, 4901–4907, https://doi.org/10.5194/tc-15-4901-2021, https://doi.org/10.5194/tc-15-4901-2021, 2021
Short summary
Short summary
In this study we present a novel method to detect glacier surge activity. Surges are relevant as they disturb the link between glacier change and climate, and studying surges can also increase understanding of glacier flow. We use variations in Sentinel-1 radar backscatter strength, calculated with the use of Google Earth Engine, to detect surge activity. In our case study for the year 2018–2019 we find 69 cases of surging glaciers globally. Many of these were not previously known to be surging.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021, https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
Short summary
Snow water resources represent a key hydrological resource for the Mediterranean regions, where most of the precipitation falls during the winter months. This is the case for Lebanon, where snowpack represents 31 % of the spring flow. We have used models to generate snow information corrected by means of remote sensing snow cover retrievals. Our results highlight the high temporal variability in the snowpack in Lebanon and its sensitivity to further warming caused by its hypsography.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Silvan Leinss, Enrico Bernardini, Mylène Jacquemart, and Mikhail Dokukin
Nat. Hazards Earth Syst. Sci., 21, 1409–1429, https://doi.org/10.5194/nhess-21-1409-2021, https://doi.org/10.5194/nhess-21-1409-2021, 2021
Short summary
Short summary
A cluster of 13 large mass flow events including five detachments of entire valley glaciers was observed in the Petra Pervogo range, Tajikistan, in 1973–2019. The local clustering provides additional understanding of the influence of temperature, seismic activity, and geology. Most events occurred in summer of years with mean annual air temperatures higher than the past 46-year trend. The glaciers rest on weak bedrock and are rather short, making them sensitive to friction loss due to meltwater.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Fang Chen, Meimei Zhang, Huadong Guo, Simon Allen, Jeffrey S. Kargel, Umesh K. Haritashya, and C. Scott Watson
Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, https://doi.org/10.5194/essd-13-741-2021, 2021
Short summary
Short summary
We developed a 30 m dataset to characterize the annual coverage of glacial lakes in High Mountain Asia (HMA) from 2008 to 2017. Our results show that proglacial lakes are a main contributor to recent lake evolution in HMA, accounting for 62.87 % (56.67 km2) of the total area increase. Regional geographic variability of debris cover, together with trends in warming and precipitation over the past few decades, largely explains the current distribution of supra- and proglacial lake area.
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Vincent Vionnet, Christopher B. Marsh, Brian Menounos, Simon Gascoin, Nicholas E. Wayand, Joseph Shea, Kriti Mukherjee, and John W. Pomeroy
The Cryosphere, 15, 743–769, https://doi.org/10.5194/tc-15-743-2021, https://doi.org/10.5194/tc-15-743-2021, 2021
Short summary
Short summary
Mountain snow cover provides critical supplies of fresh water to downstream users. Its accurate prediction requires inclusion of often-ignored processes. A multi-scale modelling strategy is presented that efficiently accounts for snow redistribution. Model accuracy is assessed via airborne lidar and optical satellite imagery. With redistribution the model captures the elevation–snow depth relation. Redistribution processes are required to reproduce spatial variability, such as around ridges.
Nora Helbig, Yves Bühler, Lucie Eberhard, César Deschamps-Berger, Simon Gascoin, Marie Dumont, Jesus Revuelto, Jeff S. Deems, and Tobias Jonas
The Cryosphere, 15, 615–632, https://doi.org/10.5194/tc-15-615-2021, https://doi.org/10.5194/tc-15-615-2021, 2021
Short summary
Short summary
The spatial variability in snow depth in mountains is driven by interactions between topography, wind, precipitation and radiation. In applications such as weather, climate and hydrological predictions, this is accounted for by the fractional snow-covered area describing the fraction of the ground surface covered by snow. We developed a new description for model grid cell sizes larger than 200 m. An evaluation suggests that the description performs similarly well in most geographical regions.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Andreas Alexander, Jaroslav Obu, Thomas V. Schuler, Andreas Kääb, and Hanne H. Christiansen
The Cryosphere, 14, 4217–4231, https://doi.org/10.5194/tc-14-4217-2020, https://doi.org/10.5194/tc-14-4217-2020, 2020
Short summary
Short summary
In this study we present subglacial air, ice and sediment temperatures from within the basal drainage systems of two cold-based glaciers on Svalbard during late spring and the summer melt season. We put the data into the context of air temperature and rainfall at the glacier surface and show the importance of surface events on the subglacial thermal regime and erosion around basal drainage channels. Observed vertical erosion rates thereby reachup to 0.9 m d−1.
El Mahdi El Khalki, Yves Tramblay, Christian Massari, Luca Brocca, Vincent Simonneaux, Simon Gascoin, and Mohamed El Mehdi Saidi
Nat. Hazards Earth Syst. Sci., 20, 2591–2607, https://doi.org/10.5194/nhess-20-2591-2020, https://doi.org/10.5194/nhess-20-2591-2020, 2020
Short summary
Short summary
In North Africa, the vulnerability to floods is high, and there is a need to improve the flood-forecasting systems. Remote-sensing and reanalysis data can palliate the lack of in situ measurements, in particular for soil moisture, which is a crucial parameter to consider when modeling floods. In this study we provide an evaluation of recent globally available soil moisture products for flood modeling in Morocco.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
C. Abou Chakra, J. Somma, S. Gascoin, P. Fanise, and L. Drapeau
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 119–125, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-119-2020, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-119-2020, 2020
M. Tom, R. Aguilar, P. Imhof, S. Leinss, E. Baltsavias, and K. Schindler
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 409–416, https://doi.org/10.5194/isprs-annals-V-3-2020-409-2020, https://doi.org/10.5194/isprs-annals-V-3-2020-409-2020, 2020
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Silvan Leinss, Raphael Wicki, Sämi Holenstein, Simone Baffelli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 20, 1783–1803, https://doi.org/10.5194/nhess-20-1783-2020, https://doi.org/10.5194/nhess-20-1783-2020, 2020
Short summary
Short summary
To assess snow avalanche mapping with radar satellites in Switzerland, we compare 2 m resolution TerraSAR-X images, 10 m resolution Sentinel-1 images, and optical 1.5 m resolution SPOT-6 images. We found that radar satellites provide a valuable option to map at least larger avalanches, though avalanches are mapped only partially. By combining multiple orbits and polarizations from S1, we achieved mapping results of quality almost comparable to single high-resolution TerraSAR-X images.
Adrien Gilbert, Anna Sinisalo, Tika R. Gurung, Koji Fujita, Sudan B. Maharjan, Tenzing C. Sherpa, and Takehiro Fukuda
The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, https://doi.org/10.5194/tc-14-1273-2020, 2020
Abbas Fayad and Simon Gascoin
Hydrol. Earth Syst. Sci., 24, 1527–1542, https://doi.org/10.5194/hess-24-1527-2020, https://doi.org/10.5194/hess-24-1527-2020, 2020
Short summary
Short summary
Seasonal snowpack is an essential water resource in Mediterranean mountains. Here, we look at the role of water percolation in simulating snow mass (SWE), for the first time, in Mount Lebanon. We use SnowModel, a distributed snow model, forced by station data. The main sources of uncertainty were attributed to rain–snow partitioning, transient winter snowmelt, and the subpixel snow cover. Yet, we show that a process-based model is suitable to simulate wet snowpack in Mediterranean mountains.
Andreas Alexander, Maarja Kruusmaa, Jeffrey A. Tuhtan, Andrew J. Hodson, Thomas V. Schuler, and Andreas Kääb
The Cryosphere, 14, 1009–1023, https://doi.org/10.5194/tc-14-1009-2020, https://doi.org/10.5194/tc-14-1009-2020, 2020
Short summary
Short summary
This work shows the potential of pressure and inertia sensing drifters to measure flow parameters along glacial channels. The technology allows us to record the spatial distribution of water pressures, as well as an estimation of the flow velocity along the flow path in the channels. The measurements show a high repeatability and the potential to identify channel morphology from sensor readings.
Jaroslav Obu, Sebastian Westermann, Gonçalo Vieira, Andrey Abramov, Megan Ruby Balks, Annett Bartsch, Filip Hrbáček, Andreas Kääb, and Miguel Ramos
The Cryosphere, 14, 497–519, https://doi.org/10.5194/tc-14-497-2020, https://doi.org/10.5194/tc-14-497-2020, 2020
Short summary
Short summary
Little is known about permafrost in the Antarctic outside of the few research stations. We used a simple equilibrium permafrost model to estimate permafrost temperatures in the whole Antarctic. The lowest permafrost temperature on Earth is −36 °C in the Queen Elizabeth Range in the Transantarctic Mountains. Temperatures are commonly between −23 and −18 °C in mountainous areas rising above the Antarctic Ice Sheet, between −14 and −8 °C in coastal areas, and up to 0 °C on the Antarctic Peninsula.
Marion Réveillet, Shelley MacDonell, Simon Gascoin, Christophe Kinnard, Stef Lhermitte, and Nicole Schaffer
The Cryosphere, 14, 147–163, https://doi.org/10.5194/tc-14-147-2020, https://doi.org/10.5194/tc-14-147-2020, 2020
Silvan Leinss, Henning Löwe, Martin Proksch, and Anna Kontu
The Cryosphere, 14, 51–75, https://doi.org/10.5194/tc-14-51-2020, https://doi.org/10.5194/tc-14-51-2020, 2020
Short summary
Short summary
The anisotropy of the snow microstructure, given by horizontally aligned ice crystals and vertically interlinked crystal chains, is a key quantity to understand mechanical, dielectric, and thermodynamical properties of snow. We present a model which describes the temporal evolution of the anisotropy. The model is driven by snow temperature, temperature gradient, and the strain rate. The model is calibrated by polarimetric radar data (CPD) and validated by computer tomographic 3-D snow images.
Désirée Treichler, Andreas Kääb, Nadine Salzmann, and Chong-Yu Xu
The Cryosphere, 13, 2977–3005, https://doi.org/10.5194/tc-13-2977-2019, https://doi.org/10.5194/tc-13-2977-2019, 2019
Short summary
Short summary
Glacier growth such as that found on the Tibetan Plateau (TP) is counterintuitive in a warming world. Climate models and meteorological data are conflicting about the reasons for this glacier anomaly. We quantify the glacier changes in High Mountain Asia using satellite laser altimetry as well as the growth of over 1300 inland lakes on the TP. Our study suggests that increased summer precipitation is likely the largest contributor to the recently observed increases in glacier and lake masses.
Yanbin Lei, Tandong Yao, Kun Yang, Zhu La, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-421, https://doi.org/10.5194/hess-2019-421, 2019
Revised manuscript not accepted
Andreas Kääb, Bas Altena, and Joseph Mascaro
Hydrol. Earth Syst. Sci., 23, 4233–4247, https://doi.org/10.5194/hess-23-4233-2019, https://doi.org/10.5194/hess-23-4233-2019, 2019
Short summary
Short summary
Knowledge of water surface velocities in rivers is useful for understanding a wide range of processes and systems, but is difficult to measure over large reaches. Here, we present a novel method to exploit near-simultaneous imagery produced by the Planet cubesat constellation to track river ice floes and estimate water surface velocities. We demonstrate the method for a 60 km long reach of the Amur River and a 200 km long reach of the Yukon River.
David E. Shean, Ian R. Joughin, Pierre Dutrieux, Benjamin E. Smith, and Etienne Berthier
The Cryosphere, 13, 2633–2656, https://doi.org/10.5194/tc-13-2633-2019, https://doi.org/10.5194/tc-13-2633-2019, 2019
Short summary
Short summary
We produced an 8-year, high-resolution DEM record for Pine Island Glacier (PIG), a site of substantial Antarctic mass loss in recent decades. We developed methods to study the spatiotemporal evolution of ice shelf basal melting, which is responsible for ~ 60 % of PIG mass loss. We present shelf-wide basal melt rates and document relative melt rates for kilometer-scale basal channels and keels, offering new indirect observations of ice–ocean interaction beneath a vulnerable ice shelf.
S. Ferrant, A. Selles, M. Le Page, A. AlBitar, S. Mermoz, S. Gascoin, A. Bouvet, S. Ahmed, and Y. Kerr
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W6, 285–292, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, https://doi.org/10.5194/isprs-archives-XLII-3-W6-285-2019, 2019
B. Altena, O. N. Haga, C. Nuth, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 1723–1727, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, https://doi.org/10.5194/isprs-archives-XLII-2-W13-1723-2019, 2019
Simon Gascoin, Manuel Grizonnet, Marine Bouchet, Germain Salgues, and Olivier Hagolle
Earth Syst. Sci. Data, 11, 493–514, https://doi.org/10.5194/essd-11-493-2019, https://doi.org/10.5194/essd-11-493-2019, 2019
Short summary
Short summary
The Sentinel-2 satellite mission allows the observation of the land surface at unprecedented resolutions (20 m every 5 days). The frequency of observations can be further increased with Landsat-8. Here we describe a new collection of snow maps made from Sentinel-2 and Landsat-8 and evaluate their accuracy. The data are routinely produced over several mountain areas and freely distributed via http://theia.cnes.fr. These new data could unlock advances in our understanding of mountain ecosystems.
Daniel Falaschi, Andreas Kääb, Frank Paul, Takeo Tadono, Juan Antonio Rivera, and Luis Eduardo Lenzano
The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, https://doi.org/10.5194/tc-13-997-2019, 2019
Short summary
Short summary
In March 2007, the Leñas Glacier in the Central Andes of Argentina collapsed and released an ice avalanche that travelled a distance of 2 km. We analysed aerial photos, satellite images and field evidence to investigate the evolution of the glacier from the 1950s through the present day. A clear potential trigger of the collapse could not be identified from available meteorological and seismic data, nor could a significant change in glacier geometry leading to glacier instability be detected.
Robert McNabb, Christopher Nuth, Andreas Kääb, and Luc Girod
The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, https://doi.org/10.5194/tc-13-895-2019, 2019
Short summary
Short summary
Estimating glacier changes involves measuring elevation changes, often using elevation models derived from satellites. Many elevation models have data gaps (voids), which affect estimates of glacier change. We compare 11 methods for interpolating voids, finding that some methods bias estimates of glacier change by up to 20 %, though most methods have a smaller effect. Some methods produce reliable results even with large void areas, suggesting that noisy elevation data are still useful.
Bas Altena, Ted Scambos, Mark Fahnestock, and Andreas Kääb
The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, https://doi.org/10.5194/tc-13-795-2019, 2019
Short summary
Short summary
Many glaciers in southern Alaska and the Yukon experience changes in flow speed, which occur in episodes or sporadically. These flow changes can be measured with satellites, but the resulting raw velocity products are messy. Thus in this study we developed an automatic method to produce a synthesized velocity product over a large glacier region of roughly 600 km by 200 km. Velocities are at a monthly resolution and at 300 m resolution, making all kinds of glacier dynamics observable.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Short summary
On debris-covered glaciers, steep ice cliffs experience dramatically enhanced melt compared with the surrounding debris-covered ice. Using field measurements, UAV data and submetre satellite imagery, we estimate the cliff contribution to 2 years of ablation on a debris-covered tongue in Nepal, carefully taking into account ice dynamics. While they occupy only 7 to 8 % of the tongue surface, ice cliffs contributed to 23 to 24 % of the total tongue ablation.
Luc Girod, Niels Ivar Nielsen, Frédérique Couderette, Christopher Nuth, and Andreas Kääb
Geosci. Instrum. Method. Data Syst., 7, 277–288, https://doi.org/10.5194/gi-7-277-2018, https://doi.org/10.5194/gi-7-277-2018, 2018
Short summary
Short summary
Historical surveys performed through the use of aerial photography gave us the first maps of the Arctic. Nearly a century later, a renewed interest in studying the Arctic is rising from the need to understand and quantify climate change. It is therefore time to dig up the archives and extract the maximum of information from the images using the most modern methods. In this study, we show that the aerial survey of Svalbard in 1936–38 provides us with valuable data on the archipelago's glaciers.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Etienne Berthier, Christopher Larsen, William J. Durkin, Michael J. Willis, and Matthew E. Pritchard
The Cryosphere, 12, 1523–1530, https://doi.org/10.5194/tc-12-1523-2018, https://doi.org/10.5194/tc-12-1523-2018, 2018
Short summary
Short summary
Two recent studies suggested a slowdown in mass loss after 2000 of the Juneau and Stikine icefields, accounting for 10% of the total ice cover in Alaska. Here, the ASTER-based geodetic mass balances are revisited, carefully avoiding the use of the SRTM DEM, because of the unknown penetration depth of the SRTM C-band radar signal. We find strongly negative mass balances from 2000 to 2016 for both icefields, in agreement with airborne laser altimetry. Mass losses are thus continuing unabated.
Stephan Harrison, Jeffrey S. Kargel, Christian Huggel, John Reynolds, Dan H. Shugar, Richard A. Betts, Adam Emmer, Neil Glasser, Umesh K. Haritashya, Jan Klimeš, Liam Reinhardt, Yvonne Schaub, Andy Wiltshire, Dhananjay Regmi, and Vít Vilímek
The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, https://doi.org/10.5194/tc-12-1195-2018, 2018
Short summary
Short summary
Most mountain glaciers have receded throughout the last century in response to global climate change. This recession produces a range of natural hazards including glacial lake outburst floods (GLOFs). We have produced the first global inventory of GLOFs associated with the failure of moraine dams and show, counterintuitively, that these have reduced in frequency over recent decades. In this paper we explore the reasons for this pattern.
Chiyuki Narama, Mirlan Daiyrov, Murataly Duishonakunov, Takeo Tadono, Hayato Sato, Andreas Kääb, Jinro Ukita, and Kanatbek Abdrakhmatov
Nat. Hazards Earth Syst. Sci., 18, 983–995, https://doi.org/10.5194/nhess-18-983-2018, https://doi.org/10.5194/nhess-18-983-2018, 2018
Short summary
Short summary
Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock, as well as destroying property and crops. Due to their subsurface outlet, we refer to these short-lived glacial lakes as being of the
tunnel-type, a type that drastically grows and drains over a few months.
Solveig H. Winsvold, Andreas Kääb, Christopher Nuth, Liss M. Andreassen, Ward J. J. van Pelt, and Thomas Schellenberger
The Cryosphere, 12, 867–890, https://doi.org/10.5194/tc-12-867-2018, https://doi.org/10.5194/tc-12-867-2018, 2018
Esteban Alonso-González, J. Ignacio López-Moreno, Simon Gascoin, Matilde García-Valdecasas Ojeda, Alba Sanmiguel-Vallelado, Francisco Navarro-Serrano, Jesús Revuelto, Antonio Ceballos, María Jesús Esteban-Parra, and Richard Essery
Earth Syst. Sci. Data, 10, 303–315, https://doi.org/10.5194/essd-10-303-2018, https://doi.org/10.5194/essd-10-303-2018, 2018
Short summary
Short summary
We present a new daily gridded snow depth and snow water equivalent database over the Iberian Peninsula from 1980 to 2014 structured in common elevation bands. The data have proved their consistency with in situ observations and remote sensing data (MODIS). The presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism and risk management.
Balram Pokhrel, Ping Gong, Xiaoping Wang, Sanjay Nath Khanal, Jiao Ren, Chuanfei Wang, Shaopeng Gao, and Tandong Yao
Atmos. Chem. Phys., 18, 1325–1336, https://doi.org/10.5194/acp-18-1325-2018, https://doi.org/10.5194/acp-18-1325-2018, 2018
Short summary
Short summary
As Nepal is a tropical country close to the Himalayas, it is essential to investigate concentration levels and long-range transport potential of persistent organic pollutants (POPs) in its cities to assess whether these pollutants can contaminate the high Himalaya. We found high concentration and long travel distance (> 1000 km) of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in the atmosphere of Nepalese cities, suggesting Nepal can be an important regional source region for POPs.
Nadine Feiger, Matthias Huss, Silvan Leinss, Leo Sold, and Daniel Farinotti
Geogr. Helv., 73, 1–9, https://doi.org/10.5194/gh-73-1-2018, https://doi.org/10.5194/gh-73-1-2018, 2018
Short summary
Short summary
This contribution presents two updated bedrock topographies and ice thickness distributions with a new uncertainty assessment for Gries- and Findelengletscher, Switzerland. The results are based on ground-penetrating radar (GPR) measurements and the
ice thickness estimation method (ITEM). The results show a total glacier volume of 0.28 ± 0.06 and 1.00 ± 0.34 km3 for Gries- and Findelengletscher, respectively, with corresponding average ice thicknesses of 56.8 ± 12.7 and 56.3 ± 19.6 m.
Jordi Etchanchu, Vincent Rivalland, Simon Gascoin, Jérôme Cros, Tiphaine Tallec, Aurore Brut, and Gilles Boulet
Hydrol. Earth Syst. Sci., 21, 5693–5708, https://doi.org/10.5194/hess-21-5693-2017, https://doi.org/10.5194/hess-21-5693-2017, 2017
Short summary
Short summary
This study assesses the contribution of vegetation dynamics and land use products from high-resolution remote sensing data in the soil–vegetation–atmosphere Transfer ISBA model. We used a field-scale approach (each field is a computation cell) to take advantage of the resolution. The simulations done over an agricultural area in southwestern France showed that integrating such products leads to an improvement of the hydrometeorological fluxes like evapotranspiration or drainage.
B. Altena, A. Mousivand, J. Mascaro, and A. Kääb
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W3, 7–11, https://doi.org/10.5194/isprs-archives-XLII-3-W3-7-2017, https://doi.org/10.5194/isprs-archives-XLII-3-W3-7-2017, 2017
Abbas Fayad, Simon Gascoin, Ghaleb Faour, Pascal Fanise, Laurent Drapeau, Janine Somma, Ali Fadel, Ahmad Al Bitar, and Richard Escadafal
Earth Syst. Sci. Data, 9, 573–587, https://doi.org/10.5194/essd-9-573-2017, https://doi.org/10.5194/essd-9-573-2017, 2017
Short summary
Short summary
Snowmelt plays a key role in the replenishment of the karst groundwater in Lebanon. The proper estimation of the water contained in the snowpack is one of Lebanon's most challenging questions. In this paper, we present continuous meteorological and snow course observations for the first time in the snow-dominated regions of Mount Lebanon. This new dataset can be used to feed an advanced snowpack model and is the first step towards a better evaluation of the snowmelt in Lebanon.
Louise Steffensen Schmidt, Guðfinna Aðalgeirsdóttir, Sverrir Guðmundsson, Peter L. Langen, Finnur Pálsson, Ruth Mottram, Simon Gascoin, and Helgi Björnsson
The Cryosphere, 11, 1665–1684, https://doi.org/10.5194/tc-11-1665-2017, https://doi.org/10.5194/tc-11-1665-2017, 2017
Short summary
Short summary
The regional climate model HIRHAM5 is evaluated over Vatnajökull, Iceland, using automatic weather stations and mass balance observations from 1995 to 2014. From this we asses whether the model can be used to reconstruct the mass balance of the glacier. We find that the simulated energy balance is underestimated overall, but it has been improved by using a new albedo scheme. The specific mass balance is reconstructed back to 1980, thus expanding on the observational records of the mass balance.
Joaquín M. C. Belart, Etienne Berthier, Eyjólfur Magnússon, Leif S. Anderson, Finnur Pálsson, Thorsteinn Thorsteinsson, Ian M. Howat, Guðfinna Aðalgeirsdóttir, Tómas Jóhannesson, and Alexander H. Jarosch
The Cryosphere, 11, 1501–1517, https://doi.org/10.5194/tc-11-1501-2017, https://doi.org/10.5194/tc-11-1501-2017, 2017
Short summary
Short summary
Sub-meter satellite stereo images (Pléiades and WorldView2) are used to accurately measure snow accumulation and winter mass balance of Drangajökull ice cap. This is done by creating and comparing accurate digital elevation models. A glacier-wide geodetic mass balance of 3.33 ± 0.23 m w.e. is derived between October 2014 and May 2015. This method could be easily transposable to remote glaciated areas where seasonal mass balance measurements (especially winter accumulation) are lacking.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Nat. Hazards Earth Syst. Sci., 17, 627–639, https://doi.org/10.5194/nhess-17-627-2017, https://doi.org/10.5194/nhess-17-627-2017, 2017
Short summary
Short summary
We evaluate for the first time a new class of optical satellite images for measuring Earth surface displacements due to earthquakes – images from cubesats. The PlanetScope cubesats used in this study are 10 cm × 10 cm × 30 cm small and standardized satellites. Around 120 of these cubesats orbit around Earth and are about to provide daily 2–4 m resolution images of the entire land surface of the Earth.
Luc Girod, Christopher Nuth, Andreas Kääb, Bernd Etzelmüller, and Jack Kohler
The Cryosphere, 11, 827–840, https://doi.org/10.5194/tc-11-827-2017, https://doi.org/10.5194/tc-11-827-2017, 2017
Short summary
Short summary
While gathering data on a changing environment is often a costly and complicated endeavour, it is also the backbone of all research. What if one could measure elevation change by just strapping a camera and a hiking GPS under an helicopter or a small airplane used for transportation and gather data on the ground bellow the flight path? In this article, we present a way to do exactly that and show an example survey where it helped compute the volume of ice lost by a glacier in Svalbard.
Vanessa Round, Silvan Leinss, Matthias Huss, Christoph Haemmig, and Irena Hajnsek
The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, https://doi.org/10.5194/tc-11-723-2017, 2017
Short summary
Short summary
Recent surging of Kyagar Glacier (Karakoram) caused a hazardous ice-dammed lake to form and burst in 2015 and 2016. We use remotely sensed glacier surface velocities and surface elevation to observe dramatic changes in speed and mass distribution during the surge. The surge was hydrologically controlled with rapid summer onset and dramatic termination following lake outburst. Since the surge, the potential outburst hazard has remained high, and continued remote monitoring is crucial.
Lucas Ruiz, Etienne Berthier, Maximiliano Viale, Pierre Pitte, and Mariano H. Masiokas
The Cryosphere, 11, 619–634, https://doi.org/10.5194/tc-11-619-2017, https://doi.org/10.5194/tc-11-619-2017, 2017
Short summary
Short summary
Our paper assesses the glacier mass change in the northern Patagonian Andes of Argentina and Chile, which is crucial to understanding how climate change is affecting them. We have found that between 2000 and 2012, glaciers in this region were slightly out of balance, with larger valley glaciers losing more mass than smaller mountain glaciers. The slightly negative mass balance of the northern Patagonian Andes contrasts with the highly negative mass balance of the Patagonian ice fields.
Tazio Strozzi, Andreas Kääb, and Thomas Schellenberger
The Cryosphere, 11, 553–566, https://doi.org/10.5194/tc-11-553-2017, https://doi.org/10.5194/tc-11-553-2017, 2017
Short summary
Short summary
The strong atmospheric warming observed since the 1990s in polar regions requires quantifying the contribution to sea level rise of glaciers and ice caps, but for large areas we do not have much information on ice dynamic fluctuations. The recent increase in satellite data opens up new possibilities to monitor ice flow. We observed over Stonebreen on Edgeøya (Svalbard) a strong increase since 2012 in ice surface velocity along with a decrease in volume and an advance in frontal extension.
Thomas Schellenberger, Thorben Dunse, Andreas Kääb, Thomas Vikhamar Schuler, Jon Ove Hagen, and Carleen H. Reijmer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-5, https://doi.org/10.5194/tc-2017-5, 2017
Preprint withdrawn
Short summary
Short summary
Basin-3, NE-Svalbard, was still surging with 10 m d-1 in July 2016. After a speed peak of 18.8 m d-1 in Dec 2012/Jan 2013, speed-ups are overlying the fast flow every summer. The glacier is massively calving icebergs (5.2 Gt yr-1 ~ 2 L drinking water for every human being daily!) which in the same order of magnitude as all other Svalbard glaciers together.
Since autumn 2015 also Basin-2 is surging with maximum velocities of 8.7 m d-1, an advance of more than 2 km and a mass loss of 0.7 Gt yr-1.
Jiao Ren, Xiaoping Wang, Chuanfei Wang, Ping Gong, and Tandong Yao
Atmos. Chem. Phys., 17, 1401–1415, https://doi.org/10.5194/acp-17-1401-2017, https://doi.org/10.5194/acp-17-1401-2017, 2017
Short summary
Short summary
Do the water bodies in the Tibetan Plateau (TP) act as a sink or secondary source of organic pollutants (OPs)? To answer this question, atmospheric processes of OPs over a large lake on the TP were quantified. We found that the lake was a net sink of hexachlorocyclohexanes (HCHs) and most polycyclic aromatic hydrocarbons (PAHs), but it turned into a secondary source of phenanthrene, coinciding with the melting of lake ice.
Xiaoxin Yang, Sunil Acharya, and Tandong Yao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-876, https://doi.org/10.5194/acp-2016-876, 2016
Revised manuscript has not been submitted
Désirée Treichler and Andreas Kääb
The Cryosphere, 10, 2129–2146, https://doi.org/10.5194/tc-10-2129-2016, https://doi.org/10.5194/tc-10-2129-2016, 2016
Short summary
Short summary
Satellite data are often the only source of information on mountain glaciers. We show that data from ICESat laser satellite can accurately reflect glacier volume development in 2003–2008, also for individual years. We detect a spatially varying elevation bias in commonly used data sets, and provide a correction that strongly increases the significance of the glacier change estimates – a crucial driver of climate-induced meltwater changes that directly affect the life of lowland populations.
Paul Hublart, Denis Ruelland, Inaki García de Cortázar-Atauri, Simon Gascoin, Stef Lhermitte, and Antonio Ibacache
Hydrol. Earth Syst. Sci., 20, 3691–3717, https://doi.org/10.5194/hess-20-3691-2016, https://doi.org/10.5194/hess-20-3691-2016, 2016
Short summary
Short summary
Our paper explores the reliability of conceptual catchment models in the dry Andes. First, we show that explicitly accounting for irrigation water use improves streamflow predictions during dry years. Second, we show that sublimation losses can be easily incorporated into temperature-based melt models without increasing model complexity too much. Our work also highlights areas requiring additional research, including the need for a better conceptualization of runoff generation processes.
Christian Vincent, Patrick Wagnon, Joseph M. Shea, Walter W. Immerzeel, Philip Kraaijenbrink, Dibas Shrestha, Alvaro Soruco, Yves Arnaud, Fanny Brun, Etienne Berthier, and Sonam Futi Sherpa
The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, https://doi.org/10.5194/tc-10-1845-2016, 2016
Short summary
Short summary
Approximately 25 % of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of these glaciers has not been measured directly. From terrestrial photogrammetry and unmanned aerial vehicle (UAV) methods, this study shows that the ablation is strongly reduced by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs.
Silvan Leinss, Henning Löwe, Martin Proksch, Juha Lemmetyinen, Andreas Wiesmann, and Irena Hajnsek
The Cryosphere, 10, 1771–1797, https://doi.org/10.5194/tc-10-1771-2016, https://doi.org/10.5194/tc-10-1771-2016, 2016
Short summary
Short summary
Four years of anisotropy measurements of seasonal snow are presented in the paper. The anisotropy was measured every 4 h with a ground-based polarimetric radar. An electromagnetic model has been developed to measured the anisotropy with radar instruments from ground and from space. The anisotropic permittivity was derived with Maxwell–Garnett-type mixing formulas which are shown to be equivalent to series expansions of the permittivity tensor based on spatial correlation function of snow.
R. Marti, S. Gascoin, E. Berthier, M. de Pinel, T. Houet, and D. Laffly
The Cryosphere, 10, 1361–1380, https://doi.org/10.5194/tc-10-1361-2016, https://doi.org/10.5194/tc-10-1361-2016, 2016
Short summary
Short summary
To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. We used very-high-resolution stereo satellites imagery (Pléiades) to generate a map of snow depth in a small Pyrenean catchment. The validation results are promising and open the possibility to retrieve the snow depth at a metric horizontal resolution in remote mountainous areas, even when no field data are available.
Xiaoping Wang, Jiao Ren, Ping Gong, Chuanfei Wang, Yonggang Xue, Tandong Yao, and Rainer Lohmann
Atmos. Chem. Phys., 16, 6901–6911, https://doi.org/10.5194/acp-16-6901-2016, https://doi.org/10.5194/acp-16-6901-2016, 2016
Short summary
Short summary
Is there any linkage between climate interactions and spatial distribution of persistent organic pollutants (POPs)? To answer this question, we conducted long-term passive air monitoring across the Tibetan Plateau. We found that there are three graphical zones over the Tibetan Plateau that could be classified as a function of POP fingerprints. This study highlights validity of using POP fingerprints as chemical tracers to track the interactions of climate systems.
Mariano H. Masiokas, Duncan A. Christie, Carlos Le Quesne, Pierre Pitte, Lucas Ruiz, Ricardo Villalba, Brian H. Luckman, Etienne Berthier, Samuel U. Nussbaumer, Álvaro González-Reyes, James McPhee, and Gonzalo Barcaza
The Cryosphere, 10, 927–940, https://doi.org/10.5194/tc-10-927-2016, https://doi.org/10.5194/tc-10-927-2016, 2016
Short summary
Short summary
Glacier Echaurren Norte (ECH, 34° S) has the longest (> 35 yrs) mass-balance record in South America. A minimal model that explains 78 % of the variance in the ECH annual record identifies precipitation as the most important forcing. A regional streamflow series allows for extending the ECH annual record back to 1909 and shows a clear cumulative ice-mass loss. Similarities with documented glacier advances and other shorter mass-balance series suggest the ECH reconstruction is regionally representative.
T. Schellenberger, T. Dunse, A. Kääb, J. Kohler, and C. H. Reijmer
The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, https://doi.org/10.5194/tc-9-2339-2015, 2015
Short summary
Short summary
Kronebreen and Kongsbreen are among the fastest flowing glaciers on Svalbard, and surface speeds reached up to 3.2m d-1 at Kronebreen in summer 2013 and 2.7m d-1 at Kongsbreen in late autumn 2012 as retrieved from SAR satellite data. Both glaciers retreated significantly during the observation period, Kongsbreen up to 1800m or 2.5km2 and Kronebreen up to 850m or 2.8km2. Both glaciers are important contributors to the total dynamic mass loss from the Svalbard archipelago.
N. Holzer, S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch
The Cryosphere, 9, 2071–2088, https://doi.org/10.5194/tc-9-2071-2015, https://doi.org/10.5194/tc-9-2071-2015, 2015
Short summary
Short summary
Investigations of glacier mass-balance and area changes at Muztagh Ata (eastern Pamir) are based on Hexagon KH-9 (1973), ALOS-PRISM (2009), Pléiades (2013) and Landsat 7 ETM+/SRTM-3 (2000). Surface velocities of Kekesayi Glacier are derived by TerraSAR-X (2011) amplitude tracking. Glacier variations differ spatially and temporally, but on average not significantly for the entire massif. Stagnant Kekesayi and other debris-covered glaciers indicate no visual length changes, but clear down-wasting.
R. Marti, S. Gascoin, T. Houet, O. Ribière, D. Laffly, T. Condom, S. Monnier, M. Schmutz, C. Camerlynck, J. P. Tihay, J. M. Soubeyroux, and P. René
The Cryosphere, 9, 1773–1795, https://doi.org/10.5194/tc-9-1773-2015, https://doi.org/10.5194/tc-9-1773-2015, 2015
Short summary
Short summary
Pyrenean glaciers are currently the southernmost glaciers in Europe. Using an exceptional archive of historical data sets and recent accurate observations, we propose the reconstruction of the length, area, elevation, and mass balance of Ossoue Glacier (French Pyrenees) since the Little Ice Age. We show that its evolution is in good agreement with climatic data. Assuming that the current ablation rate stays constant, Ossoue Glacier will disappear midway through the 21st century.
C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois
The Cryosphere, 9, 1535–1550, https://doi.org/10.5194/tc-9-1535-2015, https://doi.org/10.5194/tc-9-1535-2015, 2015
Short summary
Short summary
Located at the far south (~62.5° N) of the Canadian Arctic, Grinnell and Terra Nivea Ice Caps are good climate proxies in this scarce data region. Multiple data sets (in situ, airborne and spaceborne) reveal changes in area, elevation and mass over the past 62 years. Ice wastage sharply accelerated during the last decade for both ice caps, as illustrated by the strongly negative mass balance of Terra Nivea over 2007-2014 (-1.77 ± 0.36 m a-1 w.e.). Possible climatic drivers are also discussed.
S. Kang, F. Wang, U. Morgenstern, Y. Zhang, B. Grigholm, S. Kaspari, M. Schwikowski, J. Ren, T. Yao, D. Qin, and P. A. Mayewski
The Cryosphere, 9, 1213–1222, https://doi.org/10.5194/tc-9-1213-2015, https://doi.org/10.5194/tc-9-1213-2015, 2015
Short summary
S. Gascoin, O. Hagolle, M. Huc, L. Jarlan, J.-F. Dejoux, C. Szczypta, R. Marti, and R. Sánchez
Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, https://doi.org/10.5194/hess-19-2337-2015, 2015
Short summary
Short summary
There is a good agreement between the MODIS snow products and observations from automatic stations and Landsat snow maps in the Pyrenees. The optimal thresholds for which a MODIS pixel is marked as snow-covered are 40mm in water equivalent and 150mm in snow depth.
We generate a gap-filled snow cover climatology for the Pyrenees. We compute the mean snow cover duration by elevation and aspect classes. We show anomalous snow patterns in 2012 and consequences on hydropower production.
A. Kääb, D. Treichler, C. Nuth, and E. Berthier
The Cryosphere, 9, 557–564, https://doi.org/10.5194/tc-9-557-2015, https://doi.org/10.5194/tc-9-557-2015, 2015
Short summary
Short summary
Based on satellite laser altimetry over the Pamir--Karakoram Himalaya we detect strongest elevation losses over east Nyainqentanglha Shan and Spiti--Lahaul but slight elevation gains over west Kunlun Shan rather than over Karakoram. The current sea-level contribution of Pamir--Karakoram Himalaya glaciers is about 10% of the total global contribution of glaciers outside the ice sheets. We also improve estimates of glacier imbalance contribution to river discharge in the Himalayas.
R. M. Brahmbhatt, I. M. Bahuguna, B. P. Rathore, S. K. Singh, A. S. Rajawat, R. D. Shah, and J. S. Kargel
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-1555-2015, https://doi.org/10.5194/tcd-9-1555-2015, 2015
Revised manuscript has not been submitted
F. Brun, M. Dumont, P. Wagnon, E. Berthier, M. F. Azam, J. M. Shea, P. Sirguey, A. Rabatel, and Al. Ramanathan
The Cryosphere, 9, 341–355, https://doi.org/10.5194/tc-9-341-2015, https://doi.org/10.5194/tc-9-341-2015, 2015
T. Dunse, T. Schellenberger, J. O. Hagen, A. Kääb, T. V. Schuler, and C. H. Reijmer
The Cryosphere, 9, 197–215, https://doi.org/10.5194/tc-9-197-2015, https://doi.org/10.5194/tc-9-197-2015, 2015
S. Ferrant, S. Gascoin, A. Veloso, J. Salmon-Monviola, M. Claverie, V. Rivalland, G. Dedieu, V. Demarez, E. Ceschia, J.-L. Probst, P. Durand, and V. Bustillo
Hydrol. Earth Syst. Sci., 18, 5219–5237, https://doi.org/10.5194/hess-18-5219-2014, https://doi.org/10.5194/hess-18-5219-2014, 2014
Short summary
Short summary
A set of high spatial and temporal satellite images have been used to spatially calibrate crop growth within an agro-hydrological model dedicated to nitrogen contamination of stream water. This type of spatial calibration greatly improved the simulation of nitrogen plant uptake and better constrained nutrient fluxes in the river. This is an example of the benefit of the forthcoming Sentinel-2 high resolution optical image series that will be acquired every 4/5 days over continental surfaces.
E. Berthier, C. Vincent, E. Magnússon, Á. Þ. Gunnlaugsson, P. Pitte, E. Le Meur, M. Masiokas, L. Ruiz, F. Pálsson, J. M. C. Belart, and P. Wagnon
The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014, https://doi.org/10.5194/tc-8-2275-2014, 2014
Short summary
Short summary
We evaluate the potential of Pléiades sub-meter satellite stereo imagery to derive digital elevation models (DEMs) of glaciers and their elevation changes. The vertical precision of the DEMs is ±1 m, even ±0.5m on the flat glacier tongues. Similar precision levels are obtained in accumulation areas. Comparison of a Pléiades DEM with a SPOT5 DEM reveals the strongly negative region-wide mass balances of glaciers in the Mont Blanc area (-1.04±0.23m at 1 water equivalent) during 2003-2012.
T. A. Scambos, E. Berthier, T. Haran, C. A. Shuman, A. J. Cook, S. R. M. Ligtenberg, and J. Bohlander
The Cryosphere, 8, 2135–2145, https://doi.org/10.5194/tc-8-2135-2014, https://doi.org/10.5194/tc-8-2135-2014, 2014
Short summary
Short summary
This study of one of the most rapidly changing glacier regions on earth -- the Antarctic Peninsula -- uses two types of satellite data to measure the rates of ice loss in detail for the individual glaciers. The satellite data is laser altimetry from ICESat and stereo image DEM differences. The results show that 24..9 ± 7.8 billion tons of ice are lost from the region north of 66°S on the peninsula each year. The majority of the data cover 2003-2008.
E. Le Meur, M. Sacchettini, S. Garambois, E. Berthier, A. S. Drouet, G. Durand, D. Young, J. S. Greenbaum, J. W. Holt, D. D. Blankenship, E. Rignot, J. Mouginot, Y. Gim, D. Kirchner, B. de Fleurian, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 8, 1331–1346, https://doi.org/10.5194/tc-8-1331-2014, https://doi.org/10.5194/tc-8-1331-2014, 2014
A. Kääb, L. Girod, and I. Berthling
The Cryosphere, 8, 1041–1056, https://doi.org/10.5194/tc-8-1041-2014, https://doi.org/10.5194/tc-8-1041-2014, 2014
A. Gilbert, C. Vincent, D. Six, P. Wagnon, L. Piard, and P. Ginot
The Cryosphere, 8, 689–703, https://doi.org/10.5194/tc-8-689-2014, https://doi.org/10.5194/tc-8-689-2014, 2014
T. Flament, E. Berthier, and F. Rémy
The Cryosphere, 8, 673–687, https://doi.org/10.5194/tc-8-673-2014, https://doi.org/10.5194/tc-8-673-2014, 2014
A. Kääb, M. Lamare, and M. Abrams
Hydrol. Earth Syst. Sci., 17, 4671–4683, https://doi.org/10.5194/hess-17-4671-2013, https://doi.org/10.5194/hess-17-4671-2013, 2013
P. Wagnon, C. Vincent, Y. Arnaud, E. Berthier, E. Vuillermoz, S. Gruber, M. Ménégoz, A. Gilbert, M. Dumont, J. M. Shea, D. Stumm, and B. K. Pokhrel
The Cryosphere, 7, 1769–1786, https://doi.org/10.5194/tc-7-1769-2013, https://doi.org/10.5194/tc-7-1769-2013, 2013
C. Nuth, J. Kohler, M. König, A. von Deschwanden, J. O. Hagen, A. Kääb, G. Moholdt, and R. Pettersson
The Cryosphere, 7, 1603–1621, https://doi.org/10.5194/tc-7-1603-2013, https://doi.org/10.5194/tc-7-1603-2013, 2013
J. Gardelle, E. Berthier, Y. Arnaud, and A. Kääb
The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, https://doi.org/10.5194/tc-7-1263-2013, 2013
C. Vincent, Al. Ramanathan, P. Wagnon, D. P. Dobhal, A. Linda, E. Berthier, P. Sharma, Y. Arnaud, M. F. Azam, P. G. Jose, and J. Gardelle
The Cryosphere, 7, 569–582, https://doi.org/10.5194/tc-7-569-2013, https://doi.org/10.5194/tc-7-569-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Natural Hazards
Predicting the Risk of Glacial Lake Outburst Floods in Karakorum
Brief communication: Rapid ∼ 335 × 106 m3 bed erosion after detachment of the Sedongpu Glacier (Tibet)
Lake volume and potential hazards of moraine-dammed glacial lakes – a case study of Bienong Co, southeastern Tibetan Plateau
Brief communication: An approximately 50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau
Controls of outbursts of moraine-dammed lakes in the greater Himalayan region
Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?
Response of downstream lakes to Aru glacier collapses on the western Tibetan Plateau
Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina
Nazir Ahmed Bazai, Paul A. Carling, Peng Cui, Wang Hao, Zhang Guotao, Liu Dingzhu, and Javed Hassan
EGUsphere, https://doi.org/10.5194/egusphere-2024-565, https://doi.org/10.5194/egusphere-2024-565, 2024
Short summary
Short summary
Research on ice-dammed glacier lake outburst floods (GLOFs) tackles the growing global threat. Identifying field-based key factors and promoting and establishing a 95 % accurate empirical model unveils the relationship between lake volume and glacier surge, which controls lake size and level. Critical findings, including GLOF likelihood, triggering depth, and risk zones, provide insights for global early warning systems, highlighting the need to address cryospheric risks and protect communities.
Andreas Kääb and Luc Girod
The Cryosphere, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023, https://doi.org/10.5194/tc-17-2533-2023, 2023
Short summary
Short summary
Following the detachment of the 130 × 106 m3 Sedongpu Glacier (south-eastern Tibet) in 2018, the Sedongpu Valley underwent massive large-volume landscape changes. An enormous volume of in total around 330 × 106 m3 was rapidly eroded, forming a new canyon of up to 300 m depth, 1 km width, and almost 4 km length. Such consequences of glacier change in mountains have so far not been considered at this magnitude and speed.
Hongyu Duan, Xiaojun Yao, Yuan Zhang, Huian Jin, Qi Wang, Zhishui Du, Jiayu Hu, Bin Wang, and Qianxun Wang
The Cryosphere, 17, 591–616, https://doi.org/10.5194/tc-17-591-2023, https://doi.org/10.5194/tc-17-591-2023, 2023
Short summary
Short summary
We conducted a comprehensive investigation of Bienong Co, a moraine-dammed glacial lake on the southeastern Tibetan Plateau (SETP), to assess its potential hazards. The maximum lake depth is ~181 m, and the lake volume is ~102.3 × 106 m3. Bienong Co is the deepest known glacial lake with the same surface area on the Tibetan Plateau. Ice avalanches may produce glacial lake outburst floods that threaten the downstream area. This study could provide new insight into glacial lakes on the SETP.
Chuanxi Zhao, Wei Yang, Matthew Westoby, Baosheng An, Guangjian Wu, Weicai Wang, Zhongyan Wang, Yongjie Wang, and Stuart Dunning
The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, https://doi.org/10.5194/tc-16-1333-2022, 2022
Short summary
Short summary
On 22 March 2021, a ~ 50 Mm 3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. It caused temporary blockage of the Yarlung Tsangpo river, a major tributary of the Brahmaputra. We utilize field investigations, high-resolution satellite imagery, seismic records, and meteorological data to analyse the evolution of the 2021 event and its impact, discuss potential drivers, and briefly reflect on implications for the sustainable development of the region.
Melanie Fischer, Oliver Korup, Georg Veh, and Ariane Walz
The Cryosphere, 15, 4145–4163, https://doi.org/10.5194/tc-15-4145-2021, https://doi.org/10.5194/tc-15-4145-2021, 2021
Short summary
Short summary
Glacial lake outburst floods (GLOFs) in the greater Himalayan region threaten local communities and infrastructure. We assess this hazard objectively using fully data-driven models. We find that lake and catchment area, as well as regional glacier-mass balance, credibly raised the susceptibility of a glacial lake in our study area to produce a sudden outburst. However, our models hardly support the widely held notion that rapid lake growth increases GLOF susceptibility.
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Daniel Falaschi, Andreas Kääb, Frank Paul, Takeo Tadono, Juan Antonio Rivera, and Luis Eduardo Lenzano
The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, https://doi.org/10.5194/tc-13-997-2019, 2019
Short summary
Short summary
In March 2007, the Leñas Glacier in the Central Andes of Argentina collapsed and released an ice avalanche that travelled a distance of 2 km. We analysed aerial photos, satellite images and field evidence to investigate the evolution of the glacier from the 1950s through the present day. A clear potential trigger of the collapse could not be identified from available meteorological and seismic data, nor could a significant change in glacier geometry leading to glacier instability be detected.
Cited articles
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy
formulation for glaciers and ice sheets, J. Glaciol., 58, 441–457,
https://doi.org/10.3189/2012JoG11J088, 2012.
Bartholomaus, T. C., Anderson, R. S., and Anderson, S. P.: Response of
glacier basal motion to transient water storage, Nat. Geosci., 1, 33–37,
https://doi.org/10.1038/ngeo.2007.52, 2008.
Boulton, G. S. and Jones, A. S.: Stability of temperate ice caps and ice
sheets resting on beds of deformable sediment, J. Glaciol., 24, 29–43,
https://doi.org/10.1017/S0022143000014623, 1979.
Calonne, N., Flin, F., Morin, S., Lesaffre, B., Du Roscoat S. R., and
Geindreau C.: Numerical and experimental investigations of the effective
thermal conductivity of snow, Geophys. Res. Lett., 38, L23501,
https://doi.org/10.1029/2011GL049234, 2011.
Clarke, G. K. C.: Subglacial Processes, Annu. Rev. Earth Pl. Sc.,
33, 247–276, https://doi.org/10.1146/annurev.earth.33.092203.122621, 2005.
Clarke, G. K. C., Collins, S. G., and Thompson, D. E.: Flow, thermal
structure, and subglacial conditions of a surge-type glacier, Can. J. Earth
Sci., 21, 232–240, https://doi.org/10.1139/e84-024, 1984.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, 4th Edn.,
Academic Press, Amsterdam, 2010.
Dehecq, A., Millan, R., Berthier, E., Gourmelen, N., Trouvé, E. and
Vionnet, V.: Elevation Changes Inferred From TanDEM-X Data Over the
Mont-Blanc Area: Impact of the X-Band Interferometric Bias, IEEE J. Sel.
Top. Appl., 9, 3870–3882,
https://doi.org/10.1109/JSTARS.2016.2581482, 2016.
Evans, S. G., Tutubalina, O. V., Drobyshev, V. N., Chernomorets, S. S.,
McDougall, S., Petrakov, D. A., and Hungr, O.: Catastrophic detachment and
high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia
in 2002, Geomorphology, 105, 314–321,
https://doi.org/10.1016/j.geomorph.2008.10.008, 2009.
Faillettaz, J., Funk, M., and Vincent, C.: Avalanching glacier instabilities:
Review on processes and early warning perspectives, Rev. Geophys., 53,
203–224, https://doi.org/10.1002/2014RG000466, 2015.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S.,
Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.:
The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004,
https://doi.org/10.1029/2005RG000183, 2007.
Fowler, A. C., Murray, T., and Ng, F. S. L.: Thermally controlled glacier
surging, J. Glaciol., 47, 527–538, https://doi.org/10.3189/172756501781831792,
2001.
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de
Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P.,
Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.:
Capabilities and performance of Elmer/Ice, a new-generation ice sheet model,
Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013,
2013.
Gilbert, A., Gagliardini, O., Vincent, C., and Wagnon, P.: A 3-D thermal
regime model suitable for cold accumulation zones of polythermal mountain
glaciers, J. Geophys. Res., 119, 1876–1893, https://doi.org/10.1002/2014JF003199, 2014.
Gilbert, A., Vincent, C., Gagliardini, O., Krug, J., and Berthier, E.:
Assessment of thermal change in cold avalanching glaciers in relation to
climate warming, Geophys. Res. Lett., 42, 6382–6390,
https://doi.org/10.1002/2015GL064838, 2015.
Gilbert, A., Flowers, G. E., Miller, G. H., Rabus, B. T., Van Wychen, W.,
Gardner, A. S., and Copland, L.: Sensitivity of Barnes Ice Cap, Baffin
Island, Canada, to climate state and internal dynamics, J. Geophys.
Res.-Earth, 121, 1516–1539, https://doi.org/10.1002/2016JF003839, 2016.
Gillet-Chaulet, F., Gagliardini, O., Seddik, H., Nodet, M., Durand, G., Ritz,
C., Zwinger, T., Greve, R., and Vaughan, D. G.: Greenland ice sheet
contribution to sea-level rise from a new-generation ice-sheet model, The
Cryosphere, 6, 1561–1576, https://doi.org/10.5194/tc-6-1561-2012, 2012.
Huggel, C., Zgraggen-Oswald, S., Haeberli, W., Kääb, A., Polkvoj, A.,
Galushkin, I., and Evans, S. G.: The 2002 rock/ice avalanche at
Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche
formation and mobility, and application of QuickBird satellite imagery, Nat.
Hazards Earth Syst. Sci., 5, 173–187,
https://doi.org/10.5194/nhess-5-173-2005, 2005.
Iverson, N. R.: Shear resistance and continuity of subglacial till:
hydrology rules, J. Glaciol., 56, 1104–1114, 2010.
Iverson, N. R., Hooyer, T. S., and Baker, R. W.: Ring-shear studies of till
deformation: Coulomb-plastic behavior and distributed strain in glacier beds,
J. Glaciol., 44, 634–642, https://doi.org/10.1017/S0022143000002136, 1998.
Joughin, I., MacAyeal, D. R., and Tulaczyk, S.: Basal shear stress of the
Ross ice streams from control method inversions, J. Geophys. Res.-Sol. Ea.,
109, B09405, https://doi.org/10.1029/2003JB002960, 2004.
Kääb, A., Wessels, R., Haeberli, W., Huggel, C., Kargel, J. S., and
Khalsa, S. J. S.: Rapid ASTER imaging facilitates timely assessment of
glacier hazards and disasters, Eos Trans. Am. Geophys. Union, 84, 117–121,
https://doi.org/10.1029/2003EO130001, 2003.
Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S.,
Evans, S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W., Farinotti, D.,
Gimbert, F., Guo, W., Huggel, C., Kargel, J. S., Leonard, G. J., Tian, L.,
Treichler, D., and Yao, T.: Massive collapse of two glaciers in western Tibet
in 2016 after surge-like instability, Nat. Geosci., 11, 114–120,
https://doi.org/10.1038/s41561-017-0039-7, 2018.
Kotlyakov, V. M., Rototaeva, O. V., and Nosenko, G. A.: The September 2002
Kolka Glacier Catastrophe in North Ossetia, Russian Federation: Evidence and
Analysis, Mt. Res. Dev., 24, 78–83,
https://doi.org/10.1659/0276-4741(2004)024[0078:TSKGCI]2.0.CO;2, 2004.
Krug, J., Weiss, J., Gagliardini, O., and Durand, G.: Combining damage and
fracture mechanics to model calving, The Cryosphere, 8, 2101–2117,
https://doi.org/10.5194/tc-8-2101-2014, 2014.
Lliboutry, L.: General theory of subglacial cavitation and sliding of
temperate glaciers, J. Glaciol., 7, 21–58, 1968.
Minchew, B., Simons, M., Björnsson, H., Pálsson, F., Morlighem, M.,
Seroussi, H., Larour, E., and Hensley, S.: Plastic bed beneath Hofsjökull
Ice Cap, central Iceland, and the sensitivity of ice flow to surface
meltwater flux, J. Glaciol., 62, 147–158, https://doi.org/10.1017/jog.2016.26, 2016.
Pralong, A. and Funk, M.: Dynamic damage model of crevasse opening and
application to glacier calving, J. Geophys. Res.-Sol. Ea., 110, 1978–2012,
https://doi.org/10.1029/2004JB003104, 2005.
Raymond, C. F.: How do glaciers surge? A review, J. Geophys.
Res.-Sol. Ea., 92, 9121–9134, https://doi.org/10.1029/JB092iB09p09121, 1987.
Schoof, C.: Ice-sheet acceleration driven by melt supply variability,
Nature, 468, 803–806, https://doi.org/10.1038/nature09618, 2010.
Stokes, C. R., Clark, C. D., Lian, O. B., and Tulaczyk, S.: Ice stream sticky
spots: A review of their identification and influence beneath contemporary
and palaeo-ice streams, Earth-Sci. Rev., 81, 217–249,
https://doi.org/10.1016/j.earscirev.2007.01.002, 2007.
Tao, W. and Shen, Z.: Heat flow distribution in Chinese continent and its
adjacent areas, Prog. Nat. Sci., 18, 843–849,
https://doi.org/10.1016/j.pnsc.2008.01.018, 2008.
Thompson, L. G., Mosley-Thompson, E., Davis, M. E., Lin, P. N., Dai, J.,
Bolzan, J. F., and Yao, T.: A 1000 year climate ice-core record from the
Guliya Ice Cap, China: its relationship to global climate variability, Ann.
Glaciol., 21, 175–181, https://doi.org/10.3189/S0260305500015780, 1995.
Tian, L., Yao, T., Gao, Y., Thompson, L., Mosley-Thompson, E., Muhammad, S.,
Zong, J., Wang, C., Jin, S., and Li, Z.: Two glaciers collapse in western
Tibet, J. Glaciol., 63, 194–197, https://doi.org/10.1017/jog.2016.122, 2016.
Truffer, M., Echelmeyer, K. A., and Harrison, W. D.: Implications of till
deformation on glacier dynamics, J. Glaciol., 47, 123–134, 2001.
van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pettersson, R., Pohjola,
V. A., Isaksson, E., and Divine, D.: An iterative inverse method to estimate
basal topography and initialize ice flow models, The Cryosphere, 7,
987–1006, https://doi.org/10.5194/tc-7-987-2013, 2013.
Vincent, C. and Moreau, L.: Sliding velocity fluctuations and subglacial
hydrology over the last two decades on Argentière glacier, Mont Blanc
area, J. Glaciol., 62, 805–815, https://doi.org/10.1017/jog.2016.35, 2016.
Voight, B.: Materials science laws applies to time forecast of slope
failure, in Proceedings 5th International Symposium on Landslides, Lausanne
1988, 3, 1471–1472, C. Bonnard, A. A. Balkema, Lisse, Netherlands, 1990.
Weertman, J.: The theory of glacier sliding, J. Glaciol., 5, 287–303,
1964.
Short summary
In Tibet, two glaciers suddenly collapsed in summer 2016 and produced two gigantic ice avalanches, killing nine people. This kind of phenomenon is extremely rare. By combining a detailed modelling study and high-resolution satellite observations, we show that the event was triggered by an increasing meltwater supply in the fine-grained material underneath the two glaciers. Contrary to what is often thought, this event is not linked to a change in the thermal condition at the glacier base.
In Tibet, two glaciers suddenly collapsed in summer 2016 and produced two gigantic ice...