Articles | Volume 12, issue 5
The Cryosphere, 12, 1831–1850, 2018
https://doi.org/10.5194/tc-12-1831-2018
The Cryosphere, 12, 1831–1850, 2018
https://doi.org/10.5194/tc-12-1831-2018

Research article 31 May 2018

Research article | 31 May 2018

Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis

Emmanuel Le Meur et al.

Related authors

Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area)
Christian Vincent, Adrien Gilbert, Bruno Jourdain, Luc Piard, Patrick Ginot, Vladimir Mikhalenko, Philippe Possenti, Emmanuel Le Meur, Olivier Laarman, and Delphine Six
The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020,https://doi.org/10.5194/tc-14-925-2020, 2020
Short summary
Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters
Alexandra Touzeau, Amaëlle Landais, Barbara Stenni, Ryu Uemura, Kotaro Fukui, Shuji Fujita, Sarah Guilbaud, Alexey Ekaykin, Mathieu Casado, Eugeni Barkan, Boaz Luz, Olivier Magand, Grégory Teste, Emmanuel Le Meur, Mélanie Baroni, Joël Savarino, Ilann Bourgeois, and Camille Risi
The Cryosphere, 10, 837–852, https://doi.org/10.5194/tc-10-837-2016,https://doi.org/10.5194/tc-10-837-2016, 2016
Short summary
Two independent methods for mapping the grounding line of an outlet glacier – an example from the Astrolabe Glacier, Terre Adélie, Antarctica
E. Le Meur, M. Sacchettini, S. Garambois, E. Berthier, A. S. Drouet, G. Durand, D. Young, J. S. Greenbaum, J. W. Holt, D. D. Blankenship, E. Rignot, J. Mouginot, Y. Gim, D. Kirchner, B. de Fleurian, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 8, 1331–1346, https://doi.org/10.5194/tc-8-1331-2014,https://doi.org/10.5194/tc-8-1331-2014, 2014
A double continuum hydrological model for glacier applications
B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback
The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014,https://doi.org/10.5194/tc-8-137-2014, 2014
Radar stratigraphy connecting Lake Vostok and Dome C, East Antarctica, constrains the EPICA/DMC ice core time scale
M. G. P. Cavitte, D. D. Blankenship, D. A. Young, M. J. Siegert, and E. Le Meur
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-321-2013,https://doi.org/10.5194/tcd-7-321-2013, 2013
Revised manuscript not accepted

Related subject area

Discipline: Ice sheets | Subject: Mass Balance Obs
The regional-scale surface mass balance of Pine Island Glacier, West Antarctica, over the period 2005–2014, derived from airborne radar soundings and neutron probe measurements
Stefan Kowalewski, Veit Helm, Elizabeth Mary Morris, and Olaf Eisen
The Cryosphere, 15, 1285–1305, https://doi.org/10.5194/tc-15-1285-2021,https://doi.org/10.5194/tc-15-1285-2021, 2021
Short summary
Sensitivity of inverse glacial isostatic adjustment estimates over Antarctica
Matthias O. Willen, Martin Horwath, Ludwig Schröder, Andreas Groh, Stefan R. M. Ligtenberg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 14, 349–366, https://doi.org/10.5194/tc-14-349-2020,https://doi.org/10.5194/tc-14-349-2020, 2020
Recent precipitation decrease across the western Greenland ice sheet percolation zone
Gabriel Lewis, Erich Osterberg, Robert Hawley, Hans Peter Marshall, Tate Meehan, Karina Graeter, Forrest McCarthy, Thomas Overly, Zayta Thundercloud, and David Ferris
The Cryosphere, 13, 2797–2815, https://doi.org/10.5194/tc-13-2797-2019,https://doi.org/10.5194/tc-13-2797-2019, 2019
Short summary
How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica
Niels Souverijns, Alexandra Gossart, Irina V. Gorodetskaya, Stef Lhermitte, Alexander Mangold, Quentin Laffineur, Andy Delcloo, and Nicole P. M. van Lipzig
The Cryosphere, 12, 1987–2003, https://doi.org/10.5194/tc-12-1987-2018,https://doi.org/10.5194/tc-12-1987-2018, 2018
Short summary

Cited articles

Arthern, R. J., Winebrenner, D. P., and Vaughan, D. G.: Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission, J. Geophys. Res., 111, D06107, https://doi.org/10.1029/2004JD005667, 2006. a
Augustin, L., Barbante, C., Barnes, P. R., et al.: Eight glacial cycles from an Antarctic ice core, Nature, 429, 623–628, 2004. a
Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009 a, b, c
Bintanja, R.: On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas, Rev. Geophys., 37, 337–359, https://doi.org/10.1029/1999RG900007, 1999. a
Castellano, E., Becagli, S., Jouzel, J., Migliori, A., Severi, M., Steffensen, J., Traversi, R., and Udisti, R.: Volcanic eruption frequency over the last 45 ky as recorded in Epica-Dome C ice core (East Antarctica) and its relationship with climatic changes, Global. Planet. Change, 42, 195–205, https://doi.org/10.1016/j.gloplacha.2003.11.007, 2004. a, b, c, d, e
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This paper presents surface mass balance measurements from both GPR and ice core data collected during a traverse in a so-far-unexplored area between the DC and Vostok stations. Results presented here will contribute to a better knowledge of the global mass balance of the Antarctic ice sheet and thus help in constraining its contribution to sea level rise. Another novelty of the paper resides in the comprehensive error budget proposed for the method used for inferring accumulation rates.