Articles | Volume 12, issue 1
https://doi.org/10.5194/tc-12-103-2018
https://doi.org/10.5194/tc-12-103-2018
Research article
 | 
12 Jan 2018
Research article |  | 12 Jan 2018

Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories

Kunpeng Wu, Shiyin Liu, Zongli Jiang, Junli Xu, Junfeng Wei, and Wanqin Guo

Related authors

Terminal motions of Longbasaba Glacier and their mass contributions to proglacial lake volume during 1988–2018
Junfeng Wei, Shiyin Liu, Te Zhang, Xin Wang, Yong Zhang, Zongli Jiang, Kunpeng Wu, and Zheng Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-259,https://doi.org/10.5194/tc-2019-259, 2020
Preprint withdrawn
Short summary
Remote-sensing estimate of glacier mass balance over the central Nyainqentanglha Range during 1968 – ∼ 2013
Kunpeng Wu, Shiyin Liu, Zongli Jiang, Junli Xu, and Junfeng Wei
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-90,https://doi.org/10.5194/tc-2018-90, 2018
Revised manuscript not accepted
Short summary

Related subject area

Mass Balance Obs
Globally consistent estimates of high-resolution Antarctic ice mass balance and spatially resolved glacial isostatic adjustment
Matthias O. Willen, Martin Horwath, Eric Buchta, Mirko Scheinert, Veit Helm, Bernd Uebbing, and Jürgen Kusche
The Cryosphere, 18, 775–790, https://doi.org/10.5194/tc-18-775-2024,https://doi.org/10.5194/tc-18-775-2024, 2024
Short summary
On the importance of the humidity flux for the surface mass balance in the accumulation zone of the Greenland Ice Sheet
Laura J. Dietrich, Hans Christian Steen-Larsen, Sonja Wahl, Anne-Katrine Faber, and Xavier Fettweis
The Cryosphere, 18, 289–305, https://doi.org/10.5194/tc-18-289-2024,https://doi.org/10.5194/tc-18-289-2024, 2024
Short summary
Combined GNSS reflectometry–refractometry for automated and continuous in situ surface mass balance estimation on an Antarctic ice shelf
Ladina Steiner, Holger Schmithüsen, Jens Wickert, and Olaf Eisen
The Cryosphere, 17, 4903–4916, https://doi.org/10.5194/tc-17-4903-2023,https://doi.org/10.5194/tc-17-4903-2023, 2023
Short summary
Observations of preferential summer melt of Arctic sea-ice ridge keels from repeated multibeam sonar surveys
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023,https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Brief communication: The Glacier Loss Day as an indicator of a record-breaking negative glacier mass balance in 2022
Annelies Voordendag, Rainer Prinz, Lilian Schuster, and Georg Kaser
The Cryosphere, 17, 3661–3665, https://doi.org/10.5194/tc-17-3661-2023,https://doi.org/10.5194/tc-17-3661-2023, 2023
Short summary

Cited articles

Arendt, A., Bliss, A., Bolch, T., Cogley, J. G., and Gardner, A. S.: Randolph glacier inventory – a dataset of global glacier outlines. Version 5.0, University of Colorado. National Snow and Ice Data Center (NSIDC). Global Land Ice Measurements from Space (GLIMS), Boulder, CO, digital media, available at: www.glims.org/RGI/00_rgi50_TechnicalNote.pdf (last access: 12 March 2017), 2015.
Bao, W.-J., Liu, S.-Y., Wei, J.-F., and Guo, W.-Q.: Glacier changes during the past 40 years in the West Kunlun Shan, J. Mt. Sci., 12, 344–357, https://doi.org/10.1007/s11629-014-3220-0, 2015.
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L. I., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards, Earth-Sci. Rev., 114, 156–174, https://doi.org/10.1016/j.earscirev.2012.03.008, 2012.
Berthier, E., Arnaud, Y., Vincent, C., and Rémy, F.: Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes, Geophys. Res. Lett., 33, L08502, https://doi.org/10.1029/2006GL025862, 2006.
Berthier, E., Schiefer, E., Clarke, G. K. C., Menounos, B., and Rémy, F.: Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery, Nat. Geosci., 3, 92–95, https://doi.org/10.1038/ngeo737, 2010.
Download
Short summary
This study presents diminishing ice cover in the Kangri Karpo Mountains by 24.9 % ± 2.2 % or 0.71 % ± 0.06 % a−1 from 1980 to 2015 but with nine glaciers advancing. By utilizing geodetic methods, glaciers have experienced a mean mass deficit of 0.46 ± 0.08 m w.e. a−1 from 1980 to 2014. These glaciers showed slight accelerated shrinkage and significant accelerated mass loss during 2000–2015 compared to that during 1980–2000, which is consistent with the tendency of climate warming.