Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-117-2017
https://doi.org/10.5194/tc-11-117-2017
Research article
 | 
17 Jan 2017
Research article |  | 17 Jan 2017

Semi-brittle rheology and ice dynamics in DynEarthSol3D

Liz C. Logan, Luc L. Lavier, Eunseo Choi, Eh Tan, and Ginny A. Catania

Related authors

SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice sheet simulation enabled by the algorithmic differentiation tool OpenAD
Liz C. Logan, Sri Hari Krishna Narayanan, Ralf Greve, and Patrick Heimbach
Geosci. Model Dev., 13, 1845–1864, https://doi.org/10.5194/gmd-13-1845-2020,https://doi.org/10.5194/gmd-13-1845-2020, 2020
Short summary

Related subject area

Numerical Modelling
A hybrid ice-mélange model based on particle and continuum methods
Saskia Kahl, Carolin Mehlmann, and Dirk Notz
The Cryosphere, 19, 129–141, https://doi.org/10.5194/tc-19-129-2025,https://doi.org/10.5194/tc-19-129-2025, 2025
Short summary
New glacier thickness and bed topography maps for Svalbard
Ward van Pelt and Thomas Frank
The Cryosphere, 19, 1–17, https://doi.org/10.5194/tc-19-1-2025,https://doi.org/10.5194/tc-19-1-2025, 2025
Short summary
Quantifying the buttressing contribution of landfast sea ice and melange to Crane Glacier, Antarctic Peninsula
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
The Cryosphere, 18, 5789–5801, https://doi.org/10.5194/tc-18-5789-2024,https://doi.org/10.5194/tc-18-5789-2024, 2024
Short summary
Multi-physics ensemble modelling of Arctic tundra snowpack properties
Georgina J. Woolley, Nick Rutter, Leanne Wake, Vincent Vionnet, Chris Derksen, Richard Essery, Philip Marsh, Rosamond Tutton, Branden Walker, Matthieu Lafaysse, and David Pritchard
The Cryosphere, 18, 5685–5711, https://doi.org/10.5194/tc-18-5685-2024,https://doi.org/10.5194/tc-18-5685-2024, 2024
Short summary
Two-way coupling between ice flow and channelized subglacial drainage enhances modeled marine-ice-sheet retreat
George Lu and Jonathan Kingslake
The Cryosphere, 18, 5301–5321, https://doi.org/10.5194/tc-18-5301-2024,https://doi.org/10.5194/tc-18-5301-2024, 2024
Short summary

Cited articles

Amundson, J. M. and Truffer, M.: A unifying framework for iceberg-calving models, J. Glaciol., 56, 1–9, 2010.
Åström, J. A., Riikilä, T. I., Tallinen, T., Zwinger, T., Benn, D., Moore, J. C., and Timonen, J.: A particle based simulation model for glacier dynamics, The Cryosphere, 7, 1591–1602, https://doi.org/10.5194/tc-7-1591-2013, 2013.
Bassis, J. N. and Jacobs, S: Diverse calving patterns linked to glacier geometry, Nat. Geosci., 6, 833–836, https://doi.org/10.1038/ngeo1887, 2013.
Bassis, J. N. and Ma, Y.: Evolution of basal crevasses links ice shelf stability to ocean forcing, Earth Planetary Sc. Lett., 409, 203–211, https://doi.org/10.1016/j.epsl.2014.11.003, 2015.
Bassis, J. N., Fricker, H. A., Coleman, R., and Minster, J.-B.: An investigation into the forces that drive ice-shelf rift propagation on the Amery Ice Shelf, East Antarctica, J. Glaciol., 54, 1–11, 2008.
Download
Short summary
Global sea level rise prediction is a pressing and unresolved problem, one whose solution depends upon glaciologists better predicting ice sheet shrinkage due to iceberg calving. We present a numerical model that is capable of simulating ice flow and breakage that leads to iceberg calving and find that a material property that captures both the fluid- and solid-like behavior of ice simultaneously is a necessary condition for studying areas of glaciers in contact with ocean water prone to calve.