Articles | Volume 10, issue 1
https://doi.org/10.5194/tc-10-371-2016
https://doi.org/10.5194/tc-10-371-2016
Research article
 | 
15 Feb 2016
Research article |  | 15 Feb 2016

Intercomparison of snow density measurements: bias, precision, and vertical resolution

Martin Proksch, Nick Rutter, Charles Fierz, and Martin Schneebeli

Related authors

Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications
Isabelle Gouttevin, Moritz Langer, Henning Löwe, Julia Boike, Martin Proksch, and Martin Schneebeli
The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018,https://doi.org/10.5194/tc-12-3693-2018, 2018
Short summary
Measured and Modeled Snow Cover Properties across the Greenland Ice Sheet
Sascha Bellaire, Martin Proksch, Martin Schneebeli, Masashi Niwano, and Konrad Steffen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-55,https://doi.org/10.5194/tc-2017-55, 2017
Preprint withdrawn
Nordic Snow Radar Experiment
Juha Lemmetyinen, Anna Kontu, Jouni Pulliainen, Juho Vehviläinen, Kimmo Rautiainen, Andreas Wiesmann, Christian Mätzler, Charles Werner, Helmut Rott, Thomas Nagler, Martin Schneebeli, Martin Proksch, Dirk Schüttemeyer, Michael Kern, and Malcolm W. J. Davidson
Geosci. Instrum. Method. Data Syst., 5, 403–415, https://doi.org/10.5194/gi-5-403-2016,https://doi.org/10.5194/gi-5-403-2016, 2016
Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series
Silvan Leinss, Henning Löwe, Martin Proksch, Juha Lemmetyinen, Andreas Wiesmann, and Irena Hajnsek
The Cryosphere, 10, 1771–1797, https://doi.org/10.5194/tc-10-1771-2016,https://doi.org/10.5194/tc-10-1771-2016, 2016
Short summary
Arctic Snow Microstructure Experiment for the development of snow emission modelling
William Maslanka, Leena Leppänen, Anna Kontu, Mel Sandells, Juha Lemmetyinen, Martin Schneebeli, Martin Proksch, Margret Matzl, Henna-Reetta Hannula, and Robert Gurney
Geosci. Instrum. Method. Data Syst., 5, 85–94, https://doi.org/10.5194/gi-5-85-2016,https://doi.org/10.5194/gi-5-85-2016, 2016
Short summary

Related subject area

Instrumentation
Brief communication: RADIX (Rapid Access Drilling and Ice eXtraction) dust logger test in the EastGRIP (East Greenland Ice-core Project) hole
Jakob Schwander, Thomas F. Stocker, Remo Walther, Samuel Marending, Tobias Erhardt, Chantal Zeppenfeld, and Jürg Jost
The Cryosphere, 18, 5613–5617, https://doi.org/10.5194/tc-18-5613-2024,https://doi.org/10.5194/tc-18-5613-2024, 2024
Short summary
Layer-optimized synthetic aperture radar processing with a mobile phase-sensitive radar: a proof of concept for detecting the deep englacial stratigraphy of Colle Gnifetti, Switzerland and Italy
Falk M. Oraschewski, Inka Koch, M. Reza Ershadi, Jonathan D. Hawkins, Olaf Eisen, and Reinhard Drews
The Cryosphere, 18, 3875–3889, https://doi.org/10.5194/tc-18-3875-2024,https://doi.org/10.5194/tc-18-3875-2024, 2024
Short summary
Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024,https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Assessment of Continuous Flow Analysis (CFA) for High-Precision Profiles of Water Isotopes in Snow Cores
Rémi Dallmayr, Hannah Meyer, Vasileios Gkinis, Thomas Laepple, Melanie Behrens, Frank Wilhelms, and Maria Hörhold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1807,https://doi.org/10.5194/egusphere-2024-1807, 2024
Short summary
Brief communication: Testing a portable Bullard-type temperature lance confirms highly spatially heterogeneous sediment temperatures under shallow bodies of water in the Arctic
Frederieke Miesner, William Lambert Cable, Pier Paul Overduin, and Julia Boike
The Cryosphere, 18, 2603–2611, https://doi.org/10.5194/tc-18-2603-2024,https://doi.org/10.5194/tc-18-2603-2024, 2024
Short summary

Cited articles

Adams, E. and Sato, A.: Model of effective thermal conductivity of a dry snow cover composed of uniform spheres, Ann. Glaciol., 18, 300–304, 1993.
Albert, M.: Modeling heat, mass, and species transport in polar firn, Ann. Glaciol., 23, 138–143, 1996.
Brun, E., Martin, E., Simon, V., Gendre, C., and Coleou, C.: An energy and mass model of snow cover suitable for operational avalanche forecasting, J. Glaciol., 35, 333–342, 1989.
Calonne, N., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Geindreau, C.: Numerical and experimental investigations of the effective thermal conductivity of snow, Geophys. Res. Lett., 38, L23501, https://doi.org/10.1029/2011GL049234, 2011.
Calonne, N., Geindreau, C., Flin, F., Morin, S., Lesaffre, B., Rolland du Roscoat, S., and Charrier, P.: 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy, The Cryosphere, 6, 939–951, https://doi.org/10.5194/tc-6-939-2012, 2012.
Download
Short summary
Density is a fundamental property of porous media such as snow. During the MicroSnow Davos 2014 workshop, different approaches (box-, wedge- and cylinder-type density cutters, micro-computed tomography) to measure snow density were applied in a controlled laboratory environment and in the field. In general, results suggest that snow densities measured by different methods agree within 9 %. However, the density profiles resolved by the measurement methods differed considerably.