Articles | Volume 10, issue 6
The Cryosphere, 10, 2847–2863, 2016
https://doi.org/10.5194/tc-10-2847-2016
The Cryosphere, 10, 2847–2863, 2016
https://doi.org/10.5194/tc-10-2847-2016

Research article 21 Nov 2016

Research article | 21 Nov 2016

Relating optical and microwave grain metrics of snow: the relevance of grain shape

Quirine Krol and Henning Löwe

Related authors

Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core
Sebastian Hellmann, Melchior Grab, Johanna Kerch, Henning Löwe, Andreas Bauder, Ilka Weikusat, and Hansruedi Maurer
The Cryosphere, 15, 3507–3521, https://doi.org/10.5194/tc-15-3507-2021,https://doi.org/10.5194/tc-15-3507-2021, 2021
Short summary
Elements of future snowpack modeling – part 1: A physical instability arising from the non-linear coupling of transport and phase changes
Konstantin Schürholt, Julia Kowalski, and Henning Löwe
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-72,https://doi.org/10.5194/tc-2021-72, 2021
Revised manuscript under review for TC
Short summary
Elements of future snowpack modeling – part 2: A modular and extendable Eulerian–Lagrangian numerical scheme for coupled transport, phase changes and settling processes
Anna Simson, Henning Löwe, and Julia Kowalski
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-73,https://doi.org/10.5194/tc-2021-73, 2021
Revised manuscript accepted for TC
Short summary
The RHOSSA campaign: multi-resolution monitoring of the seasonal evolution of the structure and mechanical stability of an alpine snowpack
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020,https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
Modeling the evolution of the structural anisotropy of snow
Silvan Leinss, Henning Löwe, Martin Proksch, and Anna Kontu
The Cryosphere, 14, 51–75, https://doi.org/10.5194/tc-14-51-2020,https://doi.org/10.5194/tc-14-51-2020, 2020
Short summary

Related subject area

Snow Physics
Orientation selective grain sublimation–deposition in snow under temperature gradient metamorphism observed with diffraction contrast tomography
Rémi Granger, Frédéric Flin, Wolfgang Ludwig, Ismail Hammad, and Christian Geindreau
The Cryosphere, 15, 4381–4398, https://doi.org/10.5194/tc-15-4381-2021,https://doi.org/10.5194/tc-15-4381-2021, 2021
Short summary
Recent observations of superimposed ice and snow ice on sea ice in the northwestern Weddell Sea
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021,https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
Experimental and model-based investigation of the links between snow bidirectional reflectance and snow microstructure
Marie Dumont, Frederic Flin, Aleksey Malinka, Olivier Brissaud, Pascal Hagenmuller, Philippe Lapalus, Bernard Lesaffre, Anne Dufour, Neige Calonne, Sabine Rolland du Roscoat, and Edward Ando
The Cryosphere, 15, 3921–3948, https://doi.org/10.5194/tc-15-3921-2021,https://doi.org/10.5194/tc-15-3921-2021, 2021
Short summary
Impact of water vapor diffusion and latent heat on the effective thermal conductivity of snow
Kévin Fourteau, Florent Domine, and Pascal Hagenmuller
The Cryosphere, 15, 2739–2755, https://doi.org/10.5194/tc-15-2739-2021,https://doi.org/10.5194/tc-15-2739-2021, 2021
Short summary
Enhancement of snow albedo reduction and radiative forcing due to coated black carbon in snow
Wei Pu, Tenglong Shi, Jiecan Cui, Yang Chen, Yue Zhou, and Xin Wang
The Cryosphere, 15, 2255–2272, https://doi.org/10.5194/tc-15-2255-2021,https://doi.org/10.5194/tc-15-2255-2021, 2021
Short summary

Cited articles

Akaike, H.: Selected papers of Hirotugu Akaike, 199–213, Springer New York, https://doi.org/10.1007/978-1-4612-1694-0_15, 1998.
Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J., Lefebvre, E., Fily, M., and Barnola, J.: Measurement of vertical profiles of snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation, J. Glaciol., 57, 17–29, https://doi.org/10.3189/002214311795306664, 2011.
Bartlett, S. J., Rüedi, J.-D., Craig, A., and Fierz, C.: Assessment of techniques for analyzing snow crystals in two dimensions, Ann. Glaciol., 48, 103–112, https://doi.org/10.3189/172756408784700752, 2008.
Berryman, J. G.: Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media, J. Appl. Phys., 83, 1685–1693, https://doi.org/10.1063/1.366885, 1998.
Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting, J. Glaciol., 38, 13–22, http://www.ingentaconnect.com/content/igsoc/jog/1992/00000038/00000128/art00003, 1992.
Download
Short summary
Optical and microwave modelling of snow involve different metrics of "grain size" and existing, empirical relations between them are subject to considerable scatter. We introduce two objectively defined metrics of grain shape, derived from micro-computed tomography images, that lead to improved statistical models between the different grain metrics. Our results allow to assess the relevance of grain shape in both fields on common grounds.