Articles | Volume 10, issue 4
https://doi.org/10.5194/tc-10-1799-2016
https://doi.org/10.5194/tc-10-1799-2016
Research article
 | 
18 Aug 2016
Research article |  | 18 Aug 2016

A simple equation for the melt elevation feedback of ice sheets

Anders Levermann and Ricarda Winkelmann

Related authors

Does the pace of carbon emissions matter in an atmospheric general circulation model?
Anja Katzenberger and Anders Levermann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-40,https://doi.org/10.5194/esd-2024-40, 2025
Revised manuscript has not been submitted
Short summary
Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 18, 4011–4028, https://doi.org/10.5194/tc-18-4011-2024,https://doi.org/10.5194/tc-18-4011-2024, 2024
Short summary
Consistent increase in East Asian Summer Monsoon rainfall and its variability under climate change over China in CMIP6
Anja Katzenberger and Anders Levermann
Earth Syst. Dynam., 15, 1137–1151, https://doi.org/10.5194/esd-15-1137-2024,https://doi.org/10.5194/esd-15-1137-2024, 2024
Short summary
The Framework for Assessing Changes To Sea-level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023,https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023,https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary

Related subject area

Climate Interactions
Role of elevation feedbacks and ice sheet–climate interactions on future Greenland ice sheet melt
Thirza Feenstra, Miren Vizcaino, Bert Wouters, Michele Petrini, Raymond Sellevold, and Katherine Thayer-Calder
The Cryosphere, 19, 2289–2314, https://doi.org/10.5194/tc-19-2289-2025,https://doi.org/10.5194/tc-19-2289-2025, 2025
Short summary
Toward a marginal Arctic sea ice cover: changes to freezing, melting and dynamics
Rebecca C. Frew, Adam William Bateson, Daniel L. Feltham, and David Schröder
The Cryosphere, 19, 2115–2132, https://doi.org/10.5194/tc-19-2115-2025,https://doi.org/10.5194/tc-19-2115-2025, 2025
Short summary
An unseasonal atmospheric river drives anomalous summer snow accumulation on glaciers of the subtropical Andes
Claudio Bravo, Sebastián Cisternas, Maximiliano Viale, Pablo Paredes, Deniz Bozkurt, and Nicolás García-Lee
The Cryosphere, 19, 1897–1913, https://doi.org/10.5194/tc-19-1897-2025,https://doi.org/10.5194/tc-19-1897-2025, 2025
Short summary
Sea ice reduction in the Barents–Kara Sea enhances June precipitation in the Yangtze River basin
Tianli Xie, Zhen-Qiang Zhou, Renhe Zhang, Bingyi Wu, and Peng Zhang
The Cryosphere, 19, 1303–1312, https://doi.org/10.5194/tc-19-1303-2025,https://doi.org/10.5194/tc-19-1303-2025, 2025
Short summary
Unravelling the sources of uncertainty in glacier runoff projections in the Patagonian Andes (40–56° S)
Rodrigo Aguayo, Fabien Maussion, Lilian Schuster, Marius Schaefer, Alexis Caro, Patrick Schmitt, Jonathan Mackay, Lizz Ultee, Jorge Leon-Muñoz, and Mauricio Aguayo
The Cryosphere, 18, 5383–5406, https://doi.org/10.5194/tc-18-5383-2024,https://doi.org/10.5194/tc-18-5383-2024, 2024
Short summary

Cited articles

Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163–1166, https://doi.org/10.1038/nature08019, 2009.
Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjørk, A. A., Andersen, T. J., Kuijpers, A., Nørgaard-Pedersen, N., Kjær, K. H., Schjøth, F., Weckström, K., and Ahlstrøm, A. P.: Rapid response of Helheim Glacier in Greenland to climate variability over the past century, Nat. Geosci., 5, 37–41, https://doi.org/10.1038/ngeo1349, 2012.
Bamber, J. L., Hardy, R. J., and Joughin, I.: An analysis of balance velocities over the Green land ice sheet and comparison with synthetic aperture radar interferometry, J. Glaciol., 46, 67–74, https://doi.org/10.3189/172756500781833412, 2000.
Box, J. E.: Greenland ice sheet mass balance reconstruction, Part II: Surface mass balance (1840–2010), J. Climate, 26, 6974–6989, https://doi.org/10.1175/JCLI-D-12-00518.1, 2013.
Box, J. E. and Steffen, K.: Sublimation on the Greenland Ice Sheet from automated weather station observations, J. Geophys. Res.-Atmos., 106, 33965–33981, 2001.
Download
Short summary
In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. Here we derive the basic equations for the melt elevation feedback that can lead to self-amplifying melt of the Greenland Ice Sheet and ice sheets in general. The theory unifies the results of complex models when the feedback dominates the dynamics and it allows us to estimate the melt time of ice sheets from data in cases where ice dynamic loss can be neglected.
Share