Articles | Volume 10, issue 4
https://doi.org/10.5194/tc-10-1799-2016
https://doi.org/10.5194/tc-10-1799-2016
Research article
 | 
18 Aug 2016
Research article |  | 18 Aug 2016

A simple equation for the melt elevation feedback of ice sheets

Anders Levermann and Ricarda Winkelmann

Related authors

Hysteresis of idealized, instability-prone outlet glaciers under variation of pinning-point buttressing
Johannes Feldmann, Anders Levermann, and Ricarda Winkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-457,https://doi.org/10.5194/egusphere-2024-457, 2024
Short summary
The Framework for Assessing Changes To Sea-level (FACTS) v1.0: a platform for characterizing parametric and structural uncertainty in future global, relative, and extreme sea-level change
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023,https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Consistent increase of East Asian Summer Monsoon rainfall and its variability under climate change over China in 34 coupled climate models
Anja Katzenberger and Anders Levermann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2023-19,https://doi.org/10.5194/esd-2023-19, 2023
Revised manuscript under review for ESD
Short summary
Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling
Johannes Feldmann and Anders Levermann
The Cryosphere, 17, 327–348, https://doi.org/10.5194/tc-17-327-2023,https://doi.org/10.5194/tc-17-327-2023, 2023
Short summary
Stabilizing effect of mélange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet
Tanja Schlemm, Johannes Feldmann, Ricarda Winkelmann, and Anders Levermann
The Cryosphere, 16, 1979–1996, https://doi.org/10.5194/tc-16-1979-2022,https://doi.org/10.5194/tc-16-1979-2022, 2022
Short summary

Related subject area

Climate Interactions
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023,https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Forced and internal components of observed Arctic sea-ice changes
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153, https://doi.org/10.5194/tc-17-4133-2023,https://doi.org/10.5194/tc-17-4133-2023, 2023
Short summary
Triggers of the 2022 Larsen B multi-year landfast sea ice break-out and initial glacier response
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-88,https://doi.org/10.5194/tc-2023-88, 2023
Revised manuscript accepted for TC
Short summary
Changes in March mean snow water equivalent since the mid-20th century and the contributing factors in reanalyses and CMIP6 climate models
Jouni Räisänen
The Cryosphere, 17, 1913–1934, https://doi.org/10.5194/tc-17-1913-2023,https://doi.org/10.5194/tc-17-1913-2023, 2023
Short summary
Climatic control of the surface mass balance of the Patagonian Icefields
Tomás Carrasco-Escaff, Maisa Rojas, René Darío Garreaud, Deniz Bozkurt, and Marius Schaefer
The Cryosphere, 17, 1127–1149, https://doi.org/10.5194/tc-17-1127-2023,https://doi.org/10.5194/tc-17-1127-2023, 2023
Short summary

Cited articles

Allen, M. R., Frame, D. J., Huntingford, C., Jones, C. D., Lowe, J. A., Meinshausen, M., and Meinshausen, N.: Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163–1166, https://doi.org/10.1038/nature08019, 2009.
Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjørk, A. A., Andersen, T. J., Kuijpers, A., Nørgaard-Pedersen, N., Kjær, K. H., Schjøth, F., Weckström, K., and Ahlstrøm, A. P.: Rapid response of Helheim Glacier in Greenland to climate variability over the past century, Nat. Geosci., 5, 37–41, https://doi.org/10.1038/ngeo1349, 2012.
Bamber, J. L., Hardy, R. J., and Joughin, I.: An analysis of balance velocities over the Green land ice sheet and comparison with synthetic aperture radar interferometry, J. Glaciol., 46, 67–74, https://doi.org/10.3189/172756500781833412, 2000.
Box, J. E.: Greenland ice sheet mass balance reconstruction, Part II: Surface mass balance (1840–2010), J. Climate, 26, 6974–6989, https://doi.org/10.1175/JCLI-D-12-00518.1, 2013.
Box, J. E. and Steffen, K.: Sublimation on the Greenland Ice Sheet from automated weather station observations, J. Geophys. Res.-Atmos., 106, 33965–33981, 2001.
Download
Short summary
In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. Here we derive the basic equations for the melt elevation feedback that can lead to self-amplifying melt of the Greenland Ice Sheet and ice sheets in general. The theory unifies the results of complex models when the feedback dominates the dynamics and it allows us to estimate the melt time of ice sheets from data in cases where ice dynamic loss can be neglected.