Articles | Volume 9, issue 1
https://doi.org/10.5194/tc-9-245-2015
https://doi.org/10.5194/tc-9-245-2015
Research article
 | 
09 Feb 2015
Research article |  | 09 Feb 2015

Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

M. P. Lüthi, C. Ryser, L. C. Andrews, G. A. Catania, M. Funk, R. L. Hawley, M. J. Hoffman, and T. A. Neumann

Related authors

Calorimetric in-situ determination of ice water content in two Alpine glaciers
Martin Peter Lüthi, Diego Wasser, and Luc Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-832,https://doi.org/10.5194/egusphere-2025-832, 2025
Short summary
Greenland and Canadian Arctic ice temperature profiles database
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023,https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
The control of short-term ice mélange weakening episodes on calving activity at major Greenland outlet glaciers
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023,https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021,https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Calving event size measurements and statistics of Eqip Sermia, Greenland, from terrestrial radar interferometry
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 14, 1051–1066, https://doi.org/10.5194/tc-14-1051-2020,https://doi.org/10.5194/tc-14-1051-2020, 2020
Short summary

Related subject area

Greenland
The system of atmosphere, land, ice and ocean in the region near the 79N Glacier in northeast Greenland: synthesis and key findings from the Greenland Ice Sheet–Ocean Interaction (GROCE) experiment
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Maria Kappelsberger, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
The Cryosphere, 19, 1789–1824, https://doi.org/10.5194/tc-19-1789-2025,https://doi.org/10.5194/tc-19-1789-2025, 2025
Short summary
Brief communication: Storstrømmen Glacier, northeastern Greenland, primed for end-of-decade surge
Jonas K. Andersen, Rasmus P. Meyer, Flora S. Huiban, Mads L. Dømgaard, Romain Millan, and Anders A. Bjørk
The Cryosphere, 19, 1717–1724, https://doi.org/10.5194/tc-19-1717-2025,https://doi.org/10.5194/tc-19-1717-2025, 2025
Short summary
Historically consistent mass loss projections of the Greenland ice sheet
Charlotte Rahlves, Heiko Goelzer, Andreas Born, and Petra M. Langebroek
The Cryosphere, 19, 1205–1220, https://doi.org/10.5194/tc-19-1205-2025,https://doi.org/10.5194/tc-19-1205-2025, 2025
Short summary
A comparison of supraglacial meltwater features throughout contrasting melt seasons: southwest Greenland
Emily Glen, Amber Leeson, Alison F. Banwell, Jennifer Maddalena, Diarmuid Corr, Olivia Atkins, Brice Noël, and Malcolm McMillan
The Cryosphere, 19, 1047–1066, https://doi.org/10.5194/tc-19-1047-2025,https://doi.org/10.5194/tc-19-1047-2025, 2025
Short summary
Ice speed of a Greenlandic tidewater glacier modulated by tide, melt, and rain
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
The Cryosphere, 19, 525–540, https://doi.org/10.5194/tc-19-525-2025,https://doi.org/10.5194/tc-19-525-2025, 2025
Short summary

Cited articles

Ahlstrom, A. P.: Previous glaciological activities related to hydropower at Paakitsoq, Ilulissat, West Greenland, Tech. Rep., 25, Danmarks og Grønlands Geologiske Undersøgelse, 2007.
Andrews, L. C., Catania, G. A., Hoffman, M. J., Gulley, J. D., Lüthi, M. P., Ryser, C., Hawley, R. L., and Neumann, T. A.: Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet, Nature, 514, 80–83, https://doi.org/10.1038/nature13796, 2014.
Box, J. E.: Greenland Ice Sheet mass balance reconstruction, Part II: Surface mass balance (1840–2010), J. Climate, 26, 6974–6989, https://doi.org/10.1175/JCLI-D-12-00518.1, 2013
Budd, W., Jacka, T., Jenssen, D., Radok, U., and Young, N.: Derived physical characteristics of the Greenland Ice Sheet, Meteor. Dept. Pub. no. 23, University of Melbourne, Melbourne, 1982.
Catania, G. A. and Neumann, T. A.: Persistent englacial drainage features in the Greenland Ice Sheet, Geophys. Res. Lett., 37, L02501, https://doi.org/10.1029/2009GL041108, 2010.
Download
Short summary
We analyze the thermal structure of the Greenland Ice Sheet with a heat flow model. New borehole measurements indicate that more heat is stored within the ice than would be expected from heat diffusion alone. We conclude that temperate paleo-firn and cyro-hydrologic warming are essential processes that explain the measurements.
Share