Articles | Volume 7, issue 3
The Cryosphere, 7, 947–959, 2013
https://doi.org/10.5194/tc-7-947-2013
The Cryosphere, 7, 947–959, 2013
https://doi.org/10.5194/tc-7-947-2013

Research article 19 Jun 2013

Research article | 19 Jun 2013

A combined approach of remote sensing and airborne electromagnetics to determine the volume of polynya sea ice in the Laptev Sea

L. Rabenstein et al.

Related authors

Recent observations of superimposed ice and snow ice on sea ice in the northwestern Weddell Sea
Stefanie Arndt, Christian Haas, Hanno Meyer, Ilka Peeken, and Thomas Krumpen
The Cryosphere, 15, 4165–4178, https://doi.org/10.5194/tc-15-4165-2021,https://doi.org/10.5194/tc-15-4165-2021, 2021
Short summary
MOSAiC drift expedition from October 2019 to July 2020: sea ice conditions from space and comparison with previous years
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021,https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
A comparison between Envisat and ICESat sea ice thickness in the Antarctic
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-227,https://doi.org/10.5194/tc-2021-227, 2021
Preprint under review for TC
Short summary
The impact of the freeze–melt cycle of land-fast ice on the distribution of dissolved organic matter in the Laptev and East Siberian seas (Siberian Arctic)
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021,https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021,https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary

Related subject area

Sea Ice
An X-ray micro-tomographic study of the pore space, permeability and percolation threshold of young sea ice
Sönke Maus, Martin Schneebeli, and Andreas Wiegmann
The Cryosphere, 15, 4047–4072, https://doi.org/10.5194/tc-15-4047-2021,https://doi.org/10.5194/tc-15-4047-2021, 2021
Short summary
Calibration of sea ice drift forecasts using random forest algorithms
Cyril Palerme and Malte Müller
The Cryosphere, 15, 3989–4004, https://doi.org/10.5194/tc-15-3989-2021,https://doi.org/10.5194/tc-15-3989-2021, 2021
Short summary
Multiscale variations in Arctic sea ice motion and links to atmospheric and oceanic conditions
Dongyang Fu, Bei Liu, Yali Qi, Guo Yu, Haoen Huang, and Lilian Qu
The Cryosphere, 15, 3797–3811, https://doi.org/10.5194/tc-15-3797-2021,https://doi.org/10.5194/tc-15-3797-2021, 2021
Short summary
The flexural strength of bonded ice
Andrii Murdza, Arttu Polojärvi, Erland M. Schulson, and Carl E. Renshaw
The Cryosphere, 15, 2957–2967, https://doi.org/10.5194/tc-15-2957-2021,https://doi.org/10.5194/tc-15-2957-2021, 2021
Short summary
Interannual variability in Transpolar Drift summer sea ice thickness and potential impact of Atlantification
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021,https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary

Cited articles

Adams, S., Willmes, S., Heinemann, G., Rozman, P., Timmermann, R., and Schroeder, D.: Evaluation of simulated sea-ice concentrations from sea-ice/ocean models using satellite data and polynya classification methods, Polar Res., 30, 7124, https://doi.org/10.3402/polar.v30i0.7124, 2011.
Babko, O., Rothrock, D., and Maykut, G.: Role of rafting in the mechanical redistribution of sea ice thickness, J. Geophys. Res., 107, 3113, https://doi.org/10.1029/1999JC000190, 2002.
Carsey, F. and Holt, B.: Beaufort-Chukchi ice margin data from Seasat – ice motion, J. Geophys. Res.-Oceans, 92, 7163–7172, https://doi.org/10.1029/JC092iC07p07163, 1987.
Cavalieri, D. and Martin, S.: The contribution of Alaskan, Siberian, and Canadian coastal polynyas to the cold halocline layer of the Arctic Ocean, J. Geophys. Res.-Oceans, 99, 18343–18362, 1994.
Curlander, J., Holt, B., and Hussey, K.: Determination of sea ice motion using digital SAR imagery, IEEE J. Ocean. Eng., 10, 358–367, https://doi.org/10.1109/JOE.1985.1145134, 1985.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.