Articles | Volume 7, issue 1
https://doi.org/10.5194/tc-7-119-2013
https://doi.org/10.5194/tc-7-119-2013
Research article
 | 
28 Jan 2013
Research article |  | 28 Jan 2013

Calving on tidewater glaciers amplified by submarine frontal melting

M. O'Leary and P. Christoffersen

Related authors

Greenland and Canadian Arctic ice temperature profiles
Anja Løkkegaard, Kenneth Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel Doyle, Henrik Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat Abbas Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Robert S. Fausto, and William T. Colgan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-138,https://doi.org/10.5194/tc-2022-138, 2022
Revised manuscript under review for TC
Short summary
Rapid and accurate polarimetric radar measurements of ice crystal fabric orientation at the Western Antarctic Ice Sheet (WAIS) Divide ice core site
Tun Jan Young, Carlos Martín, Poul Christoffersen, Dustin M. Schroeder, Slawek M. Tulaczyk, and Eliza J. Dawson
The Cryosphere, 15, 4117–4133, https://doi.org/10.5194/tc-15-4117-2021,https://doi.org/10.5194/tc-15-4117-2021, 2021
Short summary
Can katabatic winds directly force retreat of Greenland outlet glaciers? Hypothesis test on Helheim Glacier in Sermilik Fjord
Iain Wheel, Poul Christoffersen, and Sebastian H. Mernild
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-194,https://doi.org/10.5194/tc-2020-194, 2020
Manuscript not accepted for further review
Short summary
Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland
Samuel J. Cook, Poul Christoffersen, Joe Todd, Donald Slater, and Nolwenn Chauché
The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020,https://doi.org/10.5194/tc-14-905-2020, 2020
Short summary
Sensitivity of a calving glacier to ice–ocean interactions under climate change: new insights from a 3-D full-Stokes model
Joe Todd, Poul Christoffersen, Thomas Zwinger, Peter Råback, and Douglas I. Benn
The Cryosphere, 13, 1681–1694, https://doi.org/10.5194/tc-13-1681-2019,https://doi.org/10.5194/tc-13-1681-2019, 2019
Short summary

Related subject area

Numerical Modelling
Arctic sea ice mass balance in a new coupled ice–ocean model using a brittle rheology framework
Guillaume Boutin, Einar Ólason, Pierre Rampal, Heather Regan, Camille Lique, Claude Talandier, Laurent Brodeau, and Robert Ricker
The Cryosphere, 17, 617–638, https://doi.org/10.5194/tc-17-617-2023,https://doi.org/10.5194/tc-17-617-2023, 2023
Short summary
Snow cover prediction in the Italian central Apennines using weather forecast and land surface numerical models
Edoardo Raparelli, Paolo Tuccella, Valentina Colaiuda, and Frank S. Marzano
The Cryosphere, 17, 519–538, https://doi.org/10.5194/tc-17-519-2023,https://doi.org/10.5194/tc-17-519-2023, 2023
Short summary
Geothermal heat flux is the dominant source of uncertainty in englacial-temperature-based dating of ice rise formation
Aleksandr Montelli and Jonathan Kingslake
The Cryosphere, 17, 195–210, https://doi.org/10.5194/tc-17-195-2023,https://doi.org/10.5194/tc-17-195-2023, 2023
Short summary
Simulating the current and future northern limit of permafrost on the Qinghai–Tibet Plateau
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846, https://doi.org/10.5194/tc-16-4823-2022,https://doi.org/10.5194/tc-16-4823-2022, 2022
Short summary
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary

Cited articles

Amundson, J. M. and Truffer, M.: A unifying framework for iceberg-calving models, J. Glaciol., 56, 822–830, https://doi.org/10.3189/002214310794457173, 2010.
Bassis, J. N., Fricker, H. A., Coleman, R., and Minster, J.-B.: An investigation into the forces that drive ice-shelf rift propagation on the {A}mery {I}ce {S}helf, {E}ast {A}ntarctica, J. Glaciol., 54, 17–27, https://doi.org/10.3189/002214308784409116, 2008.
Benn, D. I., Wiseman, S., and Hands, K. A.: Growth and drainage of supraglacial lakes on debrismantled {N}gozumpa {G}lacier, {K}humbu {H}imal, {N}epal, J. Glaciol., 47, 626–638, https://doi.org/10.3189/172756501781831729, 2001.
Benn, D. I., Hulton, N. R. J., and Mottram, R. H.: "{C}alving laws", "sliding laws" and the stability of tidewater glaciers, Ann. Glaciol., 46, 123–130, https://doi.org/10.3189/172756407782871161, 2007{a}.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007{b}.
Download