Articles | Volume 6, issue 1
https://doi.org/10.5194/tc-6-125-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-6-125-2012
© Author(s) 2012. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges
L. Boeckli
Department of Geography, University of Zurich, Switzerland
A. Brenning
Department of Geography and Environmental Management, University of Waterloo, Ontario, Canada
S. Gruber
Department of Geography, University of Zurich, Switzerland
J. Noetzli
Department of Geography, University of Zurich, Switzerland
Related subject area
Frozen Ground
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Post-Little Ice Age rock wall permafrost evolution in Norway
Modelling rock glacier ice content based on InSAR-derived velocity, Khumbu and Lhotse valleys, Nepal
The temperature-dependent shear strength of ice-filled joints in rock mass considering the effect of joint roughness, opening and shear rates
Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada
Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data
Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 2: An upscaling strategy of geophysical measurements to the catchment scale at two study sites
Long-term analysis of cryoseismic events and associated ground thermal stress in Adventdalen, Svalbard
Seismic physics-based characterization of permafrost sites using surface waves
Three in one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai–Tibet Plateau
Surface temperatures and their influence on the permafrost thermal regime in high-Arctic rock walls on Svalbard
Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Passive seismic recording of cryoseisms in Adventdalen, Svalbard
Projecting circum-Arctic excess-ground-ice melt with a sub-grid representation in the Community Land Model
Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada
The ERA5-Land soil temperature bias in permafrost regions
Brief Communication: The reliability of gas extraction techniques for analysing CH4 and N2O compositions in gas trapped in permafrost ice wedges
Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen
Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites
Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis
Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps
New ground ice maps for Canada using a paleogeographic modelling approach
Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada)
Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada
Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls
Microtopographic control on the ground thermal regime in ice wedge polygons
Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau
Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau
Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals
Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska
Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes
A new map of permafrost distribution on the Tibetan Plateau
Distinguishing between old and modern permafrost sources in the northeast Siberian land–shelf system with compound-specific δ2H analysis
Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century
New observations indicate the possible presence of permafrost in North Africa (Djebel Toubkal, High Atlas, Morocco)
Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia
Wind-driven snow conditions control the occurrence of contemporary marginal mountain permafrost in the Chic-Choc Mountains, south-eastern Canada: a case study from Mont Jacques-Cartier
Numerical modelling of convective heat transport by air flow in permafrost talus slopes
Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland
Response of seasonal soil freeze depth to climate change across China
Soil moisture redistribution and its effect on inter-annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard
Review article: Inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region
Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years
Weichselian permafrost depth in the Netherlands: a comprehensive uncertainty and sensitivity analysis
Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024, https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary
Short summary
Maps that show ground ice in permafrost at circumpolar or hemispherical scales offer only general depictions of broad patterns in ice content. In this paper, we show that using more detailed surficial geology in a ground ice computer model significantly improves the depiction of ground ice and makes the mapping useful for assessments of the effects of permafrost thaw and for reconnaissance planning of infrastructure routing.
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024, https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Short summary
Climate warming is thawing permafrost that makes up palsa (frost mound) peatlands, risking ecosystem collapse and carbon release as methane. We measure this regional degradation using radar satellite technology to examine ground elevation changes and show how terrain roughness measurements can be used to estimate local permafrost damage. We find that over half of Sweden's largest palsa peatlands are degrading, with the worse impacts to the north linked to increased winter precipitation.
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024, https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Short summary
Using a model that can simulate the evolution of Arctic permafrost over centuries to millennia, we find that post-industrialization permafrost warming has three "hotspots" in NE Canada, N Alaska, and W Siberia. The extent of near-surface permafrost has decreased substantially since 1850, with the largest area losses occurring in the last 50 years. The simulations also show that volcanic eruptions have in some cases counteracted the loss of near-surface permafrost for a few decades.
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023, https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Short summary
Frozen saline pore water, left over from post-glacial marine ingression, was found in shallow permafrost in a Svalbard fjord valley. This suggests that freezing occurred immediately after marine regression due to isostatic rebound. We conducted top-down freezing simulations, which confirmed that with Early to mid-Holocene temperatures (e.g. −4 °C), freezing could progress down to 20–40 m within 200 years. This, in turn, could inhibit flow through the sediment, therefore preserving saline fluids.
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023, https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023, https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Short summary
We assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. Ground temperature is modelled using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles. Permafrost probably occurs at most sites. All simulations show increasing ground temperature from the 1980s. Our simulations show that rock wall permafrost with a temperature of −1 °C at 20 m depth could thaw at this depth within 50 years.
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023, https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
Shibing Huang, Haowei Cai, Zekun Xin, and Gang Liu
The Cryosphere, 17, 1205–1223, https://doi.org/10.5194/tc-17-1205-2023, https://doi.org/10.5194/tc-17-1205-2023, 2023
Short summary
Short summary
In this study, the warming degradation mechanism of ice-filled joints is revealed, and the effect of temperature, normal stress, shear rate and joint opening on the shear strength of rough ice-filled joints is investigated. The shear rupture modes include shear cracking of joint ice and debonding of the ice–rock interface, which is related to the above factors. The bonding strength of the ice–rock interface is larger than the shear strength of joint ice when the temperature is below −1 ℃.
Yifeng Wang, Robert G. Way, Jordan Beer, Anika Forget, Rosamond Tutton, and Meredith C. Purcell
The Cryosphere, 17, 63–78, https://doi.org/10.5194/tc-17-63-2023, https://doi.org/10.5194/tc-17-63-2023, 2023
Short summary
Short summary
Peatland permafrost in northeastern Canada has been misrepresented by models, leading to significant underestimates of peatland permafrost and permafrost distribution along the Labrador Sea coastline. Our multi-stage, multi-mapper, consensus-based inventorying process, supported by field- and imagery-based validation efforts, identifies peatland permafrost complexes all along the coast. The highest density of complexes is found to the south of the current sporadic discontinuous permafrost limit.
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040, https://doi.org/10.5194/tc-16-5023-2022, https://doi.org/10.5194/tc-16-5023-2022, 2022
Short summary
Short summary
This study used the sine-wave exponential model and long-term water stable isotopic data to estimate water mean residence time (MRT) and its influencing factors in a high-altitude permafrost catchment (5300 m a.s.l.) in the central Tibetan Plateau (TP). MRT for stream and supra-permafrost water was estimated at 100 and 255 d, respectively. Climate and vegetation factors affected the MRT of stream and supra-permafrost water mainly by changing the thickness of the permafrost active layer.
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere, 16, 2701–2708, https://doi.org/10.5194/tc-16-2701-2022, https://doi.org/10.5194/tc-16-2701-2022, 2022
Short summary
Short summary
We implemented a new multi-layer snow scheme in the land surface scheme of ERA5-Land with revised snow densification parameterizations. The revised HTESSEL improved the representation of soil temperature in permafrost regions compared to ERA5-Land; in particular, warm bias in winter was significantly reduced, and the resulting modeled near-surface permafrost extent was improved.
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere, 16, 2025–2050, https://doi.org/10.5194/tc-16-2025-2022, https://doi.org/10.5194/tc-16-2025-2022, 2022
Short summary
Short summary
We have investigated a long-term record of ground vibrations, recorded by a seismic array installed in Adventdalen, Svalbard. This record contains a large number of
frost quakes, a type of ground shaking that can be produced by cracks that form as the ground cools rapidly. We use underground temperatures measured in a nearby borehole to model forces of thermal expansion and contraction that can cause these cracks. We also use the seismic measurements to estimate where these cracks occurred.
Hongwei Liu, Pooneh Maghoul, and Ahmed Shalaby
The Cryosphere, 16, 1157–1180, https://doi.org/10.5194/tc-16-1157-2022, https://doi.org/10.5194/tc-16-1157-2022, 2022
Short summary
Short summary
The knowledge of physical and mechanical properties of permafrost and its location is critical for the management of permafrost-related geohazards. Here, we developed a hybrid inverse and multiphase poromechanical approach to quantitatively estimate the physical and mechanical properties of a permafrost site. Our study demonstrates the potential of surface wave techniques coupled with our proposed data-processing algorithm to characterize a permafrost site more accurately.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, Helene Meling Stemland, and Tor Arne Johansen
The Cryosphere, 15, 283–302, https://doi.org/10.5194/tc-15-283-2021, https://doi.org/10.5194/tc-15-283-2021, 2021
Short summary
Short summary
A series of unusual ground motion signatures were identified in geophone recordings at a frost polygon site in Adventdalen on Svalbard. By analysing where the ground motion originated in time and space, we are able to classify them as cryoseisms, also known as frost quakes, a ground-cracking phenomenon that occurs as a result of freezing processes. The waves travelling through the ground produced by these frost quakes also allow us to measure the structure of the permafrost in the near surface.
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020, https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary
Short summary
A sub-grid representation of excess ground ice in the Community Land Model (CLM) is developed as novel progress in modeling permafrost thaw and its impacts under the warming climate. The modeled permafrost degradation with sub-grid excess ice follows the pathway that continuous permafrost transforms into discontinuous permafrost before it disappears, including surface subsidence and talik formation, which are highly permafrost-relevant landscape changes excluded from most land models.
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Short summary
This study reports that ERA5-Land (ERA5L) soil temperature bias in permafrost regions correlates with the bias in air temperature and with maximum snow height. While global reanalyses are important drivers for permafrost study, ERA5L soil data are not well suited for directly informing permafrost research decision making due to their warm bias in winter. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.
Ji-Woong Yang, Jinho Ahn, Go Iwahana, Sangyoung Han, Kyungmin Kim, and Alexander Fedorov
The Cryosphere, 14, 1311–1324, https://doi.org/10.5194/tc-14-1311-2020, https://doi.org/10.5194/tc-14-1311-2020, 2020
Short summary
Short summary
Thawing permafrost may lead to decomposition of soil carbon and nitrogen and emission of greenhouse gases. Thus, methane and nitrous oxide compositions in ground ice may provide information on their production mechanisms in permafrost. We test conventional wet and dry extraction methods. We find that both methods extract gas from the easily extractable parts of the ice and yield similar results for mixing ratios. However, both techniques are unable to fully extract gas from the ice.
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Short summary
We present a long-term multisite electrical resistivity tomography monitoring network (more than 1000 datasets recorded from six mountain permafrost sites). Despite harsh and remote measurement conditions, the datasets are of good quality and show consistent spatio-temporal variations yielding significant added value to point-scale borehole information. Observed long-term trends are similar for all permafrost sites, showing ongoing permafrost thaw and ground ice loss due to climatic conditions.
Jing Tao, Randal D. Koster, Rolf H. Reichle, Barton A. Forman, Yuan Xue, Richard H. Chen, and Mahta Moghaddam
The Cryosphere, 13, 2087–2110, https://doi.org/10.5194/tc-13-2087-2019, https://doi.org/10.5194/tc-13-2087-2019, 2019
Short summary
Short summary
The active layer thickness (ALT) in middle-to-high northern latitudes from 1980 to 2017 was produced at 81 km2 resolution by a global land surface model (NASA's CLSM) with forcing fields from a reanalysis data set, MERRA-2. The simulated permafrost distribution and ALTs agree reasonably well with an observation-based map and in situ measurements, respectively. The accumulated above-freezing air temperature and maximum snow water equivalent explain most of the year-to-year variability of ALT.
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
H. Brendan O'Neill, Stephen A. Wolfe, and Caroline Duchesne
The Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019, https://doi.org/10.5194/tc-13-753-2019, 2019
Short summary
Short summary
In this paper, we present new models to depict ground ice in permafrost in Canada, incorporating knowledge from recent studies. The model outputs we present reproduce observed regional ground ice conditions and are generally comparable with previous mapping. However, our results are more detailed and more accurately reflect ground ice conditions in many regions. The new mapping is an important step toward understanding terrain response to permafrost degradation in Canada.
Stephanie Coulombe, Daniel Fortier, Denis Lacelle, Mikhail Kanevskiy, and Yuri Shur
The Cryosphere, 13, 97–111, https://doi.org/10.5194/tc-13-97-2019, https://doi.org/10.5194/tc-13-97-2019, 2019
Short summary
Short summary
This study provides a detailed description of relict glacier ice preserved in the permafrost of Bylot Island (Nunavut). We demonstrate that the 18O composition (-34.0 0.4 ‰) of the ice is consistent with the late Pleistocene age ice in the Barnes Ice Cap. As most of the glaciated Arctic landscapes are still strongly determined by their glacial legacy, the melting of these large ice bodies could have significant impacts on permafrost geosystem landscape dynamics and ecosystems.
Robert G. Way, Antoni G. Lewkowicz, and Yu Zhang
The Cryosphere, 12, 2667–2688, https://doi.org/10.5194/tc-12-2667-2018, https://doi.org/10.5194/tc-12-2667-2018, 2018
Short summary
Short summary
Isolated patches of permafrost in southeast Labrador are among the southernmost lowland permafrost features in Canada. Local characteristics at six sites were investigated from Cartwright, NL (~ 54° N) to Blanc-Sablon, QC (~ 51° N). Annual ground temperatures varied from −0.7 °C to −2.3 °C with permafrost thicknesses of 1.7–12 m. Ground temperatures modelled for two sites showed permafrost disappearing at the southern site by 2060 and persistence beyond 2100 at the northern site only for RCP2.6.
Zeze Ran and Gengnian Liu
The Cryosphere, 12, 2327–2340, https://doi.org/10.5194/tc-12-2327-2018, https://doi.org/10.5194/tc-12-2327-2018, 2018
Short summary
Short summary
This article provides the first rock glacier inventory of Daxue Shan, south- eastern Tibetan Plateau. This study provides important data for exploring the relation between maritime periglacial environments and the development of rock glaciers on the south-eastern Tibetan Plateau (TP). It may also highlight the characteristics typical of rock glaciers found in a maritime setting.
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary
Short summary
We investigate the relationship between ice wedge polygon topography and near-surface ground temperature using a combination of field work and numerical modeling. We analyze a year-long record of ground temperature across a low-centered polygon, then demonstrate that lower rims and deeper troughs promote warmer conditions in the ice wedge in winter. This finding implies that ice wedge cracking and growth, which are driven by cold conditions, can be impeded by rim erosion or trough subsidence.
Bing Gao, Dawen Yang, Yue Qin, Yuhan Wang, Hongyi Li, Yanlin Zhang, and Tingjun Zhang
The Cryosphere, 12, 657–673, https://doi.org/10.5194/tc-12-657-2018, https://doi.org/10.5194/tc-12-657-2018, 2018
Short summary
Short summary
This study developed a distributed hydrological model coupled with cryospherical processes and applied it in order to simulate the long-term change of frozen ground and its effect on hydrology in the upper Heihe basin. Results showed that the permafrost area shrank by 8.8%, and the frozen depth of seasonally frozen ground decreased. Runoff in cold seasons and annual liquid soil moisture increased due to frozen soils change. Groundwater recharge was enhanced due to the degradation of permafrost.
Youhua Ran, Xin Li, and Guodong Cheng
The Cryosphere, 12, 595–608, https://doi.org/10.5194/tc-12-595-2018, https://doi.org/10.5194/tc-12-595-2018, 2018
Short summary
Short summary
Approximately 88 % of the permafrost area in the 1960s has been thermally degraded in the past half century over the Qinghai–Tibetan Plateau. The mean elevations of the very cold, cold, cool, warm, very warm, and likely thawing permafrost areas increased by 88 m, 97 m, 155 m, 185 m, 161 m, and 250 m, respectively. This degradation may lead to increases in risks to infrastructure, flood, reductions in ecosystem resilience, and positive climate feedback.
Lin Liu and Kristine M. Larson
The Cryosphere, 12, 477–489, https://doi.org/10.5194/tc-12-477-2018, https://doi.org/10.5194/tc-12-477-2018, 2018
Short summary
Short summary
We demonstrate the use of reflected GPS signals to measure elevation changes over a permafrost area in northern Alaska. For the first time, we construct a daily-sampled time series of elevation changes over 12 summers. Our results show regular thaw subsidence within each summer and a secular subsidence trend of 0.3 cm per year. This method promises a new way to utilize GPS data in cold regions for studying frozen ground consistently and sustainably over a long time.
Yonghong Yi, John S. Kimball, Richard H. Chen, Mahta Moghaddam, Rolf H. Reichle, Umakant Mishra, Donatella Zona, and Walter C. Oechel
The Cryosphere, 12, 145–161, https://doi.org/10.5194/tc-12-145-2018, https://doi.org/10.5194/tc-12-145-2018, 2018
Short summary
Short summary
An important feature of the Arctic is large spatial heterogeneity in active layer conditions. We developed a modeling framework integrating airborne longwave radar and satellite data to investigate active layer thickness (ALT) sensitivity to landscape heterogeneity in Alaska. We find uncertainty in spatial and vertical distribution of soil organic carbon is the largest factor affecting ALT accuracy. Advances in remote sensing of soil conditions will enable more accurate ALT predictions.
Benjamin Mewes, Christin Hilbich, Reynald Delaloye, and Christian Hauck
The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, https://doi.org/10.5194/tc-11-2957-2017, 2017
Defu Zou, Lin Zhao, Yu Sheng, Ji Chen, Guojie Hu, Tonghua Wu, Jichun Wu, Changwei Xie, Xiaodong Wu, Qiangqiang Pang, Wu Wang, Erji Du, Wangping Li, Guangyue Liu, Jing Li, Yanhui Qin, Yongping Qiao, Zhiwei Wang, Jianzong Shi, and Guodong Cheng
The Cryosphere, 11, 2527–2542, https://doi.org/10.5194/tc-11-2527-2017, https://doi.org/10.5194/tc-11-2527-2017, 2017
Short summary
Short summary
The area and distribution of permafrost on the Tibetan Plateau are unclear and controversial. This paper generated a benchmark map based on the modified remote sensing products and validated it using ground-based data sets. Compared with two existing maps, the new map performed better and showed that permafrost covered areas of 1.06 × 106 km2. The results provide more detailed information on the permafrost distribution and basic data for use in future research on the Tibetan Plateau permafrost.
Jorien E. Vonk, Tommaso Tesi, Lisa Bröder, Henry Holmstrand, Gustaf Hugelius, August Andersson, Oleg Dudarev, Igor Semiletov, and Örjan Gustafsson
The Cryosphere, 11, 1879–1895, https://doi.org/10.5194/tc-11-1879-2017, https://doi.org/10.5194/tc-11-1879-2017, 2017
Florence Magnin, Jean-Yves Josnin, Ludovic Ravanel, Julien Pergaud, Benjamin Pohl, and Philip Deline
The Cryosphere, 11, 1813–1834, https://doi.org/10.5194/tc-11-1813-2017, https://doi.org/10.5194/tc-11-1813-2017, 2017
Short summary
Short summary
Permafrost degradation in high mountain rock walls provokes destabilisation, constituting a threat for human activities. In the Mont Blanc massif, more than 700 rockfalls have been inventoried in recent years (2003, 2007–2015). Understanding permafrost evolution is thus crucial to sustain this densely populated area. This study investigates the changes in rock wall permafrost from 1850 to the recent period and possible optimistic or pessimistic evolutions during the 21st century.
Gonçalo Vieira, Carla Mora, and Ali Faleh
The Cryosphere, 11, 1691–1705, https://doi.org/10.5194/tc-11-1691-2017, https://doi.org/10.5194/tc-11-1691-2017, 2017
Short summary
Short summary
The Toubkal is the highest massif in North Africa (4167 m). Landforms and deposits above 3000 m show the effects of frost action in the present-day geomorphological dynamics, but data on ground temperatures were lacking. In this study ground surface temperature data measured across an altitudinal transect are presented and analysed for the first time. The highlight is the possible occurrence of permafrost at an elevation of 3800 m, which may be of high ecological and hydrological significance.
Sebastian Westermann, Maria Peter, Moritz Langer, Georg Schwamborn, Lutz Schirrmeister, Bernd Etzelmüller, and Julia Boike
The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, https://doi.org/10.5194/tc-11-1441-2017, 2017
Short summary
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
Gautier Davesne, Daniel Fortier, Florent Domine, and James T. Gray
The Cryosphere, 11, 1351–1370, https://doi.org/10.5194/tc-11-1351-2017, https://doi.org/10.5194/tc-11-1351-2017, 2017
Short summary
Short summary
This study presents data from Mont Jacques-Cartier, the highest summit in the Appalachians of south-eastern Canada, to demonstrate that the occurrence of contemporary permafrost body is associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. This study is an important preliminary step in modelling the regional spatial distribution of permafrost on the highest summits in eastern North America.
Jonas Wicky and Christian Hauck
The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, https://doi.org/10.5194/tc-11-1311-2017, 2017
Short summary
Short summary
Talus slopes are a widespread geomorphic feature, which may show permafrost conditions even at low elevation due to cold microclimates induced by a gravity-driven internal air circulation. We show for the first time a numerical simulation of this internal air circulation of a field-scale talus slope. Results indicate that convective heat transfer leads to a pronounced ground cooling in the lower part of the talus slope favoring the persistence of permafrost.
Graham L. Gilbert, Stefanie Cable, Christine Thiel, Hanne H. Christiansen, and Bo Elberling
The Cryosphere, 11, 1265–1282, https://doi.org/10.5194/tc-11-1265-2017, https://doi.org/10.5194/tc-11-1265-2017, 2017
Short summary
Short summary
We reconstruct the Holocene development of the Zackenberg River delta (northeast Greenland) using a combination of sedimentology, cryostratigraphy, and geochronology. We distinguish four major depositional environments and identify three cryofacies. We apply the principles of cryostratigraphy to infer the aggradational history of permafrost. This paper contains an archive of ground ice in epigenetic permafrost in northeast Greenland.
Xiaoqing Peng, Tingjun Zhang, Oliver W. Frauenfeld, Kang Wang, Bin Cao, Xinyue Zhong, Hang Su, and Cuicui Mu
The Cryosphere, 11, 1059–1073, https://doi.org/10.5194/tc-11-1059-2017, https://doi.org/10.5194/tc-11-1059-2017, 2017
Short summary
Short summary
Previous research has paid significant attention to permafrost, e.g. active layer thickness, soil temperature, area extent, and associated degradation leading to other changes. However, less focus has been given to seasonally frozen ground and vast area extent. We combined data from more than 800 observation stations, as well as gridded data, to investigate soil freeze depth across China. The results indicate that soil freeze depth decreases with climate warming.
Carina Schuh, Andrew Frampton, and Hanne Hvidtfeldt Christiansen
The Cryosphere, 11, 635–651, https://doi.org/10.5194/tc-11-635-2017, https://doi.org/10.5194/tc-11-635-2017, 2017
Short summary
Short summary
This study investigates how soil moisture retention characteristics impact ice and moisture redistribution, heat transport and active layer thickness under permafrost conditions. This is relevant for understanding how climate change interacts with permafrost, which is important because there is much stored carbon in permafrost, which may be released to the atmosphere as permafrost degrades and may then act to further enhance climate warming.
Stephan Gruber, Renate Fleiner, Emilie Guegan, Prajjwal Panday, Marc-Olivier Schmid, Dorothea Stumm, Philippus Wester, Yinsheng Zhang, and Lin Zhao
The Cryosphere, 11, 81–99, https://doi.org/10.5194/tc-11-81-2017, https://doi.org/10.5194/tc-11-81-2017, 2017
Short summary
Short summary
We review what can be inferred about permafrost in the mountains of the Hindu Kush Himalaya region. This is important because the area of permafrost exceeds that of glaciers in this region. Climate change will produce diverse permafrost-related impacts on vegetation, water quality, geohazards, and livelihoods. To mitigate this, a better understanding of high-elevation permafrost in subtropical latitudes as well as the pathways connecting environmental change and human livelihoods, is needed.
Amund F. Borge, Sebastian Westermann, Ingvild Solheim, and Bernd Etzelmüller
The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, https://doi.org/10.5194/tc-11-1-2017, 2017
Short summary
Short summary
Palsas and peat plateaus are permafrost landforms in subarctic mires which constitute sensitive ecosystems with strong significance for vegetation, wildlife, hydrology and carbon cycle. We have systematically mapped the occurrence of palsas and peat plateaus in northern Norway by interpretation of aerial images from the 1950s until today. The results show that about half of the area of palsas and peat plateaus has disappeared due to lateral erosion and melting of ground ice in the last 50 years.
Joan Govaerts, Koen Beerten, and Johan ten Veen
The Cryosphere, 10, 2907–2922, https://doi.org/10.5194/tc-10-2907-2016, https://doi.org/10.5194/tc-10-2907-2016, 2016
Short summary
Short summary
The Rupelian Clay in the Netherlands is currently the subject of a feasibility study with respect to the storage of radioactive waste in the Netherlands (OPERA-project). Many features need to be considered in the assessment of the long-term evolution of the natural environment surrounding a geological waste disposal facility. One of these is permafrost development since it may have an impact on various components of the disposal system.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
Cited articles
Aldrich, J. and Nelson, F.: Linear probability, logit, and probit models, Sage Publications, Inc., 1984.
Allen, S., Gruber, S., and Owens, I.: Exploring steep bedrock permafrost and its relationship with recent slope failures in the Southern Alps of New Zealand, Permafrost and Periglacial Processes, 20, 345–356, https://doi.org/10.1002/ppp.658, 2009.
Az{ó}car, G. and Brenning, A.: Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27–33 S), Permafrost and Periglacial Processes, 21, 42–53, https://doi.org/10.1002/ppp.669, 2010.
BAFU: Hinweiskarte der potentiellen Permafrostverbreitung in der Schweiz, Bundesamt für Umwelt (BAFU)/Swiss Federal Office for the Environment, 2005.
Barsch, D.: Active rock glaciers as indicators for discontinuous alpine permafrost. An example from the Swiss Alps, in: Proceedings of the 3th International Conference on Permafrost. Edmonton, Canada, 10–13 July, vol. 1, pp. 349–352, 1978.
Barsch, D.: Rock Glaciers: Indicators for the present and former geoecology in high mountain environments, Springer-Verlag: Berlin, 1996.
Boeckli, L., Gruber, S., and Brenning, A.: Estimated permafrost distribution in the European Alps, The Cryosphere, in preparation, 2012.
Brenning, A.: Climatic and geomorphological controls of rock glaciers in the Andes of Central Chile: Combining statistical modelling and field mapping, Ph.D. thesis, Humboldt-Universität Berlin, 2005.
Brenning, A.: Statistical geocomputing combining R and SAGA: The Example of Landslide susceptibility Analysis with generalized additive Models, SAGA-Seconds Out, 19, 23–32, 2008.
Brenning, A., Gruber, S., and Hoelzle, M.: Sampling and statistical analyses of BTS measurements, Permafrost and Periglacial Processes, 16, 383–393, https://doi.org/10.1002/ppp.541, 2005.
Center, U.: GTOPO30 documentation (README file), Land Processes Distributed Active Archive Center. Available in: http://edcdaac.usgs.gov/GTOPO30/README.asp, 1997.
Corripio, J.: Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain, International Journal of Geographical Information Science, 17, 1–23, 2003.
Cremonese, E., Gruber, S., Phillips, M., Pogliotti, P., Boeckli, L., Noetzli, J., Suter, C., Bodin, X., Crepaz, A., Kellerer-Pirklbauer, A., Lang, K., Letey, S., Mair, V., Morra di Cella, U., Ravanel, L., Scapozza, C., Seppi, R., and Zischg, A.: Brief Communication: "An inventory of permafrost evidence for the European Alps", The Cryosphere, 5, 651–657, https://doi.org/10.5194/tc-5-651-2011, 2011.
Delaloye, R., Reynard, E., and Wenker, L.: Rock glaciers, Entremont, Valais, Switzerland, Boulder CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, 1998.
Ebohon, B. and Schrott, L.: Modeling mountain permafrost distribution: A new map of Austria, in: Proceedings of the 9th International Conference on Permafrost. Fairbanks, Alaska, 30 June–3 July, pp. 397–402, 2008.
Efthymiadis, D., Jones, P., Briffa, K., Auer, I., Böhm, R., Schöner, W., Frei, C., and Schmidli, J.: Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800–2003, J. Geophys. Res., 110, D01105, https://doi.org/10.1029/2005JD006120, 2006.
Etzelmüller, B., Heggem, E., Sharkhuu, N., Frauenfelder, R., Kääb, A., and Goulden, C.: Mountain permafrost distribution modelling using a multi-criteria approach in the Hövsgöl area, northern Mongolia, Permafrost and Periglacial Processes, 17, 91–104, https://doi.org/10.1002/ppp.554, 2006.
Etzelmüller, B., Farbrot, H., Gudhmundsson, A., Humlum, O., Tveito, O., and Björnsson, H.: The regional distribution of mountain permafrost in Iceland, Permafrost and Periglacial Processes, 18, 185–199, https://doi.org/10.1002/ppp.583, 2007.
Frauenfelder, R.: Rock glaciers, Fletschhorn Area, Valais, Switzerland, International Permafrost Association, Data and Information Working Group, NSIDC, University of Colorado at Boulder, 1998.
Frauenfelder, R.: Regional-scale modelling of the occurrence and dynamics of rockglaciers and the distribution of paleopermafrost, PhD thesis, Geographisches Institut der Universität Zürich, 2005.
Frauenfelder, R., Allgöwer, B., Haeberli, W., and Hoelzle, M.: Permafrost investigations with GIS – a case study in the Fletschhorn area, Wallis, Swiss Alps, in: Proceedings of the 7th International Conference on Permafrost. Nordicana, Yellowknife, Canada, pp. 551–556, 1998.
Frauenfelder, R., Haeberli, W., Hoelzle, M., and Maisch, M.: Using relict rockglaciers in GIS-based modelling to reconstruct Younger Dryas permafrost distribution patterns in the Err-Julier area, Swiss Alps, Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 55, 195–202, 2001.
Frey, H. and Paul, F.: On the suitability of the SRTM DEM and ASTER GDEM for the compilation of topographic parameters in glacier inventories, International Journal of Applied Earth Observation and Geoinformation, https://doi.org/10.1016/j.jag.2011.09.020, \urlprefixhttp://www.sciencedirect.com/science/article/pii/S0303243411001437, 2011.
Gelman, A. and Hill, J.: Data analysis using regression and multilevel/hierarchical models, vol. 648, Cambridge University Press: Cambridge, UK, 2007.
Gotway, C. A. and Young, L. J.: Combining Incompatible Spatial Data, Journal of the American Statistical Association, 97, pp. 632–648, \urlprefixhttp://www.jstor.org/stable/3085677, 2002.
Gruber, S. and Haeberli, W.: Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res., 112, F02S18, https://doi.org/10.1029/2006JF000547, 2007.
Gruber, S. and Hoelzle, M.: Statistical modelling of mountain permafrost distribution: local calibration and incorporation of remotely sensed data, Permafrost Periglacial Processes, 12, 69–77, https://doi.org/10.1002/ppp.374, 2001.
Gruber, S., Peter, M., Hoelzle, M., Woodhatch, I., and Haeberli, W.: Surface temperatures in steep Alpine rock faces – a strategy for regional-scale measurement and modelling, in: Proceedings of the 8th International Conference on Permafrost. Zurich, Switzerland, 21–25 July, vol. 1, pp. 325–330, 2003.
Gruber, S., Hoelzle, M., and Haeberli, W.: Rock-wall temperatures in the Alps: modelling their topographic distribution and regional differences, Permafrost and Periglacial Processes, 15, 299–307, https://doi.org/10.1002/ppp.501, 2004.
Haeberli, W.: Die Basis-Temperatur der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen, Zeitschrift für Gletscherkunde und Glazialgeologie, IX/1/2, 221–227, 1973.
Haeberli, W.: Untersuchungen zur Verbreitung von Permafrost zwischen Flüelapass und Piz Grialetsch (Graubünden), Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Zurich, Switzerland, 17, 221 pp, 1975.
Haeberli, W.: Creep of mountain permafrost: internal structure and flow of alpine rock glaciers, Mitteilungen der VAW/ETH Züric, 77, 1985.
Hand, D. J.: Construction and assessment of classification rules, Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester, 1997.
Harris, S. and Pedersen, D.: Thermal regimes beneath coarse blocky materials, Permafrost and Periglacial Processes, 9, 107–120, https://doi.org/10.1002/(SICI)1099-1530(199804/06)9:2<107::AID-PPP277>3.0.CO;2-G, 1998.
Harris, C., Arenson, L. U., Christiansen, H. H., Etzelmüller, B., Frauenfelder, R., Gruber, S., Haeberli, W., Hauck, C., Hölzle, M., Humlum, O., Isaksen, K., Kääb, A., Kern-Lütschg, M. A., Lehning, M., Matsuoka, N., Murton, J. B., Nötzli, J., Phillips, M., Ross, N., Seppälä, M., Springman, S. M., and Mühll, D. V.: Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses, Earth-Science Rev., 92, 117–171, https://doi.org/10.1016/j.earscirev.2008.12.002, 2009.
Hasler, A., Gruber, S., and Haeberli, W.: Temperature variability and offset in steep alpine rock and ice faces, The Cryosphere, 5, 977–988, https://doi.org/10.5194/tc-5-977-2011, 2011.
Hastie, T. and Tibshirani, R.: Generalized additive models, Chapman & Hall/CRC, 1990.
Hayakawa, Y., Oguchi, T., and Lin, Z.: Comparison of new and existing global digital elevation models: ASTER G-DEM and SRTM-3, Geophys. Res. Lett., 35, L17404, https://doi.org/10.1029/2008GL035036, 2008.
Heggem, E., Juliussen, H., and Etzelmüller, B.: Mountain permafrost in central-eastern Norway, Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 59, 94–108, https://doi.org/10.1080/00291950510038377, 2005.
Hiebl, J., Auer, I., Böhm, R., Schöner, W., Maugeri, M., Lentini, G., Spinoni, J., Brunetti, M., Nanni, T., Perčec Tadić, M., Bihari, Z., Dolinar, M., and Müller-Westermeier, G.: A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region, Meteorologische Zeitschrift, 18, 507–530, https://doi.org/10.1127/0941-2948/2009/0403, 2009.
Hoelzle, M.: Permafrost occurrence from BTS measurements and climatic parameters in the Eastern Swiss Alps, Permafrost and Periglacial Processes, 3, 143–147, https://doi.org/10.1002/ppp.3430030212, 1992.
Hoelzle, M.: Rock glaciers, Upper Engadin, Switzerland. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, 1998.
Hoelzle, M. and Gruber, S.: Borehole and ground surface temperatures and their relationship to meteorological conditions in the Swiss Alps, in: Proceedings of the 9th International Conference on Permafrost. Fairbanks, Alaska, 30 June–3 July, pp. 723–728, 2008.
Hoelzle, M., Mittaz, C., Etzelmüller, B., and Haeberli, W.: Surface energy fluxes and distribution models of permafrost in European mountain areas: an overview of current developments, Permafrost and Periglacial Processes, 12, 53–68, https://doi.org/10.1002/ppp.385, 2001.
Hoelzle, M., Haeberli, W., and Stocker-Mittaz, C.: Miniature ground temperature data logger measurements 2000–2002 in the Murt{è}l-Corvatsch area, Eastern Swiss Alps, in: Proceedings of the 8th International Conference on Permafrost. Zurich, Switzerland, 21–25 July, pp. 419–424, 2003.
Hosmer, D. and Lemeshow, S.: Applied logistic regression, Wiley-Interscience, New York, 2000.
Hughes, P. D., Gibbard, P. L., and Woodward, J. C.: Relict rock glaciers as indicators of Mediterranean palaeoclimate during the Last Glacial Maximum (Late Würmian) in northwest Greece, J. Quaternary Science, 18, 431–440, https://doi.org/10.1002/jqs.764, 2003.
Hurlbert, S.: Pseudoreplication and the design of ecological field experiments, Ecological monographs, 54, 187–211, 1984.
Ikeda, A. and Matsuoka, N.: Degradation of talus-derived rock glaciers in the Upper Engadin, Swiss Alps, Permafrost and Periglacial Processes, 13, 145–161, https://doi.org/10.1002/ppp.413, 2002.
Imhof, M.: Modelling and verification of the permafrost distribution in the Bernese Alps, Switzerland, Permafrost and Periglacial Processes, 17, 267–280, https://doi.org/10.1002/(SICI)1099-1530(199609)7:3<267::AID-PPP221>3.0.CO;2-L, 1996.
Imhof, M.: Rock glaciers, Bernese Alps, western Switzerland, Boulder CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, 1998.
Janke, J. R.: The occurrence of alpine permafrost in the Front Range of Colorado, Geomorphology, 67, 375–389, https://doi.org/10.1016/j.geomorph.2004.11.005, 2004.
Keller, F.: Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO, Permafrost and Periglacial Processes, 3, 133–138, https://doi.org/10.1002/ppp.3430030210, 1992.
Keller, F., Frauenfelder, R., Hoelzle, M., Kneisel, C., Lugon, R., Phillips, M., Reynard, E., and Wenker, L.: Permafrost map of Switzerland, in: Proceedings of the 7th International Conference on Permafrost. Nordicana, Yellowknife, Canada, 23–27 June, pp. 557–562, 1998.
King, L.: Zonation and ecology of high mountain permafrost in Scandinavia, Geografiska Annaler. Series A. Physical Geography, 68, 131–139, 1986.
Lambiel, C. and Reynard, E.: Regional modelling of present, past and future potential distribution of discontinuous permafrost based on a rock glacier inventory in the Bagnes–He{é re{é} mence area (Western Swiss Alps)}, Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 55, 219–223, 2001.
Lewkowicz, A. and Bonnaventure, P.: Interchangeability of mountain permafrost probability models, northwest Canada, Permafrost and Periglacial Processes, 19, 49–62, https://doi.org/10.1002/ppp.612, 2008.
Lewkowicz, A. G. and Ednie, M.: Probability mapping of mountain permafrost using the BTS method, Wolf Creek, Yukon Territory, Canada, Permafrost and Periglac. Process, 15, 67–80, https://doi.org/10.1002/ppp.480, 2004.
Lilleoren, K. and Etzelmüller, B.: A regianl inventory of rock glaciers and ice-cored morains in Norway, Geografiska Annaler: Series A, Physical Geography, 93, 175–191, https://doi.org/10.1111/j.1468-0459.2011.00430.x, 2011.
MeteoSchweiz: Standardnormwerte 1961–1990: Lufttemperatur 2m, Schweiz, \urlprefixhttp://www.meteoschweiz.admin.ch/web/de/klima/klima_schweiz/tabellen.Par.0004.DownloadFile.ext.tmp/temperaturmittel.pdf, 2010.
Noetzli, J., Hilbich, C., Hoelzle, M., Hauck, C., Gruber, S., and Krauer, M.: Comparison of transient 2D temperature fields with time-lapse electrical resistivity data at the Schilthorn Crest, Switzerland, in: Proceedings of the 9th International Conference on Permafrost. Fairbanks, Alaska, 30 June–3 July, pp. 1293–1298, 2008.
Nyenhuis, M., Hoelzle, M., and Dikau, R.: Rock glacier mapping and permafrost distribution modelling in the Turtmanntal, Valais, Switzerland, Zeitschrift für Geomorphologie, 49, 275–292, 2005.
Paul, F., Barry, R., Cogley, J., Frey, H., Haeberli, W., Ohmura, A., Ommanney, C., Raup, B., Rivera, A., and Zemp, M.: Recommendations for the compilation of glacier inventory data from digital sources, Ann. Glaciol., 50, 119–126, https://doi.org/10.3189/172756410790595778, 2009.
PERMOS: Permafrost in Switzerland 2006/2007 and 2007/2008, edited by: Noetzli, J. and Vonder Muehll, D., Glaciological Report (Permafrost) No. 8/9 of the Cryospheric Commission of the Swiss Academy of Sciences, Zurich, Switzerland, p. 68 pp., 2010.
Pogliotti, P.: Analisi morfostrutturale e caratterizzazione termica di ammassi rocciosi recentemente deglaciati, Master's thesis, Earth Science Department, University of Turin, Italy, 2006.
Pogliotti, P., Cremonese, E., di Cella, U. M., Gruber, S., and Giardino, M.: Thermal diffusivity variability in alpine permafrost rock walls, in: Proceedings of the 9th International Conference on Permafrost. Fairbanks, Alaska, 30 June–3 July, vol. 2, pp. 1427–1432, 2008.
Reynard, E. and Morand, S.: Rock glacier inventory, Printse Valley, Valais, Switzerland, Boulder CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, 1998.
Riedlinger, T. and Kneisel, C.: Interaktionen von Permafrost und Ausaperung im Gletschervorfeld des Vadret da Rosatsch, Oberengadin, Schweiz., Trierer Geographische Studien, 23, 147–164, 2000.
Riseborough, D., Shiklomanov, N., Etzelmüller, B., Gruber, S., and Marchenko, S.: Recent advances in permafrost modeling, Permafrost and Periglacial Processes, 19, 137–156,, 2008.
Roer, I. and Nyenhuis, M.: Rockglacier activity studies on a regional scale: comparison of geomorphological mapping and photogrammetric monitoring, Earth Surface Processes and Landforms, 32, 1747–1758, https://doi.org/10.1002/esp.1496, 2007.
Schoeneich, P., Lambiel, C., and Wenker, L.: Rock glaciers, Prealps, Vaud, Switzerland, Boulder CO: National Snow and Ice Data Center/World Data Center for Glaciology. Digital Media, 1998.
Stocker-Mittaz, C., Hoelzle, M., and Haeberli, W.: Modelling alpine permafrost distribution based on energy-balance data: a first step, Permafrost Periglacial Processes, 13, 271–282, https://doi.org/10.1002/ppp.426, 2002.
USGS, METI, and NASA: ASTER Global DEM Validation, Summary Report, p. 28 pp., \urlprefixhttp://www.ersdac.or.jp/GDEM/E/image/ASTERGDEM_ValidationSummaryReport_Ver1.pdf, last access March 2011, 2009.
van Everdingen, R. O.: Multi-Language Glossary of Permafrost and Related Ground-Ice Terms, 25 International Permafrost Association, University of Calgary, 1998.
Venables, W. and Ripley, B.: Modern applied statistics with S, Springer Verlag, New York, 2002.
Wilson, J. and Gallant, J.: Terrain analysis: principles and applications, John Wiley & Sons, New York, 2000.