Articles | Volume 5, issue 3
https://doi.org/10.5194/tc-5-589-2011
https://doi.org/10.5194/tc-5-589-2011
Research article
 | 
22 Jul 2011
Research article |  | 22 Jul 2011

Dust from the dark region in the western ablation zone of the Greenland ice sheet

I. G. M. Wientjes, R. S. W. Van de Wal, G. J. Reichart, A. Sluijs, and J. Oerlemans

Related authors

Present-day mass loss rates are a precursor for West Antarctic Ice Sheet collapse
Tim van den Akker, William H. Lipscomb, Gunter R. Leguy, Jorjo Bernales, Constantijn Berends, Willem Jan van de Berg, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2024-851,https://doi.org/10.5194/egusphere-2024-851, 2024
Short summary
The Utrecht Finite Volume Ice-Sheet Model (UFEMISM version 2.0) – part 1: description and idealised experiments
Constantijn J. Berends, Victor Azizi, Jorge Bernales, and Roderik S. W. van de Wal
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-5,https://doi.org/10.5194/gmd-2024-5, 2024
Preprint under review for GMD
Short summary
Paleogene Earth perturbations in the US Atlantic Coastal Plain (PEP-US): coring transects of hyperthermals to understand past carbon injections and ecosystem responses
Marci M. Robinson, Kenneth G. Miller, Tali L. Babila, Timothy J. Bralower, James V. Browning, Marlow J. Cramwinckel, Monika Doubrawa, Gavin L. Foster, Megan K. Fung, Sean Kinney, Maria Makarova, Peter P. McLaughlin, Paul N. Pearson, Ursula Röhl, Morgan F. Schaller, Jean M. Self-Trail, Appy Sluijs, Thomas Westerhold, James D. Wright, and James C. Zachos
Sci. Dril., 33, 47–65, https://doi.org/10.5194/sd-33-47-2024,https://doi.org/10.5194/sd-33-47-2024, 2024
Short summary
Miocene Antarctic Ice Sheet area adapts significantly faster than volume to CO2-induced climate change
Lennert B. Stap, Constantijn J. Berends, and Roderik S. W. van de Wal
Clim. Past, 20, 257–266, https://doi.org/10.5194/cp-20-257-2024,https://doi.org/10.5194/cp-20-257-2024, 2024
Short summary
Resilient Antarctic monsoonal climate prevented ice growth during the Eocene
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024,https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary

Related subject area

Greenland
Mapping the vertical heterogeneity of Greenland's firn from 2011–2019 using airborne radar and laser altimetry
Anja Rutishauser, Kirk M. Scanlan, Baptiste Vandecrux, Nanna B. Karlsson, Nicolas Jullien, Andreas P. Ahlstrøm, Robert S. Fausto, and Penelope How
The Cryosphere, 18, 2455–2472, https://doi.org/10.5194/tc-18-2455-2024,https://doi.org/10.5194/tc-18-2455-2024, 2024
Short summary
Modelling present and future rock wall permafrost distribution in the Sisimiut mountain area, West Greenland
Marco Marcer, Pierre-Allain Duvillard, Soňa Tomaškovičová, Steffen Ringsø Nielsen, André Revil, and Thomas Ingeman-Nielsen
The Cryosphere, 18, 1753–1771, https://doi.org/10.5194/tc-18-1753-2024,https://doi.org/10.5194/tc-18-1753-2024, 2024
Short summary
Subglacial valleys preserved in the highlands of south and east Greenland record restricted ice extent during past warmer climates
Guy J. G. Paxman, Stewart S. R. Jamieson, Aisling M. Dolan, and Michael J. Bentley
The Cryosphere, 18, 1467–1493, https://doi.org/10.5194/tc-18-1467-2024,https://doi.org/10.5194/tc-18-1467-2024, 2024
Short summary
Coupling MAR (Modèle Atmosphérique Régional) with PISM (Parallel Ice Sheet Model) mitigates the positive melt–elevation feedback
Alison Delhasse, Johanna Beckmann, Christoph Kittel, and Xavier Fettweis
The Cryosphere, 18, 633–651, https://doi.org/10.5194/tc-18-633-2024,https://doi.org/10.5194/tc-18-633-2024, 2024
Short summary
Cloud- and ice-albedo feedbacks drive greater Greenland Ice Sheet sensitivity to warming in CMIP6 than in CMIP5
Idunn Aamnes Mostue, Stefan Hofer, Trude Storelvmo, and Xavier Fettweis
The Cryosphere, 18, 475–488, https://doi.org/10.5194/tc-18-475-2024,https://doi.org/10.5194/tc-18-475-2024, 2024
Short summary

Cited articles

Basile, I., Grousset, F. E., Revel, M., Petit, J. R., Biscaye, P. E., and Barkov, N. I.: Patagonian origin of glacial dust deposited in {E}ast {A}ntarctica ({V}ostok and {D}ome {C}) during glacial stages 2, 4 and 6, Earth Planet. Sc. Lett., 146, 573–589, 1997.
Bøggild, C. E., Oerter, H., and Tukiainen, T.: Increased ablation of {W}isconsin ice in eastern north {G}reenland: observations and modelling, Ann. Glaciol., 23, 144–148, 1996.
Bøggild, C. E., Brandt, R. E., Brown, K. J., and Warren, S. G.: The ablation zone in northeast {G}reenland: ice types, albedos and impurities, J. Glaciol., 56, 101–113, 2010.
Bullard, J. E. and Austin, M. J.: Dust generation on a proglacial floodplain, {W}est {G}reenland, Aeolian Res., 3, 43–54, 2011.
Clausen, H. B., Hammer, C. U., Hvidberg, C. S., Dahl-Jensen, D., Steffensen, J. P., Kipfstuhl, J., and Legrand, M.: A comparison of the volcanic records over the past 4000 years from the {G}reenland {I}ce {C}ore {P}roject and {D}ye 3 {G}reenland ice cores, J. Geophys. Res., 102, 26707–26723, 1997.
Download