Articles | Volume 19, issue 1
https://doi.org/10.5194/tc-19-525-2025
https://doi.org/10.5194/tc-19-525-2025
Research article
 | 
31 Jan 2025
Research article |  | 31 Jan 2025

Ice speed of a Greenlandic tidewater glacier modulated by tide, melt, and rain

Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk

Related authors

Thinning leads to calving-style changes at Bowdoin Glacier, Greenland
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021,https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Greenland liquid water discharge from 1958 through 2019
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020,https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Vertical distribution of water mass properties under the influence of subglacial discharge in Bowdoin Fjord, northwestern Greenland
Yoshihiko Ohashi, Shigeru Aoki, Yoshimasa Matsumura, Shin Sugiyama, Naoya Kanna, and Daiki Sakakibara
Ocean Sci., 16, 545–564, https://doi.org/10.5194/os-16-545-2020,https://doi.org/10.5194/os-16-545-2020, 2020
Short summary
Contrasting thinning patterns between lake- and land-terminating glaciers in the Bhutanese Himalaya
Shun Tsutaki, Koji Fujita, Takayuki Nuimura, Akiko Sakai, Shin Sugiyama, Jiro Komori, and Phuntsho Tshering
The Cryosphere, 13, 2733–2750, https://doi.org/10.5194/tc-13-2733-2019,https://doi.org/10.5194/tc-13-2733-2019, 2019
Short summary
Regional modeling of the Shirase drainage basin, East Antarctica: full Stokes vs. shallow ice dynamics
Hakime Seddik, Ralf Greve, Thomas Zwinger, and Shin Sugiyama
The Cryosphere, 11, 2213–2229, https://doi.org/10.5194/tc-11-2213-2017,https://doi.org/10.5194/tc-11-2213-2017, 2017
Short summary

Related subject area

Discipline: Ice sheets | Subject: Greenland
A topographically controlled tipping point for complete Greenland ice sheet melt
Michele Petrini, Meike D. W. Scherrenberg, Laura Muntjewerf, Miren Vizcaino, Raymond Sellevold, Gunter R. Leguy, William H. Lipscomb, and Heiko Goelzer
The Cryosphere, 19, 63–81, https://doi.org/10.5194/tc-19-63-2025,https://doi.org/10.5194/tc-19-63-2025, 2025
Short summary
Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet
Nils Bochow, Anna Poltronieri, and Niklas Boers
The Cryosphere, 18, 5825–5863, https://doi.org/10.5194/tc-18-5825-2024,https://doi.org/10.5194/tc-18-5825-2024, 2024
Short summary
Impacts of differing melt regimes on satellite radar waveforms and elevation retrievals
Alexander C. Ronan, Robert L. Hawley, and Jonathan W. Chipman
The Cryosphere, 18, 5673–5683, https://doi.org/10.5194/tc-18-5673-2024,https://doi.org/10.5194/tc-18-5673-2024, 2024
Short summary
The future of Upernavik Isstrøm through the ISMIP6 framework: sensitivity analysis and Bayesian calibration of ensemble prediction
Eliot Jager, Fabien Gillet-Chaulet, Nicolas Champollion, Romain Millan, Heiko Goelzer, and Jérémie Mouginot
The Cryosphere, 18, 5519–5550, https://doi.org/10.5194/tc-18-5519-2024,https://doi.org/10.5194/tc-18-5519-2024, 2024
Short summary
Brief communication: Storstrømmen glacier, Northeast Greenland, primed for end-of-decade surge
Jonas Kvist Andersen, Rasmus Probst Meyer, Flora Salome Huiban, Mads Lykke Dømgaard, Romain Millan, and Anders Anker Bjørk
EGUsphere, https://doi.org/10.5194/egusphere-2024-3382,https://doi.org/10.5194/egusphere-2024-3382, 2024
Short summary

Cited articles

Anandakrishnan, S., Voigt, D. E., Alley, R. B., and King, M. A.: Ice stream D flow speed is strongly modulated by the tide beneath the Ross Ice Shelf, Geophys. Res. Lett., 30, 1361, https://doi.org/10.1029/2002GL016329, 2003. 
Andersen, M. L., Larsen, T. B., Nettles, M., Elosegui, P., Van As, D., Hamilton, G. S., Stearns, L. A., Davis, J. L., Ahlstrøm, A. P., De Juan, J., Ekström, G., Stenseng, L., Khan, S. A., Forsberg, R., and Dahl-Jensen, D.: Spatial and temporal melt variability at Helheim Glacier, East Greenland, and its effect on ice dynamics, J. Geophys. Res.-Earth, 115, F04041, https://doi.org/10.1029/2010JF001760, 2010. 
Andersen, M. L., Nettles, M., Elosegui, P., Larsen, T. B., Hamilton, G. S., and Stearns, L. A.: Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier, J. Glaciol., 57, 609–620, https://doi.org/10.3189/002214311797409785, 2011. 
Bartholomaus, T. C., Anderson, R. S., and Anderson, S. P.: Response of glacier basal motion to transient water storage, Nat. Geosci., 1, 33–37, https://doi.org/10.1038/ngeo.2007.52, 2008. 
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007. 
Download
Short summary
We report flow speed variations near the front of a tidewater glacier in Greenland. Ice flow near the glacier front is crucial for the mass loss of the Greenland ice sheet, but in situ data are hard to obtain. Our unique in situ GPS data revealed fine details of short-term speed variations associated with melting, ocean tides, and rain. The results are important for understanding the response of tidewater glaciers to changing environments, such as warming, more frequent rain, and ice thinning.
Share