Articles | Volume 19, issue 5
https://doi.org/10.5194/tc-19-1739-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/tc-19-1739-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sublimation measurements of tundra and taiga snowpack in Alaska
Kelsey A. Stockert
Department of Civil, Geological and Environmental Engineering, Water and Environmental Research Center, College of Engineering and Mines, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Eugénie S. Euskirchen
Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Svetlana L. Stuefer
CORRESPONDING AUTHOR
Department of Civil, Geological and Environmental Engineering, Water and Environmental Research Center, College of Engineering and Mines, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
Related authors
No articles found.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Jiří Dušek, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Qing Ying, Benjamin Poulter, Jennifer D. Watts, Kyle A. Arndt, Anna-Maria Virkkala, Lori Bruhwiler, Youmi Oh, Brendan M. Rogers, Susan M. Natali, Hilary Sullivan, Luke D. Schiferl, Clayton Elder, Olli Peltola, Annett Bartsch, Amanda Armstrong, Ankur R. Desai, Eugénie Euskirchen, Mathias Göckede, Bernhard Lehner, Mats B. Nilsson, Matthias Peichl, Oliver Sonnentag, Eeva-Stiina Tuittila, Torsten Sachs, Aram Kalhori, Masahito Ueyama, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-84, https://doi.org/10.5194/essd-2024-84, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present daily methane fluxes of northern wetlands at 10-km resolution during 2016–2022 (WetCH4) derived from a novel machine-learning framework with improved accuracy. We estimated an average annual CH4 emissions of 20.8 ±2.1 Tg CH4 yr-1. Emissions were intensified in 2016, 2020, and 2022, with the largest interannual variations coming from West Siberia. Continued, all-season tower observations and improved soil moisture products are needed for future improvement of CH4 upscaling.
Luke D. Schiferl, Jennifer D. Watts, Erik J. L. Larson, Kyle A. Arndt, Sébastien C. Biraud, Eugénie S. Euskirchen, Jordan P. Goodrich, John M. Henderson, Aram Kalhori, Kathryn McKain, Marikate E. Mountain, J. William Munger, Walter C. Oechel, Colm Sweeney, Yonghong Yi, Donatella Zona, and Róisín Commane
Biogeosciences, 19, 5953–5972, https://doi.org/10.5194/bg-19-5953-2022, https://doi.org/10.5194/bg-19-5953-2022, 2022
Short summary
Short summary
As the Arctic rapidly warms, vast stores of thawing permafrost could release carbon dioxide (CO2) into the atmosphere. We combined observations of atmospheric CO2 concentrations from aircraft and a tower with observed CO2 fluxes from tundra ecosystems and found that the Alaskan North Slope in not a consistent source nor sink of CO2. Our study shows the importance of using both site-level and atmospheric measurements to constrain regional net CO2 fluxes and improve biogenic processes in models.
Elodie Salmon, Fabrice Jégou, Bertrand Guenet, Line Jourdain, Chunjing Qiu, Vladislav Bastrikov, Christophe Guimbaud, Dan Zhu, Philippe Ciais, Philippe Peylin, Sébastien Gogo, Fatima Laggoun-Défarge, Mika Aurela, M. Syndonia Bret-Harte, Jiquan Chen, Bogdan H. Chojnicki, Housen Chu, Colin W. Edgar, Eugenie S. Euskirchen, Lawrence B. Flanagan, Krzysztof Fortuniak, David Holl, Janina Klatt, Olaf Kolle, Natalia Kowalska, Lars Kutzbach, Annalea Lohila, Lutz Merbold, Włodzimierz Pawlak, Torsten Sachs, and Klaudia Ziemblińska
Geosci. Model Dev., 15, 2813–2838, https://doi.org/10.5194/gmd-15-2813-2022, https://doi.org/10.5194/gmd-15-2813-2022, 2022
Short summary
Short summary
A methane model that features methane production and transport by plants, the ebullition process and diffusion in soil, oxidation to CO2, and CH4 fluxes to the atmosphere has been embedded in the ORCHIDEE-PEAT land surface model, which includes an explicit representation of northern peatlands. This model, ORCHIDEE-PCH4, was calibrated and evaluated on 14 peatland sites. Results show that the model is sensitive to temperature and substrate availability over the top 75 cm of soil depth.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Rafael Poyatos, Víctor Granda, Víctor Flo, Mark A. Adams, Balázs Adorján, David Aguadé, Marcos P. M. Aidar, Scott Allen, M. Susana Alvarado-Barrientos, Kristina J. Anderson-Teixeira, Luiza Maria Aparecido, M. Altaf Arain, Ismael Aranda, Heidi Asbjornsen, Robert Baxter, Eric Beamesderfer, Z. Carter Berry, Daniel Berveiller, Bethany Blakely, Johnny Boggs, Gil Bohrer, Paul V. Bolstad, Damien Bonal, Rosvel Bracho, Patricia Brito, Jason Brodeur, Fernando Casanoves, Jérôme Chave, Hui Chen, Cesar Cisneros, Kenneth Clark, Edoardo Cremonese, Hongzhong Dang, Jorge S. David, Teresa S. David, Nicolas Delpierre, Ankur R. Desai, Frederic C. Do, Michal Dohnal, Jean-Christophe Domec, Sebinasi Dzikiti, Colin Edgar, Rebekka Eichstaedt, Tarek S. El-Madany, Jan Elbers, Cleiton B. Eller, Eugénie S. Euskirchen, Brent Ewers, Patrick Fonti, Alicia Forner, David I. Forrester, Helber C. Freitas, Marta Galvagno, Omar Garcia-Tejera, Chandra Prasad Ghimire, Teresa E. Gimeno, John Grace, André Granier, Anne Griebel, Yan Guangyu, Mark B. Gush, Paul J. Hanson, Niles J. Hasselquist, Ingo Heinrich, Virginia Hernandez-Santana, Valentine Herrmann, Teemu Hölttä, Friso Holwerda, James Irvine, Supat Isarangkool Na Ayutthaya, Paul G. Jarvis, Hubert Jochheim, Carlos A. Joly, Julia Kaplick, Hyun Seok Kim, Leif Klemedtsson, Heather Kropp, Fredrik Lagergren, Patrick Lane, Petra Lang, Andrei Lapenas, Víctor Lechuga, Minsu Lee, Christoph Leuschner, Jean-Marc Limousin, Juan Carlos Linares, Maj-Lena Linderson, Anders Lindroth, Pilar Llorens, Álvaro López-Bernal, Michael M. Loranty, Dietmar Lüttschwager, Cate Macinnis-Ng, Isabelle Maréchaux, Timothy A. Martin, Ashley Matheny, Nate McDowell, Sean McMahon, Patrick Meir, Ilona Mészáros, Mirco Migliavacca, Patrick Mitchell, Meelis Mölder, Leonardo Montagnani, Georgianne W. Moore, Ryogo Nakada, Furong Niu, Rachael H. Nolan, Richard Norby, Kimberly Novick, Walter Oberhuber, Nikolaus Obojes, A. Christopher Oishi, Rafael S. Oliveira, Ram Oren, Jean-Marc Ourcival, Teemu Paljakka, Oscar Perez-Priego, Pablo L. Peri, Richard L. Peters, Sebastian Pfautsch, William T. Pockman, Yakir Preisler, Katherine Rascher, George Robinson, Humberto Rocha, Alain Rocheteau, Alexander Röll, Bruno H. P. Rosado, Lucy Rowland, Alexey V. Rubtsov, Santiago Sabaté, Yann Salmon, Roberto L. Salomón, Elisenda Sánchez-Costa, Karina V. R. Schäfer, Bernhard Schuldt, Alexandr Shashkin, Clément Stahl, Marko Stojanović, Juan Carlos Suárez, Ge Sun, Justyna Szatniewska, Fyodor Tatarinov, Miroslav Tesař, Frank M. Thomas, Pantana Tor-ngern, Josef Urban, Fernando Valladares, Christiaan van der Tol, Ilja van Meerveld, Andrej Varlagin, Holm Voigt, Jeffrey Warren, Christiane Werner, Willy Werner, Gerhard Wieser, Lisa Wingate, Stan Wullschleger, Koong Yi, Roman Zweifel, Kathy Steppe, Maurizio Mencuccini, and Jordi Martínez-Vilalta
Earth Syst. Sci. Data, 13, 2607–2649, https://doi.org/10.5194/essd-13-2607-2021, https://doi.org/10.5194/essd-13-2607-2021, 2021
Short summary
Short summary
Transpiration is a key component of global water balance, but it is poorly constrained from available observations. We present SAPFLUXNET, the first global database of tree-level transpiration from sap flow measurements, containing 202 datasets and covering a wide range of ecological conditions. SAPFLUXNET and its accompanying R software package
sapfluxnetrwill facilitate new data syntheses on the ecological factors driving water use and drought responses of trees and forests.
Michael A. Rawlins, Lei Cai, Svetlana L. Stuefer, and Dmitry Nicolsky
The Cryosphere, 13, 3337–3352, https://doi.org/10.5194/tc-13-3337-2019, https://doi.org/10.5194/tc-13-3337-2019, 2019
Short summary
Short summary
We investigate the changing character of runoff, river discharge and other hydrological elements across watershed draining the North Slope of Alaska over the period 1981–2010. Our synthesis of observations and modeling reveals significant increases in the proportion of subsurface runoff and cold season discharge. These and other changes we describe are consistent with warming and thawing permafrost, and have implications for water, carbon and nutrient cycling in coastal environments.
Olli Peltola, Timo Vesala, Yao Gao, Olle Räty, Pavel Alekseychik, Mika Aurela, Bogdan Chojnicki, Ankur R. Desai, Albertus J. Dolman, Eugenie S. Euskirchen, Thomas Friborg, Mathias Göckede, Manuel Helbig, Elyn Humphreys, Robert B. Jackson, Georg Jocher, Fortunat Joos, Janina Klatt, Sara H. Knox, Natalia Kowalska, Lars Kutzbach, Sebastian Lienert, Annalea Lohila, Ivan Mammarella, Daniel F. Nadeau, Mats B. Nilsson, Walter C. Oechel, Matthias Peichl, Thomas Pypker, William Quinton, Janne Rinne, Torsten Sachs, Mateusz Samson, Hans Peter Schmid, Oliver Sonnentag, Christian Wille, Donatella Zona, and Tuula Aalto
Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, https://doi.org/10.5194/essd-11-1263-2019, 2019
Short summary
Short summary
Here we develop a monthly gridded dataset of northern (> 45 N) wetland methane (CH4) emissions. The data product is derived using a random forest machine-learning technique and eddy covariance CH4 fluxes from 25 wetland sites. Annual CH4 emissions from these wetlands calculated from the derived data product are comparable to prior studies focusing on these areas. This product is an independent estimate of northern wetland CH4 emissions and hence could be used, e.g. for process model evaluation.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R. Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, and Klaudia Ziemblinska
Geosci. Model Dev., 11, 497–519, https://doi.org/10.5194/gmd-11-497-2018, https://doi.org/10.5194/gmd-11-497-2018, 2018
Short summary
Short summary
Northern peatlands store large amount of soil carbon and are vulnerable to climate change. We implemented peatland hydrological and carbon accumulation processes into the ORCHIDEE land surface model. The model was evaluated against EC measurements from 30 northern peatland sites. The model generally well reproduced the spatial gradient and temporal variations in GPP and NEE at these sites. Water table depth was not well predicted but had only small influence on simulated NEE.
Jordi Cristóbal, Anupma Prakash, Martha C. Anderson, William P. Kustas, Eugénie S. Euskirchen, and Douglas L. Kane
Hydrol. Earth Syst. Sci., 21, 1339–1358, https://doi.org/10.5194/hess-21-1339-2017, https://doi.org/10.5194/hess-21-1339-2017, 2017
Short summary
Short summary
Quantifying trends in surface energy fluxes is crucial for forecasting ecological responses in Arctic regions.
An extensive evaluation using a thermal-based remote sensing model and ground measurements was performed in Alaska's Arctic tundra for 5 years. Results showed an accurate temporal trend of surface energy fluxes in concert with vegetation dynamics. This work builds toward a regional implementation over Arctic ecosystems to assess response of surface energy fluxes to climate change.
Xiyan Xu, William J. Riley, Charles D. Koven, Dave P. Billesbach, Rachel Y.-W. Chang, Róisín Commane, Eugénie S. Euskirchen, Sean Hartery, Yoshinobu Harazono, Hiroki Iwata, Kyle C. McDonald, Charles E. Miller, Walter C. Oechel, Benjamin Poulter, Naama Raz-Yaseef, Colm Sweeney, Margaret Torn, Steven C. Wofsy, Zhen Zhang, and Donatella Zona
Biogeosciences, 13, 5043–5056, https://doi.org/10.5194/bg-13-5043-2016, https://doi.org/10.5194/bg-13-5043-2016, 2016
Short summary
Short summary
Wetlands are the largest global natural methane source. Peat-rich bogs and fens lying between 50°N and 70°N contribute 10–30% to this source. The predictive capability of the seasonal methane cycle can directly affect the estimation of global methane budget. We present multiscale methane seasonal emission by observations and modeling and find that the uncertainties in predicting the seasonal methane emissions are from the wetland extent, cold-season CH4 production and CH4 transport processes.
Y. Yi, J. S. Kimball, M. A. Rawlins, M. Moghaddam, and E. S. Euskirchen
Biogeosciences, 12, 5811–5829, https://doi.org/10.5194/bg-12-5811-2015, https://doi.org/10.5194/bg-12-5811-2015, 2015
Short summary
Short summary
We found that regional warming promotes widespread deepening of soil thaw in the pan-Arctic area; continued warming will most likely promote permafrost degradation in the warm permafrost areas. We also found that deeper snowpack enhances soil respiration from deeper soil carbon pool more than temperature does, particularly in the cold permafrost areas, where a large amount of soil carbon is stored in deep perennial frozen soils but is potentially vulnerable to mobilization from climate change.
Related subject area
Discipline: Snow | Subject: Seasonal Snow
An examination of changes in autumn Eurasian snow cover and its relationship with the winter Arctic Oscillation using 20th Century Reanalysis version 3
Historical snow measurements in the central and southern Apennine Mountains: climatology, variability, and trend
Benchmarking of snow water equivalent (SWE) products based on outcomes of the SnowPEx+ Intercomparison Project
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Trends in the annual snow melt-out day over the French Alps and the Pyrenees from 38 years of high resolution satellite data (1986–2023)
Characterization of non-Gaussianity in the snow distributions of various landscapes
A simple snow temperature index model exposes discrepancies between reanalysis snow water equivalent products
Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?
Snow depth in high-resolution regional climate model simulations over southern Germany – suitable for extremes and impact-related research?
Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Spatiotemporal snow water storage uncertainty in the midlatitude American Cordillera
Evaluation of snow cover properties in ERA5 and ERA5-Land with several satellite-based datasets in the Northern Hemisphere in spring 1982–2018
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Spatially continuous snow depth mapping by aeroplane photogrammetry for annual peak of winter from 2017 to 2021 in open areas
Change in the potential snowfall phenology: past, present, and future in the Chinese Tianshan mountainous region, Central Asia
The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Impact of measured and simulated tundra snowpack properties on heat transfer
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014
Multilayer observation and estimation of the snowpack cold content in a humid boreal coniferous forest of eastern Canada
Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Observed snow depth trends in the European Alps: 1971 to 2019
Snow Ensemble Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling
Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps)
Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach
Evaluation of long-term Northern Hemisphere snow water equivalent products
Towards a webcam-based snow cover monitoring network: methodology and evaluation
Simulated single-layer forest canopies delay Northern Hemisphere snowmelt
Converting snow depth to snow water equivalent using climatological variables
Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study
The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China
Brief Communication: Early season snowpack loss and implications for oversnow vehicle recreation travel planning
Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps
Gareth J. Marshall
The Cryosphere, 19, 663–683, https://doi.org/10.5194/tc-19-663-2025, https://doi.org/10.5194/tc-19-663-2025, 2025
Short summary
Short summary
Eurasian autumn snow cover (SC) can influence Northern Hemisphere weather in the following winter by affecting the Arctic Oscillation (AO) mode of atmospheric variability. Using data back to 1836, we show that there have been significant decreases in October and November SC. For the first time, we describe a robust relationship between September SC in northeastern Eurasia and the AO. In addition, the longer dataset reveals the temporal variability in previously identified SC–AO relationships.
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
The Cryosphere, 19, 565–595, https://doi.org/10.5194/tc-19-565-2025, https://doi.org/10.5194/tc-19-565-2025, 2025
Short summary
Short summary
This “journey through time” discovers historical information about snow precipitation in the Italian Apennines. In this area, in the second half of the past century, a gradual decline in snow persistence on the ground, as well as in the frequency of occurrence of snowfall events, has been observed, especially in sites located above 1000 m above sea level. The old data rescued in this study strongly enhance our knowledge about past snowfall variability and climate in the Mediterranean area.
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025, https://doi.org/10.5194/tc-19-201-2025, 2025
Short summary
Short summary
We evaluate and rank 23 different datasets on their ability to accurately estimate historical snow amounts. The evaluation uses new a set of surface snow measurements with improved spatial coverage, enabling evaluation across both mountainous and nonmountainous regions. Performance measures vary tremendously across the products: while most perform reasonably in nonmountainous regions, accurate representation of snow amounts in mountainous regions and of historical trends is much more variable.
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024, https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Short summary
Snow depth plays an important role in water resources, mountain tourism, and hazard management across the European Alps. Our study uses station-based historical observations to quantify how changes in temperature and precipitation affect average seasonal snow depth. We find that the relationship between these variables has been surprisingly robust over the last 120 years. This allows us to more accurately estimate how future climate will affect seasonal snow depth in different elevation zones.
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024, https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary
Short summary
Ground measurements of snow water equivalent (SWE) are vital for understanding the accuracy of large-scale estimates from satellites and climate models. We compare two types of measurements – snow courses and airborne gamma SWE estimates – and analyze how measurement type impacts the accuracy assessment of gridded SWE products. We use this analysis to produce a combined reference SWE dataset for North America, applicable for future gridded SWE product evaluations and other applications.
Zacharie Barrou Dumont, Simon Gascoin, Jordi Inglada, Andreas Dietz, Jonas Köhler, Matthieu Lafaysse, Diego Monteiro, Carlo Carmagnola, Arthur Bayle, Jean-Pierre Dedieu, Olivier Hagolle, and Philippe Choler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3505, https://doi.org/10.5194/egusphere-2024-3505, 2024
Short summary
Short summary
We generated annual maps of snow melt-out day at 20 m resolution over a period of 38 years from ten different satellites. This study fills a knowledge gap on the evolution of mountain snow in Europe by covering a much longer period and by characterizing trends at much higher resolution than previous studies. We found a trend for earlier melt-out with an average reduction of 5.51 days per decade over the French Alps and of 4.04 day per decade over the Pyrenees over the period 1986–2023.
Noriaki Ohara, Andrew D. Parsekian, Benjamin M. Jones, Rodrigo C. Rangel, Kenneth M. Hinkel, and Rui A. P. Perdigão
The Cryosphere, 18, 5139–5152, https://doi.org/10.5194/tc-18-5139-2024, https://doi.org/10.5194/tc-18-5139-2024, 2024
Short summary
Short summary
Snow distribution characterization is essential for accurate snow water estimation for water resource prediction from existing in situ observations and remote-sensing data at a finite spatial resolution. Four different observed snow distribution datasets were analyzed for Gaussianity. We found that non-Gaussianity of snow distribution is a signature of the wind redistribution effect. Generally, seasonal snowpack can be approximated well by a Gaussian distribution for a fully snow-covered area.
Aleksandra Elias Chereque, Paul J. Kushner, Lawrence Mudryk, Chris Derksen, and Colleen Mortimer
The Cryosphere, 18, 4955–4969, https://doi.org/10.5194/tc-18-4955-2024, https://doi.org/10.5194/tc-18-4955-2024, 2024
Short summary
Short summary
We look at three commonly used snow depth datasets that are produced through a combination of snow modelling and historical measurements (reanalysis). When compared with each other, these datasets have differences that arise for various reasons. We show that a simple snow model can be used to examine these inconsistencies and highlight issues. This method indicates that one of the complex datasets should be excluded from further studies.
Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang
The Cryosphere, 18, 4089–4109, https://doi.org/10.5194/tc-18-4089-2024, https://doi.org/10.5194/tc-18-4089-2024, 2024
Short summary
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Benjamin Poschlod and Anne Sophie Daloz
The Cryosphere, 18, 1959–1981, https://doi.org/10.5194/tc-18-1959-2024, https://doi.org/10.5194/tc-18-1959-2024, 2024
Short summary
Short summary
Information about snow depth is important within climate research but also many other sectors, such as tourism, mobility, civil engineering, and ecology. Climate models often feature a spatial resolution which is too coarse to investigate snow depth. Here, we analyse high-resolution simulations and identify added value compared to a coarser-resolution state-of-the-art product. Also, daily snow depth extremes are well reproduced by two models.
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024, https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary
Short summary
We used changes in radar echo travel time from multiple airborne flights to estimate changes in snow depths across Idaho for two winters. We compared our radar-derived retrievals to snow pits, weather stations, and a 100 m resolution numerical snow model. We had a strong Pearson correlation and root mean squared error of 10 cm relative to in situ measurements. Our retrievals also correlated well with our model, especially in regions of dry snow and low tree coverage.
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023, https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Short summary
Using newly developed snow reanalysis datasets as references, snow water storage is at high uncertainty among commonly used global products in the Andes and low-resolution products in the western United States, where snow is the key element of water resources. In addition to precipitation, elevation differences and model mechanism variances drive snow uncertainty. This work provides insights for research applying these products and generating future products in areas with limited in situ data.
Kerttu Kouki, Kari Luojus, and Aku Riihelä
The Cryosphere, 17, 5007–5026, https://doi.org/10.5194/tc-17-5007-2023, https://doi.org/10.5194/tc-17-5007-2023, 2023
Short summary
Short summary
We evaluated snow cover properties in state-of-the-art reanalyses (ERA5 and ERA5-Land) with satellite-based datasets. Both ERA5 and ERA5-Land overestimate snow mass, whereas albedo estimates are more consistent between the datasets. Snow cover extent (SCE) is accurately described in ERA5-Land, while ERA5 shows larger SCE than the satellite-based datasets. The trends in snow mass, SCE, and albedo are mostly negative in 1982–2018, and the negative trends become more apparent when spring advances.
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023, https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary
Short summary
Beyond directly using in situ observations, often sparsely available in mountain regions, climate model simulations and so-called reanalyses are increasingly used for climate change impact studies. Here we evaluate such datasets in the European Alps from 1950 to 2020, with a focus on snow cover information and its main drivers: air temperature and precipitation. In terms of variability and trends, we identify several limitations and provide recommendations for future use of these datasets.
Leon J. Bührle, Mauro Marty, Lucie A. Eberhard, Andreas Stoffel, Elisabeth D. Hafner, and Yves Bühler
The Cryosphere, 17, 3383–3408, https://doi.org/10.5194/tc-17-3383-2023, https://doi.org/10.5194/tc-17-3383-2023, 2023
Short summary
Short summary
Information on the snow depth distribution is crucial for numerous applications in high-mountain regions. However, only specific measurements can accurately map the present variability of snow depths within complex terrain. In this study, we show the reliable processing of images from aeroplane to large (> 100 km2) detailed and accurate snow depth maps around Davos (CH). We use these maps to describe the existing snow depth distribution, other special features and potential applications.
Xuemei Li, Xinyu Liu, Kaixin Zhao, Xu Zhang, and Lanhai Li
The Cryosphere, 17, 2437–2453, https://doi.org/10.5194/tc-17-2437-2023, https://doi.org/10.5194/tc-17-2437-2023, 2023
Short summary
Short summary
Quantifying change in the potential snowfall phenology (PSP) is an important area of research for understanding regional climate change past, present, and future. However, few studies have focused on the PSP and its change in alpine mountainous regions. We proposed three innovative indicators to characterize the PSP and its spatial–temporal variation. Our study provides a novel approach to understanding PSP in alpine mountainous regions and can be easily extended to other snow-dominated regions.
Moritz Buchmann, Gernot Resch, Michael Begert, Stefan Brönnimann, Barbara Chimani, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 17, 653–671, https://doi.org/10.5194/tc-17-653-2023, https://doi.org/10.5194/tc-17-653-2023, 2023
Short summary
Short summary
Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are susceptible to inhomogeneities that can affect the trends and even change the sign. To assess the relevance of homogenisation for daily snow depths, we investigated its impact on trends and changes in extreme values of snow indices between 1961 and 2021 in the Swiss observation network.
Zachary S. Miller, Erich H. Peitzsch, Eric A. Sproles, Karl W. Birkeland, and Ross T. Palomaki
The Cryosphere, 16, 4907–4930, https://doi.org/10.5194/tc-16-4907-2022, https://doi.org/10.5194/tc-16-4907-2022, 2022
Short summary
Short summary
Snow depth varies across steep, complex mountain landscapes due to interactions between dynamic natural processes. Our study of a winter time series of high-resolution snow depth maps found that spatial resolutions greater than 0.5 m do not capture the complete patterns of snow depth spatial variability at a couloir study site in the Bridger Range of Montana, USA. The results of this research have the potential to reduce uncertainty associated with snowpack and snow water resource analysis.
Victoria R. Dutch, Nick Rutter, Leanne Wake, Melody Sandells, Chris Derksen, Branden Walker, Gabriel Hould Gosselin, Oliver Sonnentag, Richard Essery, Richard Kelly, Phillip Marsh, Joshua King, and Julia Boike
The Cryosphere, 16, 4201–4222, https://doi.org/10.5194/tc-16-4201-2022, https://doi.org/10.5194/tc-16-4201-2022, 2022
Short summary
Short summary
Measurements of the properties of the snow and soil were compared to simulations of the Community Land Model to see how well the model represents snow insulation. Simulations underestimated snow thermal conductivity and wintertime soil temperatures. We test two approaches to reduce the transfer of heat through the snowpack and bring simulated soil temperatures closer to measurements, with an alternative parameterisation of snow thermal conductivity being more appropriate.
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Short summary
Knowledge about inhomogeneities in a data set is important for any subsequent climatological analysis. We ran three well-established homogenization methods and compared the identified break points. By only treating breaks as valid when detected by at least two out of three methods, we enhanced the robustness of our results. We found 45 breaks within 42 of 184 investigated series; of these 70 % could be explained by events recorded in the station history.
Bertrand Cluzet, Matthieu Lafaysse, César Deschamps-Berger, Matthieu Vernay, and Marie Dumont
The Cryosphere, 16, 1281–1298, https://doi.org/10.5194/tc-16-1281-2022, https://doi.org/10.5194/tc-16-1281-2022, 2022
Short summary
Short summary
The mountainous snow cover is highly variable at all temporal and spatial scales. Snow cover models suffer from large errors, while snowpack observations are sparse. Data assimilation combines them into a better estimate of the snow cover. A major challenge is to propagate information from observed into unobserved areas. This paper presents a spatialized version of the particle filter, in which information from in situ snow depth observations is successfully used to constrain nearby simulations.
Kerttu Kouki, Petri Räisänen, Kari Luojus, Anna Luomaranta, and Aku Riihelä
The Cryosphere, 16, 1007–1030, https://doi.org/10.5194/tc-16-1007-2022, https://doi.org/10.5194/tc-16-1007-2022, 2022
Short summary
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere, 15, 5371–5386, https://doi.org/10.5194/tc-15-5371-2021, https://doi.org/10.5194/tc-15-5371-2021, 2021
Short summary
Short summary
Cold content is the energy required to attain an isothermal (0 °C) state and resulting in the snow surface melt. This study focuses on determining the multi-layer cold content (30 min time steps) relying on field measurements, snow temperature profile, and empirical formulation in four distinct forest sites of Montmorency Forest, eastern Canada. We present novel research where the effect of forest structure, local topography, and meteorological conditions on cold content variability is explored.
Yufei Liu, Yiwen Fang, and Steven A. Margulis
The Cryosphere, 15, 5261–5280, https://doi.org/10.5194/tc-15-5261-2021, https://doi.org/10.5194/tc-15-5261-2021, 2021
Short summary
Short summary
We examined the spatiotemporal distribution of stored water in the seasonal snowpack over High Mountain Asia, based on a new snow reanalysis dataset. The dataset was derived utilizing satellite-observed snow information, which spans across 18 water years, at a high spatial (~ 500 m) and temporal (daily) resolution. Snow mass and snow storage distribution over space and time are analyzed in this paper, which brings new insights into understanding the snowpack variability over this region.
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021, https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Short summary
We investigated the impacts of local-scale variations by analysing snow climate indicators derived from parallel snow measurements. We found the largest relative inter-pair differences for all indicators in spring and the smallest in winter. The findings serve as an important basis for our understanding of uncertainties of commonly used snow indicators and provide, in combination with break-detection methods, the groundwork in view of any homogenization efforts regarding snow time series.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Rhae Sung Kim, Sujay Kumar, Carrie Vuyovich, Paul Houser, Jessica Lundquist, Lawrence Mudryk, Michael Durand, Ana Barros, Edward J. Kim, Barton A. Forman, Ethan D. Gutmann, Melissa L. Wrzesien, Camille Garnaud, Melody Sandells, Hans-Peter Marshall, Nicoleta Cristea, Justin M. Pflug, Jeremy Johnston, Yueqian Cao, David Mocko, and Shugong Wang
The Cryosphere, 15, 771–791, https://doi.org/10.5194/tc-15-771-2021, https://doi.org/10.5194/tc-15-771-2021, 2021
Short summary
Short summary
High SWE uncertainty is observed in mountainous and forested regions, highlighting the need for high-resolution snow observations in these regions. Substantial uncertainty in snow water storage in Tundra regions and the dominance of water storage in these regions points to the need for high-accuracy snow estimation. Finally, snow measurements during the melt season are most needed at high latitudes, whereas observations at near peak snow accumulations are most beneficial over the midlatitudes.
François Tuzet, Marie Dumont, Ghislain Picard, Maxim Lamare, Didier Voisin, Pierre Nabat, Mathieu Lafaysse, Fanny Larue, Jesus Revuelto, and Laurent Arnaud
The Cryosphere, 14, 4553–4579, https://doi.org/10.5194/tc-14-4553-2020, https://doi.org/10.5194/tc-14-4553-2020, 2020
Short summary
Short summary
This study presents a field dataset collected over 30 d from two snow seasons at a Col du Lautaret site (French Alps). The dataset compares different measurements or estimates of light-absorbing particle (LAP) concentrations in snow, highlighting a gap in the current understanding of the measurement of these quantities. An ensemble snowpack model is then evaluated for this dataset estimating that LAPs shorten each snow season by around 10 d despite contrasting meteorological conditions.
Jianwei Yang, Lingmei Jiang, Kari Luojus, Jinmei Pan, Juha Lemmetyinen, Matias Takala, and Shengli Wu
The Cryosphere, 14, 1763–1778, https://doi.org/10.5194/tc-14-1763-2020, https://doi.org/10.5194/tc-14-1763-2020, 2020
Short summary
Short summary
There are many challenges for accurate snow depth estimation using passive microwave data. Machine learning (ML) techniques are deemed to be powerful tools for establishing nonlinear relations between independent variables and a given target variable. In this study, we investigate the potential capability of the random forest (RF) model on snow depth estimation at temporal and spatial scales. The result indicates that the fitted RF algorithms perform better on temporal than spatial scales.
Colleen Mortimer, Lawrence Mudryk, Chris Derksen, Kari Luojus, Ross Brown, Richard Kelly, and Marco Tedesco
The Cryosphere, 14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, https://doi.org/10.5194/tc-14-1579-2020, 2020
Short summary
Short summary
Existing stand-alone passive microwave SWE products have markedly different climatological SWE patterns compared to reanalysis-based datasets. The AMSR-E SWE has low spatial and temporal correlations with the four reanalysis-based products evaluated and GlobSnow and perform poorly in comparisons with snow transect data from Finland, Russia, and Canada. There is better agreement with in situ data when multiple SWE products, excluding the stand-alone passive microwave SWE products, are combined.
Céline Portenier, Fabia Hüsler, Stefan Härer, and Stefan Wunderle
The Cryosphere, 14, 1409–1423, https://doi.org/10.5194/tc-14-1409-2020, https://doi.org/10.5194/tc-14-1409-2020, 2020
Short summary
Short summary
We present a method to derive snow cover maps from freely available webcam images in the Swiss Alps. With marginal manual user input, we can transform a webcam image into a georeferenced map and therewith perform snow cover analyses with a high spatiotemporal resolution over a large area. Our evaluation has shown that webcams could not only serve as a reference for improved validation of satellite-based approaches, but also complement satellite-based snow cover retrieval.
Markus Todt, Nick Rutter, Christopher G. Fletcher, and Leanne M. Wake
The Cryosphere, 13, 3077–3091, https://doi.org/10.5194/tc-13-3077-2019, https://doi.org/10.5194/tc-13-3077-2019, 2019
Short summary
Short summary
Vegetation is often represented by a single layer in global land models. Studies have found deficient simulation of thermal radiation beneath forest canopies when represented by single-layer vegetation. This study corrects thermal radiation in forests for a global land model using single-layer vegetation in order to assess the effect of deficient thermal radiation on snow cover and snowmelt. Results indicate that single-layer vegetation causes snow in forests to be too cold and melt too late.
David F. Hill, Elizabeth A. Burakowski, Ryan L. Crumley, Julia Keon, J. Michelle Hu, Anthony A. Arendt, Katreen Wikstrom Jones, and Gabriel J. Wolken
The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, https://doi.org/10.5194/tc-13-1767-2019, 2019
Short summary
Short summary
We present a new statistical model for converting snow depths to water equivalent. The only variables required are snow depth, day of year, and location. We use the location to look up climatological parameters such as mean winter precipitation and mean temperature difference (difference between hottest month and coldest month). The model is simple by design so that it can be applied to depth measurements anywhere, anytime. The model is shown to perform better than other widely used approaches.
Rebecca Mott, Andreas Wolf, Maximilian Kehl, Harald Kunstmann, Michael Warscher, and Thomas Grünewald
The Cryosphere, 13, 1247–1265, https://doi.org/10.5194/tc-13-1247-2019, https://doi.org/10.5194/tc-13-1247-2019, 2019
Short summary
Short summary
The mass balance of very small glaciers is often governed by anomalous snow accumulation, winter precipitation being multiplied by snow redistribution processes, or by suppressed snow ablation driven by micrometeorological effects lowering net radiation and turbulent heat exchange. In this study we discuss the relative contribution of snow accumulation (avalanches) versus micrometeorology (katabatic flow) on the mass balance of the lowest perennial ice field of the Alps, the Ice Chapel.
Yue Zhou, Hui Wen, Jun Liu, Wei Pu, Qingcai Chen, and Xin Wang
The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, https://doi.org/10.5194/tc-13-157-2019, 2019
Short summary
Short summary
We first investigated the optical characteristics and potential sources of chromophoric dissolved organic matter (CDOM) in seasonal snow over northwestern China. The abundance of CDOM showed regional variation. At some sites strongly influenced by local soil, the absorption of CDOM cannot be neglected compared to black carbon. We found two humic-like and one protein-like fluorophores in snow. The major sources of snow CDOM were soil, biomass burning, and anthropogenic pollution.
Benjamin J. Hatchett and Hilary G. Eisen
The Cryosphere, 13, 21–28, https://doi.org/10.5194/tc-13-21-2019, https://doi.org/10.5194/tc-13-21-2019, 2019
Short summary
Short summary
We examine the timing of early season snowpack relevant to oversnow vehicle (OSV) recreation over the past 3 decades in the Lake Tahoe region (USA). Data from two independent data sources suggest that the timing of achieving sufficient snowpack has shifted later by 2 weeks. Increasing rainfall and more dry days play a role in the later onset. Adaptation strategies are provided for winter travel management planning to address negative impacts of loss of early season snowpack for OSV usage.
Deborah Verfaillie, Matthieu Lafaysse, Michel Déqué, Nicolas Eckert, Yves Lejeune, and Samuel Morin
The Cryosphere, 12, 1249–1271, https://doi.org/10.5194/tc-12-1249-2018, https://doi.org/10.5194/tc-12-1249-2018, 2018
Short summary
Short summary
This article addresses local changes of seasonal snow and its meteorological drivers, at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps, for the period 1960–2100. We use an ensemble of adjusted RCM outputs consistent with IPCC AR5 GCM outputs (RCPs 2.6, 4.5 and 8.5) and the snowpack model Crocus. Beyond scenario-based approach, global temperature levels on the order of 1.5 °C and 2 °C above preindustrial levels correspond to 25 and 32% reduction of mean snow depth.
Cited articles
Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow on the Arctic slope of Alaska, Ann. Glaciol., 18, 261–267, https://doi.org/10.3189/s0260305500011629, 1993.
Bowling, L. C., Pomeroy, J. W., and Lettenmaier, D. P.: Parameterization of blowing-snow sublimation in a macroscale hydrology model, J. Hydrometeorol., 5, 745–762, https://doi.org/10.1175/1525-7541(2004)005<0745:POBSIA>2.0.CO;2, 2004.
Bring, A., Fedorova, I., Dibike, Y., Hinzman, L., Mård, J., Mernild, S. H., Prowse, T., Semenova, O., Stuefer, S. L., and Woo, M. K.: Arctic terrestrial hydrology: a synthesis of processes, regional effects, and research challenges, J. Geophys. Res.-Biogeo., 121, 621–649, https://doi.org/10.1002/2015JG003131, 2016.
Brown, R., Marsh, P., Déry, S., and Yang, D.: Snow cover – observations, processes, changes, and impacts on northern hydrology, Arctic Hydrology: Permafrost Ecosys., 61–99 https://doi.org/10.1007/978-3-030-50930-9_3, 2021.
Burba, G. and Anderson, D.: A brief practical guide to eddy covariance CO2 flux measurements, Ecol. Appl., 18, 1051-0761, 2008.
Euskirchen, E.: AmeriFlux BASE US-BZB Bonanza Creek Thermokarst Bog, Ver. 4-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1773401, 2023a.
Euskirchen, E.: AmeriFlux BASE US-BZS Bonanza Creek Black Spruce, Ver. 3-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1756434, 2023b.
Euskirchen, E.: AmeriFlux BASE US-BZF Bonanza Creek Rich Fen, Ver. 4-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1756433, 2023c.
Euskirchen, E., Shaver, G., and Bret-Harte, S.: AmeriFlux BASE US-ICt Imnavait Creek Watershed Tussock Tundra, Ver. 7-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1246131, 2025a.
Euskirchen, E., Shaver, G., and Bret-Harte, S.: AmeriFlux BASE US-ICh Imnavait Creek Watershed Heath Tundra, Ver. 6-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1246133, 2025b.
Euskirchen, E., Shaver, G., and Bret-Harte, S.: AmeriFlux BASE US-ICs Imnavait Creek Watershed Wet Sedge Tundra, Ver. 10-5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1246130, 2025c.
Euskirchen, E. S., Bret-Harte, M. S., Scott, G., Edgar, C., and Shaver, G. R.: Seasonal patterns of carbon and water fluxes in three representative tundra ecosystems in the northern Alaska, Ecosphere, 3, 1–19, https://doi.org/10.1890/ES11-00202.1, 2012.
Euskirchen, E. S., Edgar, C. W., Turetsky, M. R., Waldrop, M. P., and Harden, J. W.: Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost, J. Geophys. Res.-Biogeo., 119, 1576–1595 https://doi.org/10.1002/2014JG002683, 2014.
Euskirchen, E. S., Bret-Harte, M. S., Shaver, G. R., Edgar, C. W., and Romanovsky, V. E.: Long-term release of carbon dioxide from arctic tundra Ecosystems in Alaska, Ecosystems, 20, 960–974, https://doi.org/10.1007/s10021-016-0085-9, 2017.
Euskirchen, E. S., Kane, E. S., Edgar, C. W., and Turetsky, M. R.: When the source of flooding matters: divergent responses in carbon fluxes in an Alaskan rich fen to two types of inundation, Ecosystems, 23, 1138–1153, https://doi.org/10.1007/s10021-019-00460-z, 2020.
Euskirchen, E. S., Edgar, C. W., Kane, E. S., Waldrop, M. P., Neumann, R. B., Manies, K. L., Douglas, T. A., Dieleman, C., Jones, M. C., and Turetsky, M. R.: Persistent Net Release of Carbon Dioxide and Methane From an Alaskan Lowland Boreal Peatland Complex, Global Change Biol., 30, 17139, https://doi.org/10.1111/gcb.17139, 2024.
Fassnacht, S. R.: Estimating Alter-shielded gauge snowfall undercatch, snowpack sublimation, and blowing snow transport at six sites in the coterminous USA, Hydrol. Process, 18, 3481–3492, https://doi.org/10.1002/hyp.5806, 2004.
Fierz, C. R. L. A., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S. A.: The international classification for seasonal snow on the ground, in: IHP Technical Documents in Hydrology No. 83, IACS Contribution No. 1, International Hydrological Programme of the United Nations Educational, Scientific and Cultural Organization (UNESCO-IHP), Paris, https://cryosphericsciences.org/publications/snow-classification/ (last access: 31 May 2023), 2009.
Goodison, B. E., Louie, P. Y., and Yang, D.: WMO solid precipitation measurement intercomparison, report, WMO/TD-No. 872, 1998.
Gotelli, N. J. and Ellison, A. M.: A primer of ecological statistics, Vol. 1, Sinauer Associates, Sunderland, ISBN-13 978-1605350646, 2004.
Gray, D. M. and Male, D. H.: Handbook of snow: principles, processes, management and use, Pergamon Press, ISBN-10 1-932846-06-9, 1981.
Guo, S., Chen, R., Liu, G., Han, C., Song, Y., Liu, J., and Zheng, Q.: Simple parameterization of aerodynamic roughness lengths and the turbulent heat fluxes at the top of midlatitude August-One Glacier, Qilian Mountains, China, J. Geophys. Res.-Atmos., 123, 12066–12080, https://doi.org/10.1029/2018JD028875, 2018.
Herrero, J. and Polo, M. J.: Evaposublimation from the snow in the Mediterranean mountains of Sierra Nevada (Spain), The Cryosphere, 10, 2981–2998, https://doi.org/10.5194/tc-10-2981-2016, 2016.
Hollinger, D. Y. and Richardson, A. D.: Uncertainty in eddy covariance measurements and its application to physiological models, Tree Physiol., 25, 873–885, https://doi.org/10.1093/treephys/25.7.873, 2005.
Hultstrand, D. and Fassnacht, S.: The sensitivity of snowpack sublimation estimates to instrument and measurement uncertainty perturbed in a Monte Carlo framework, Front. Earth Sci., 12, 1–11, https://doi.org/10.1007/s11707-018-0721-0, 2018.
Knowles, J. F., Blanken, P. D., Williams, M. W., and Chowanski, K. M.: Energy and surface moisture seasonally limit evaporation and sublimation from snow-free alpine tundra, Agr. Forest Meteorol., 157, 106–115, https://doi.org/10.1016/j.agrformet.2012.01.017, 2012.
Kobayashi, D.: Studies of snow transport in low-level drifting snow, Contributions from the Institute of Low Temperature Science A, 24, 1–58, 1972.
Lackner, G., Domine, F., Nadeau, D. F., Parent, A.-C., Anctil, F., Lafaysse, M., and Dumont, M.: On the energy budget of a low-Arctic snowpack, The Cryosphere, 16, 127–142, https://doi.org/10.5194/tc-16-127-2022, 2022.
Liston, G. E. and Sturm, M.: The role of winter sublimation in the Arctic moisture budget, Nord. Hydrol., 35, 325–334, https://doi.org/10.2166/nh.2004.0024, 2004.
Liu, J., Chen, R., Ma, S., Han, C., Ding, Y., Guo, S., and Wang, X.: The challenge of monitoring snow surface sublimation in winter could be resolved with structure-from-motion photogrammetry, J. Hydrol, 630, 2–13, https://doi.org/10.1016/j.jhydrol.2024.130733, 2024.
Loaiciga, H. A., Valdes, J. B., Vogel, R., Garvey, J., and Schwarz, H.: Global warming and the hydrologic cycle, J. Hydrol., 174, 83–127, https://doi.org/10.1016/0022-1694(95)02753-X, 1996.
Long Term Ecological Research weather station (LTER 1): Bonanza Creek, Institute of Arctic Biology, https://www.lter.uaf.edu/data/site-detail/id/52, last access: 31 May 2023.
Lundquist, J. D., Vano, J., Gutmann, E., Hogan, D., Schwat, E., Haugeneder, M., Mateo, E., Oncley, S., Roden, C., Osenga, E., and Carver, L: Sublimation of Snow, B. Am. Meteorol. Soc., 105, 975–990, https://doi.org/10.1175/BAMS-D-23-0191.1, 2024.
Mahrt, L. and Vickers, D.: Moisture fluxes over snow with and without protruding vegetation, Q. J. Roy. Meteor. Soc., 131, 1251–1270, https://doi.org/10.1256/qj.04.66, 2005.
Marks, D. G., Reba, M., Pomeroy, J., Link, T., Winstral, A., Flerchinger, G., and Elder, K.: Comparing simulated and measured sensible and latent heat fluxes over snow under a pine canopy to improve an energy balance snowmelt model, J. Hydrometeorol., 9, 1506–1522, https://doi.org/10.1175/2008JHM874.1, 2008.
Molotch, N. P., Blanken, P. D., Williams, M. W., Turnipseed, A. A., Monson, R. K., and Margulis, S. A.: Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems, Hydrol. Process, 21, 1567–1575, https://doi.org/10.1002/hyp.6719, 2007.
Nakai, Y., Sakamoto, T., Terajima, T., Kitamura, K., and Shirai, T.: Energy balance above a boreal coniferous forest: a difference in turbulent fluxes between snow-covered and snow-free canopies Hydrol. Process., 13 515–529, 1999.
Nakai, T., Kim, Y., Busey, R. C., Suzuki, R., Nagai, S., Kobayashi, H., and Ito, A.: Characteristics of evapotranspiration from a permafrost black spruce forest in interior Alaska, Pol. Sci., 7, 136–148, 2013.
Nitu, R., Roulet, Y. A., Wolff, M., Earle, M. E., Reverdin, A., Smith, C. D., Kochendorfer, J., Morin, S., Rasmussen, R., Wong, K., and Alastrué Tierra, J. J.: WMO solid precipitation intercomparison experiment (SPICE) (2012–2015), World Meteorol. Assoc., https://library.wmo.int/viewer/56317/?offset=#page=17&viewer=picture&o=bookmark&n=0&q= (last access: 20 August 2023), 2018.
NOAA NWS: Climate Data Online Daily Summaries Station Details, https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USW00026411/detail, last access: 31 May 2023.
Parr, C., Sturm, M., and Larsen, C.: Snowdrift landscape patterns: an arctic investigation, Water Resour. Res., 56, 1–20, https://doi.org/10.1029/2020WR027823, 2020.
Pomeroy, J. W. and Essery, R. L. H.: Turbulent fluxes during blowing snow: field tests of model sublimation predictions, Hydrol. Process, 13, 2963–2975, https://doi.org/10.1002/(SICI)1099-1085(19991230)13:18<2963::AID-HYP11>3.0.CO;2-9, 1999.
Pomeroy, J. W., Parviainen, J., Hedstrom, N., and Gray, D. M.: Coupled modelling of forest snow interception and sublimation, Hydrol. Process, 12, 2317–2337, https://doi.org/10.1002/(SICI)1099-1085(199812)12:15<2317::AID-HYP799>3.0.CO;2-X, 1998.
Reba, M. L., Link, T. E., Marks, D., and Pomeroy, J.: An assessment of corrections for eddy covariance measured turbulent fluxes over snow in mountain environments, Water Resour. Res., 46, 1–15, https://doi.org/10.1029/2008WR007045, 2009.
Reba, M. L., Pomeroy, J., Marks, D., and Link, T. E.: Estimating surface sublimation losses from snowpacks in a mountain catchment using eddy covariance and turbulent transfer calculations, Hydrol. Process, 26, 1–14, https://doi.org/10.1002/hyp.8372, 2012.
Sexstone, G. A., Clow, D. W., Stannard, D. I., and Fassnacht, S. R.: Comparison of methods for quantifying surface sublimation over seasonally snow-covered terrain, Hydrol. Process, 30, 3373–3389, https://doi.org/10.1002/hyp.10864, 2016.
Shulski, M. and Wendler, G.: The Climate of Alaska, 208 pp., University of Alaska Press, ISBN-13 978-1602230071, 2007.
Stigter, E. E., Litt, M., Steiner, J. F., Bonekamp, P. N. J., Shea, J. M., Bierkens, M. F. P., and Immerzeel, W. W.: The importance of snow sublimation on a Himalayan glacier, Front. Earth Sci, 6, 1–16, https://doi.org/10.3389/feart.2018.00108, 2018.
Stockert, K.: Calculating sublimation rates from eddy covariance data, Zenodo [code], https://doi.org/10.5281/zenodo.15284409, 2025.
Stössel, F., Guala, M., Fierz, C., Manes, C., and Lehning, M.: Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover, Water Resour. Res., 46, 1–11, https://doi.org/10.1029/2009WR008198, 2010.
Stuefer, S., Kane, D., Gieck, R., and Dean, K.: Snow water equivalent data from the Imnavait Creek watershed, Arctic Alaska, 1985–2017, Arctic Data Center, https://doi.org/10.1029/2019WR025621, 2019a.
Stuefer, S., Kane, D., Gieck, R., and Dean, K.: Snow water equivalent data from the Imnavait Creek watershed, Arctic Alaska, 1985–2017, Arctic Data Center [data set], https://doi.org/10.18739/A29G5GD77, 2019b.
Stuefer, S., Kane, D., and Dean, K.: Snow water equivalent measurements in remote Arctic Alaska watersheds, Water Resour. Res., 56, 1–12, https://doi.org/10.1029/2019WR025621, 2020.
Sturm, M. and Benson, C. S.: Vapor transport, grain growth and depth-hoar development in the subarctic snow, J. Glaciol., 43, 42–59, https://doi.org/10.3189/s0022143000002793, 1997.
Sturm, M. and Liston, G.: Revisiting the global seasonal snow classification: an updated dataset for earth system applications, J. Hydrometeorol., 22, 2917–2938, https://doi.org/10.1175/jhm-d-21-0070.1, 2021.
Sturm, M. and Stuefer, S.: Wind-blown flux rates derived from drifts at arctic snow fences, J. Glaciol., 59, 2917–2938, https://doi.org/10.3189/2013JoG12J110, 2013.
Thunberg, S. M., Walsh, J. E., Euskirchen, E. S., Redilla, K., and Rocha, A. V.: Surface moisture budget of tundra and boreal ecosystems in Alaska: variations and drivers, Pol. Sci., 29, 1–12, https://doi.org/10.1016/j.polar.2021.100685, 2021.
Turetsky, M. R., Treat, C. C., Waldrop, M. P., Waddington, J. M., Harden, J. W., and McGuire, A. D.: Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland, J. Geophys. Res., 113, 1–15, https://doi.org/10.1029/2007JG000496, 2008.
USDA NRCS: Imnavait Creek SNOTEL Site, USDA NRCS [data set], https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=968, last access: 31 May 2023.
Van Cleve, K., Chapin, F. S., Ruess, R., Mack, M. C.: Bonanza Creek LTER: Hourly Snow Pillow Measurements from 1988 to Present in the Bonanza Creek Experimental Forest near Fairbanks, Alaska, Bonanza Creek LTER – University of Alaska Fairbanks, BNZ:177, https://doi.org/10.6073/pasta/8180b828d8f5244ac1042acb1ca97c97, 2022.
Walker, M. D., Walker, D. A., and Auerbach, N. A.: Plant communities of a tussock tundra landscape in the Brooks Range Foothills, Alaska, J. Veg. Sci., 5, 843–866, https://doi.org/10.2307/3236198, 1994.
Wang, Z., Huang, N., and Pähtz, T.: The effect of turbulence on drifting snow sublimation, Geophys. Res. Lett., 46, 11568–11575, https://doi.org/10.1029/2019GL083636, 2019.
Youcha, E. and Stuefer, S. L.: Meteorological and radiation data, Kuparuk River and nearby watersheds, Alaska: Imnavait B site (IB) and Imnavait Weir (IH) 2017–2023, Arctic Data Center [data set], https://doi.org/10.18739/A2D795C6M, 2024.
Short summary
Sublimation is the hidden portion of the water cycle where snow changes phase directly to water vapor, skipping the liquid state. Though sublimation is difficult to measure, especially in remote regions such as Arctic and subarctic Alaska where this study took place, our measurements confirm that sublimation is a substantial component of the annual water cycle. Results from this research contribute to knowledge of how site conditions affect sublimation rates and the winter hydrologic cycle.
Sublimation is the hidden portion of the water cycle where snow changes phase directly to water...