Articles | Volume 18, issue 12
https://doi.org/10.5194/tc-18-5985-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-5985-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
National Center for Climate Research, Danish Meteorological Institut, Sankt Kjelds Plads 11, 2100 Copenhagen East, Denmark
Henriette Skourup
DTU Space, Danish Technical University, Elektrovej Building 327, 2800 Kongens Lyngby, Denmark
Till A. S. Rasmussen
National Center for Climate Research, Danish Meteorological Institut, Sankt Kjelds Plads 11, 2100 Copenhagen East, Denmark
Related authors
Shreya Trivedi, Imke Sievers, Marylou Athanase, Antonio Sánchez Benítez, and Tido Semmler
EGUsphere, https://doi.org/10.5194/egusphere-2024-2214, https://doi.org/10.5194/egusphere-2024-2214, 2024
Preprint archived
Short summary
Short summary
Our study introduces a new method to compare CMIP6 models' sea ice and snow simulations with in-situ (MOSAiC) measurements. We assessed models for their accuracy in replicating Arctic sea ice and snow thicknesses, using two sea-ice and atmosphere-based methods to select "proxy years." We show that the models often overestimate snow thickness and mistime sea ice cycles. Despite limitations, this approach provides a valuable tool for evaluating climate models in localized time and space.
Imke Sievers, Till A. S. Rasmussen, and Lars Stenseng
The Cryosphere, 17, 3721–3738, https://doi.org/10.5194/tc-17-3721-2023, https://doi.org/10.5194/tc-17-3721-2023, 2023
Short summary
Short summary
The satellite CryoSat-2 measures freeboard (FB), which is used to derive sea ice thickness (SIT) under the assumption of hydrostatic balance. This SIT comes with large uncertainties due to errors in the observed FB, sea ice density, snow density and snow thickness. This study presents a new method to derive SIT by assimilating the FB into the sea ice model, evaluates the resulting SIT against in situ observations and compares the results to the CryoSat-2-derived SIT without FB assimilation.
Imke Sievers, Andrea M. U. Gierisch, Till A. S. Rasmussen, Robinson Hordoir, and Lars Stenseng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-84, https://doi.org/10.5194/tc-2022-84, 2022
Preprint withdrawn
Short summary
Short summary
To predict Arctic sea ice models are used. Many ice models exists. They all are skill full, but give different results. Often this differences result from forcing as for example air temperature. Other differences result from the way the physical equations are solved in the model. In this study two commonly used models are compared under equal forcing, to find out how much the models differ under similar external forcing. The results are compared to observations and to eachother.
Ida Birgitte Lundtorp Olsen, Henriette Skourup, Heidi Sallila, Stefan Hendricks, Renée Mie Fredensborg Hansen, Stefan Kern, Stephan Paul, Marion Bocquet, Sara Fleury, Dmitry Divine, and Eero Rinne
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-234, https://doi.org/10.5194/essd-2024-234, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Discover the latest advancements in sea ice research with our comprehensive Climate Change Initiative (CCI) sea ice thickness (SIT) Round Robin Data Package (RRDP). This pioneering collection contains reference measurements from 1960 to 2022 from airborne sensors, buoys, visual observations and sonar and covers the polar regions from 1993 to 2021, providing crucial reference measurements for validating satellite-derived sea ice thickness.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Shreya Trivedi, Imke Sievers, Marylou Athanase, Antonio Sánchez Benítez, and Tido Semmler
EGUsphere, https://doi.org/10.5194/egusphere-2024-2214, https://doi.org/10.5194/egusphere-2024-2214, 2024
Preprint archived
Short summary
Short summary
Our study introduces a new method to compare CMIP6 models' sea ice and snow simulations with in-situ (MOSAiC) measurements. We assessed models for their accuracy in replicating Arctic sea ice and snow thicknesses, using two sea-ice and atmosphere-based methods to select "proxy years." We show that the models often overestimate snow thickness and mistime sea ice cycles. Despite limitations, this approach provides a valuable tool for evaluating climate models in localized time and space.
Till Andreas Soya Rasmussen, Jacob Poulsen, Mads Hvid Ribergaard, Ruchira Sasanka, Anthony P. Craig, Elizabeth C. Hunke, and Stefan Rethmeier
Geosci. Model Dev., 17, 6529–6544, https://doi.org/10.5194/gmd-17-6529-2024, https://doi.org/10.5194/gmd-17-6529-2024, 2024
Short summary
Short summary
Earth system models (ESMs) today strive for better quality based on improved resolutions and improved physics. A limiting factor is the supercomputers at hand and how best to utilize them. This study focuses on the refactorization of one part of a sea ice model (CICE), namely the dynamics. It shows that the performance can be significantly improved, which means that one can either run the same simulations much cheaper or advance the system according to what is needed.
Imke Sievers, Till A. S. Rasmussen, and Lars Stenseng
The Cryosphere, 17, 3721–3738, https://doi.org/10.5194/tc-17-3721-2023, https://doi.org/10.5194/tc-17-3721-2023, 2023
Short summary
Short summary
The satellite CryoSat-2 measures freeboard (FB), which is used to derive sea ice thickness (SIT) under the assumption of hydrostatic balance. This SIT comes with large uncertainties due to errors in the observed FB, sea ice density, snow density and snow thickness. This study presents a new method to derive SIT by assimilating the FB into the sea ice model, evaluates the resulting SIT against in situ observations and compares the results to the CryoSat-2-derived SIT without FB assimilation.
Imke Sievers, Andrea M. U. Gierisch, Till A. S. Rasmussen, Robinson Hordoir, and Lars Stenseng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-84, https://doi.org/10.5194/tc-2022-84, 2022
Preprint withdrawn
Short summary
Short summary
To predict Arctic sea ice models are used. Many ice models exists. They all are skill full, but give different results. Often this differences result from forcing as for example air temperature. Other differences result from the way the physical equations are solved in the model. In this study two commonly used models are compared under equal forcing, to find out how much the models differ under similar external forcing. The results are compared to observations and to eachother.
Renée Mie Fredensborg Hansen, Eero Rinne, Sinéad Louise Farrell, and Henriette Skourup
The Cryosphere, 15, 2511–2529, https://doi.org/10.5194/tc-15-2511-2021, https://doi.org/10.5194/tc-15-2511-2021, 2021
Short summary
Short summary
Ice navigators rely on timely information about ice conditions to ensure safe passage through ice-covered waters, and one parameter, the degree of ice ridging (DIR), is particularly useful. We have investigated the possibility of estimating DIR from the geolocated photons of ICESat-2 (IS2) in the Bay of Bothnia, show that IS2 retrievals from different DIR areas differ significantly, and present some of the first steps in creating sea ice applications beyond e.g. thickness retrieval.
Cited articles
Assur, A.: Composition of sea ice and its tensile strength, Arctic Sea Ice, 598, 106–138, 1958. a
Feltham, D. L., Untersteiner, N., Wettlaufer, J. S., and Worster, M. G.: Sea ice is a mushy layer, Geophys. Res. Lett., 33, L14501, https://doi.org/10.1029/2006GL026290, 2006. a, b, c, d
Fiedler, E. K., Martin, M. J., Blockley, E., Mignac, D., Fournier, N., Ridout, A., Shepherd, A., and Tilling, R.: Assimilation of sea ice thickness derived from CryoSat-2 along-track freeboard measurements into the Met Office's Forecast Ocean Assimilation Model (FOAM), The Cryosphere, 16, 61–85, https://doi.org/10.5194/tc-16-61-2022, 2022. a, b, c
Garcia, H. E., Boyer, T. P., Baranova, O. K., Locarnini, R. A., Mishonov, A. V., Grodsky, A., Paver, C. R., Weathers, K. W., Smolyar, I. V., Reagan, J. R., Seidov, D., and Zweng, M. M.: World Ocean Atlas, https://www.ncei.noaa.gov/data/oceans/woa/WOA18/DOC/woa18documentation.pdf (last access: 16 January 2023), 2018. a
Garnier, F., Fleury, S., Garric, G., Bouffard, J., Tsamados, M., Laforge, A., Bocquet, M., Fredensborg Hansen, R. M., and Remy, F.: Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka–Ku measurements, The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, 2021. a, b, c, d, e, f
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419 – 5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Gorshkov, S.: Atlas of Oceans: Arctic Ocean, Mil, Def, 199, 1980 (in Russian). a
Haas, C., Lobach, J., Hendricks, S., Rabenstein, L., and Pfaffling, A.: Helicopter-borne measurements of sea ice thickness, using a small and lightweight, digital EM system, J. Appl. Geophys., 67, 234–241, https://doi.org/10.1016/j.jappgeo.2008.05.005, 2009. a
Hendricks, S., Ricker, R., and Paul, S.: Product User Guide & Algorithm Specification: AWI CryoSat-2 Sea Ice Thickness (version 2.4), https://epic.awi.de/id/eprint/53331/, last access: 21 October 2021 (data available at: ftp://ftp.awi.de/sea_ice/product/cryosat2/, last access: 21 October 2021). a, b, c, d, e, f, g, h, i, j, k, l
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hordoir, R., Skagseth, Ø., Ingvaldsen, R. B., Sandø, A. B., Löptien, U., Dietze, H., Gierisch, A. M., Assmann, K. M., Lundesgaard, Ø., and Lind, S.: Changes in Arctic Stratification and Mixed Layer Depth Cycle: A Modeling Analysis, J. Geophys. Res.-Oceans, 127, e2021JC017270, https://doi.org/10.1029/2021JC017270, 2022. a, b
Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, A., Dupont, F., DuVivier, A., Grumbine, R., Hebert, D., Holland, M., Jeffery, N., Lemieux, J.-F., Osinski, R., Rasmussen, T., Ribergaard, M., Roberts, A., Turner, M., Winton, M., and Rethmeier, S.: CICE Version 6.2.0, GitHub [code], https://github.com/CICE-Consortium/CICE/tree/CICE6.2.0 (last access: 7 February 2022), 2021a. a
Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, A., Dupont, F., DuVivier, A., Grumbine, R., Hebert, D., Holland, M., Jeffery, N., Lemieux, J.-F., Osinski, R., Rasmussen, T., Ribergaard, M., Roberts, A., Turner, M., Winton, M., and Rethmeier, S.: CICE-Consortium/CICE: CICE Version 6.2.0, Zenodo [code], https://doi.org/10.5281/zenodo.4671172, 2021b. a
Hunke, E. C.: Sea ice volume and age: Sensitivity to physical parameterizations and thickness resolution in the CICE sea ice model, Ocean Model., 82, 45–59, https://doi.org/10.1016/j.ocemod.2014.08.001, 2014. a
IOC, SCOR and IAPSO: The International thermodynamic equation of seawater – 2010: calculation and use of thermodynamic properties, https://www.teos-10.org/pubs/TEOS-10_Manual.pdf (last access: 6 December 2024), 2015. a
Janout, M. A., Hölemann, J., Laukert, G., Smirnov, A., Krumpen, T., Bauch, D., and Timokhov, L.: On the variability of stratification in the freshwater-influenced Laptev Sea Region, Frontiers in Marine Science, 7, 543489, https://doi.org/10.3389/fmars.2020.543489, 2020. a, b
Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., Krumpen, T., and Haas, C.: Retrieval and parameterisation of sea-ice bulk density from airborne multi-sensor measurements, The Cryosphere, 16, 259–275, https://doi.org/10.5194/tc-16-259-2022, 2022a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Jutila, A., King, J., Paden, J., Ricker, R., Hendricks, S., Polashenski, C., Helm, V., Binder, T., and Haas, C.: High-Resolution Snow Depth on Arctic Sea Ice From Low-Altitude Airborne Microwave Radar Data, IEEE T. Geosci. Remote, 60, 4300716, https://doi.org/10.1109/TGRS.2021.3063756, 2022b. a
Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., and Haas, C.: Airborne sea ice parameters during the PAMARCMIP2017 campaign in the Arctic Ocean, Version 2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.966009, 2024a. a
Jutila, A., Hendricks, S., Ricker, R., von Albedyll, L., and Haas, C.: Airborne sea ice parameters during the IceBird Winter 2019 campaign in the Arctic Ocean, Version 2, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.966057, 2024b. a
Kern, S., Khvorostovsky, K., Skourup, H., Rinne, E., Parsakhoo, Z. S., Djepa, V., Wadhams, P., and Sandven, S.: The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise, The Cryosphere, 9, 37–52, https://doi.org/10.5194/tc-9-37-2015, 2015. a, b, c
King, J., Skourup, H., Hvidegaard, S. M., Rösel, A., Gerland, S., Spreen, G., Polashenski, C., Helm, V., and Liston, G. E.: Comparison of Freeboard Retrieval and Ice Thickness Calculation From ALS, ASIRAS, and CryoSat-2 in the Norwegian Arctic to Field Measurements Made During the N-ICE2015 Expedition, J. Geophys. Res.-Oceans, 123, 1123–1141, https://doi.org/10.1002/2017JC013233, 2018. a, b
Kurtz, N. T. and Farrell, S. L.: Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge, Geophys. Res. Lett., 38, L20505, https://doi.org/10.1029/2011GL049216, 2011. a, b
Kurtz, N. T., Farrell, S. L., Studinger, M., Galin, N., Harbeck, J. P., Lindsay, R., Onana, V. D., Panzer, B., and Sonntag, J. G.: Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, The Cryosphere, 7, 1035–1056, https://doi.org/10.5194/tc-7-1035-2013, 2013. a, b, c, d, e
Kwok, R.: Simulated effects of a snow layer on retrieval of CryoSat-2 sea ice freeboard, Geophys. Res. Lett., 41, 5014–5020, https://doi.org/10.1002/2014GL060993, 2014. a
Kwok, R., Kacimi, S., Webster, M., Kurtz, N., and Petty, A.: Arctic Snow Depth and Sea Ice Thickness From ICESat-2 and CryoSat-2 Freeboards: A First Examination, J. Geophys. Res.-Oceans, 125, e2019JC016008, https://doi.org/10.1029/2019JC016008, 2020. a, b
Landy, J. C., Dawson, G. J., Tsamados, M., Bushuk, M., Stroeve, J. C., Howell, S. E. L., Krumpen, T., Babb, D. G., Komarov, A. S., Heorton, H. D. B. S., Belter, H. J., and Aksenov, Y.: A year-round satellite sea-ice thickness record from CryoSat-2, Nature, 609, 517–522, https://doi.org/10.1038/s41586-022-05058-5, 2022. a, b, c
Lawrence, I. R., Tsamados, M. C., Stroeve, J. C., Armitage, T. W. K., and Ridout, A. L.: Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards, The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, 2018. a, b
Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen, S. H., Reinking, A. K., and Elder, K.: A Lagrangian Snow-Evolution System for Sea-Ice Applications (SnowModel-LG): Part I – Model Description, J. Geophys. Res.-Oceans, 125, e2019JC015913, https://doi.org/10.1029/2019JC015913, 2020. a, b, c
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine, Zenodo [code], https://doi.org/10.5281/zenodo.1472492, 2017. a
Madec, G., Bell, M., Blaker, A., Bricaud, C., Bruciaferri, D., Castrillo, M., Calvert, D., Chanut, J., Clementi, E., Coward, A., Epicoco, I., Éthé, C., Ganderton, J., Harle, J., Hutchinson, K., Iovino, D., Lea, D., Lovato, T., Martin, M., Martin, N., Martins D., Masson S., Mele, F., Mocavero S., Müller, S., Nurser, A.J.G., Paronuzzi, S., Peltier, M., Person, R., Rousset, C., Rynders, S., Samson, G., Téchené, S., Vancoppenolle, M., and Wilson, C.: NEMO Ocean Engine Reference Manual, Zenodo [code], https://doi.org/10.5281/zenodo.8167700, 2023. a
Mallett, R. D. C., Stroeve, J. C,, Cornish, S. B., Crawford, A. D., Lukovich, J. V., Serreze, M. C., Barrett, A. P., Meier, W. N., Heorton, H. D. B. S., and Tsamados, M.: Record winter winds in 2020/21 drove exceptional Arctic sea ice transport, Communications Earth & Environment, 2, 149, https://doi.org/10.1038/s43247-021-00221-8, 2021a. a, b, c
Mallett, R. D. C., Stroeve, J. C., Tsamados, M., Landy, J. C., Willatt, R., Nandan, V., and Liston, G. E.: Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas when accounting for dynamic snow cover, The Cryosphere, 15, 2429–2450, https://doi.org/10.5194/tc-15-2429-2021, 2021b. a
Maslanik, J., Stroeve, J., Fowler, C., and Emery, W.: Distribution and trends in Arctic sea ice age through spring 2011, Geophys. Res. Lett., 38, L13502, https://doi.org/10.1029/2011GL047735, 2011. a
NCEI: WOA 2018 – Data Access: Statistical mean of Temperature on 0.25° grid for all decades, NCEI [data set], https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/bin/woa18.pl (last access: 16 January 2023), 2018. a
Oggier, M., Salganik, E., Whitmore, L., Fong, A. A., Hoppe, C. J. M., Rember, R., Høyland, K. V., Divine, D. V., Gradinger, R., Fons, S. W., Abrahamsson, K., Aguilar-Islas, A. M., Angelopoulos, M., Arndt, S., Balmonte, J. P., Bozzato, D., Bowman, J. S., Castellani, G., Chamberlain, E., Creamean, J., D′Angelo, A., Damm, E., Dumitrascu, A., Eggers, S. L., Gardner, J., Grosfeld, L., Haapala, J., Immerz, A., Kolabutin, N., Lange, B. A., Lei, R., Marsay, C. M., Maus, S., Müller, O., Olsen, L. M., Nuibom, A., Ren, J., Rinke, A., Sheikin, I., Shimanchuk, E., Snoeijs-Leijonmalm, P., Spahic, S., Stefels, J., Torres-Valdés, S., Torstensson, A., Ulfsbo, A., Verdugo, J., Vortkamp, M., Wang, L., Webster, M., Wischnewski, L., and Granskog, M. A.: First-year sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-FYI) during MOSAiC legs 1 to 4 in 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.956732, 2023a. a, b, c, d, e, f
Oggier, M., Salganik, E., Whitmore, L., Fong, A. A., Hoppe, C. J. M., Rember, R., Høyland, K. V., Gradinger, R., Divine, D. V., Fons, S. W., Abrahamsson, K., Aguilar-Islas, A. M., Angelopoulos, M., Arndt, S., Balmonte, J. P., Bozzato, D., Bowman, J. S., Castellani, G., Chamberlain, E., Creamean, J., D′Angelo, A., Damm, E., Dumitrascu, A., Eggers, L., Gardner, J., Grosfeld, L., Haapala, J., Immerz, A., Kolabutin, N., Lange, B. A., Lei, R., Marsay, C. M., Maus, S., Olsen, L. M., Müller, O., Nuibom, A., Ren, J., Rinke, A., Sheikin, I., Shimanchuk, E., Snoeijs-Leijonmalm, P., Spahic, S., Stefels, J., Torres-Valdés, S., Torstensson, A., Ulfsbo, A., Verdugo, J., Vortkamp, M., Wang, L., Webster, M., Wischnewski, L., and Granskog, M. A.: Second-year sea-ice salinity, temperature, density, oxygen and hydrogen isotope composition from the main coring site (MCS-SYI) during MOSAiC legs 1 to 4 in 2019/2020, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.959830, 2023b. a, b, c, d, e
OSI SAF: Global Sea Ice Type (netCDF) – Multimission, EUMETSAT SAF on Ocean and Sea Ice, EUMETSAT [data set], https://doi.org/10.15770/EUM_SAF_OSI_NRT_2006, 2017. a
Pavlov, V. and Stanovoy, V.: Climate Signal in the Fluctuations of the Sea Level and River Run-Off in the Arctic Ocean, World Meteorological Organization-Publications-WMO TD, 184–186, 1998. a
Petty, A. A., Webster, M., Boisvert, L., and Markus, T.: The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis, Geosci. Model Dev., 11, 4577–4602, https://doi.org/10.5194/gmd-11-4577-2018, 2018. a
Ricker, R., Hendricks, S., Perovich, D. K., Helm, V., and Gerdes, R.: Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data, Geophys. Res. Lett., 42, 4447–4455, https://doi.org/10.1002/2015GL064081, 2015. a
Rostosky, P., Spreen, G., Farrell, S. L., Frost, T., Heygster, G., and Melsheimer, C.: Snow Depth Retrieval on Arctic Sea Ice From Passive Microwave Radiometers – Improvements and Extensions to Multiyear Ice Using Lower Frequencies, J. Geophys. Res.-Oceans, 123, 7120–7138, https://doi.org/10.1029/2018JC014028, 2018. a, b
Sallila, H., Farrell, S. L., McCurry, J., and Rinne, E.: Assessment of contemporary satellite sea ice thickness products for Arctic sea ice, The Cryosphere, 13, 1187–1213, https://doi.org/10.5194/tc-13-1187-2019, 2019. a, b, c
Stroeve, J., Liston, G. E., Buzzard, S., Zhou, L., Mallett, R., Barrett, A., Tschudi, M., Tsamados, M., Itkin, P., and Stewart, J. S.: A Lagrangian Snow Evolution System for Sea Ice Applications (SnowModel-LG): Part II – Analyses, J. Geophys. Res.-Oceans, 125, e2019JC015900, https://doi.org/10.1029/2019JC015900, 2020. a, b
Stroeve, J. C., Serreze, M. C., Barrett, A., and Kindig, D. N.: Attribution of recent changes in autumn cyclone associated precipitation in the Arctic, Tellus A, 63, 653–663, https://doi.org/10.1111/j.1600-0870.2011.00515.x, 2011. a, b
Timokhov, L. and Tanis, F.: Environmental Working Group Joint US-Russian Atlas of the Arctic Ocean–Winter Period, Environmental Research Institute of Michigan in association with the National Snow and Ice Data Center, CD-ROM, 1997. a
Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L., Kurtz, N., Laxon, S. W., and Bacon, S.: Impact of Variable Atmospheric and Oceanic Form Drag on Simulations of Arctic Sea Ice, J. Phys. Oceanogr., 44, 1329–1353, https://doi.org/10.1175/JPO-D-13-0215.1, 2014. a, b
Turner, A. K., Hunke, E. C., and Bitz, C. M.: Two modes of sea-ice gravity drainage: A parameterization for large-scale modeling, J. Geophys. Res.-Oceans, 118, 2279–2294, https://doi.org/10.1002/jgrc.20171, 2013. a
Wadhams, P., Tucker III, W. B., Krabill, W. B., Swift, R. N., Comiso, J. C., and Davis, N. R.: Relationship between sea ice freeboard and draft in the Arctic Basin, and implications for ice thickness monitoring, J. Geophys. Res.-Oceans, 97, 20325–20334, https://doi.org/10.1029/92JC02014, 1992. a, b, c, d, e, f
Wagner, D. N., Shupe, M. D., Cox, C., Persson, O. G., Uttal, T., Frey, M. M., Kirchgaessner, A., Schneebeli, M., Jaggi, M., Macfarlane, A. R., Itkin, P., Arndt, S., Hendricks, S., Krampe, D., Nicolaus, M., Ricker, R., Regnery, J., Kolabutin, N., Shimanshuck, E., Oggier, M., Raphael, I., Stroeve, J., and Lehning, M.: Snowfall and snow accumulation during the MOSAiC winter and spring seasons, The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, 2022. a, b
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N., Aleksandrov, Y. I., and Colony, R.: Snow Depth on Arctic Sea Ice, J. Climate, 12, 1814–1829, https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2, 1999. a, b
Willatt, R., Laxon, S., Giles, K., Cullen, R., Haas, C., and Helm, V.: Ku-band radar penetration into snow cover on Arctic sea ice using airborne data, Ann. Glaciol., 52, 197–205, https://doi.org/10.3189/172756411795931589, 2011. a
Ye, Y., Luo, Y., Sun, Y., Shokr, M., Aaboe, S., Girard-Ardhuin, F., Hui, F., Cheng, X., and Chen, Z.: Inter-comparison and evaluation of Arctic sea ice type products, The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023, 2023. a, b
Zhou, L., Stroeve, J., Xu, S., Petty, A., Tilling, R., Winstrup, M., Rostosky, P., Lawrence, I. R., Liston, G. E., Ridout, A., Tsamados, M., and Nandan, V.: Inter-comparison of snow depth over Arctic sea ice from reanalysis reconstructions and satellite retrieval, The Cryosphere, 15, 345–367, https://doi.org/10.5194/tc-15-345-2021, 2021. a, b
Zhuk, V. R. and Kubryakov, A. A.: Interannual Variability of the Lena River Plume Propagation in 1993–2020 during the Ice-Free Period on the Base of Satellite Salinity, Temperature, and Altimetry Measurements, Remote Sensing, 13, 4252, https://doi.org/10.3390/rs13214252, 2021. a
Zweng, M. M, Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K. W., Paver, C. R., and Smolyar, I. V.: World ocean atlas 2018, Volume 2: Salinity, https://www.ncei.noaa.gov/sites/default/files/2022-06/woa18_vol2.pdf (last access: 5 December 2024), 2019. a, b, c, d
Zweng, M. M., Boyer, T. P., Baranova, O. K., Reagan, J. R., Seidov, D., and Smolyar, I. V.: An inventory of Arctic Ocean data in the World Ocean Database, Earth Syst. Sci. Data, 10, 677–687, https://doi.org/10.5194/essd-10-677-2018, 2018. a, b, c
Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.: Uncertainties in Arctic sea ice thickness and volume: new estimates and implications for trends, The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014, 2014. a, b
Short summary
To derive sea ice thickness (SIT) from satellite freeboard (FB) observations, assumptions about snow thickness, snow density, sea ice density and water density are needed. These parameters are impossible to observe alongside FB, so many existing products use empirical values. In this study, modeled values are used instead. The modeled values and otherwise commonly used empirical values are evaluated against in situ observations. In a further analysis, the influence on SIT is quantified.
To derive sea ice thickness (SIT) from satellite freeboard (FB) observations, assumptions about...