Articles | Volume 18, issue 12
https://doi.org/10.5194/tc-18-5939-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-5939-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterizing ground ice content and origin to better understand the seasonal surface dynamics of the Gruben rock glacier and the adjacent Gruben debris-covered glacier (southern Swiss Alps)
Julie Wee
CORRESPONDING AUTHOR
Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland
Sebastián Vivero
Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland
Tamara Mathys
Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland
Coline Mollaret
Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland
Christian Hauck
Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland
Christophe Lambiel
Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
Jan Beutel
Department of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria
Wilfried Haeberli
Geography Department, University of Zurich, 8057 Zurich, Switzerland
Related authors
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
The Cryosphere, 19, 143–171, https://doi.org/10.5194/tc-19-143-2025, https://doi.org/10.5194/tc-19-143-2025, 2025
Short summary
Short summary
We use electrical conductivity and induced polarization in an imaging framework to quantify hydrogeological parameters in the active Gran Sometta rock glacier. The results show high spatial variability in the hydrogeological parameters across the rock glacier and are validated by saltwater tracer tests coupled with 3D electrical conductivity imaging. Hydrogeological information was linked to kinematic data to further investigate its role in rock glacier movement.
Line Rouyet, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Diego Cusicanqui, Margaret Darrow, Reynald Delaloye, Thomas Echelard, Christophe Lambiel, Lucas Ruiz, Lea Schmid, Flavius Sirbu, and Tazio Strozzi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-598, https://doi.org/10.5194/essd-2024-598, 2025
Preprint under review for ESSD
Short summary
Short summary
Rock glaciers are landforms generated by the creep of frozen ground (permafrost) in cold-climate mountains. Mapping rock glaciers contributes to document the distribution and the dynamics of mountain permafrost. We compiled inventories documenting the location, the characteristics, and the extent of rock glaciers in 12 mountain regions around the world. In each region, a team of operators performed the work following common rules and agreed on final solutions when discrepancies were identified.
Roberto Giovanni Francese, Roberto Valentino, Wilfried Haeberli, Aldino Bondesan, Massimo Giorgi, Stefano Picotti, Franco Pettenati, Denis Sandron, Gianni Ramponi, and Mauro Valt
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-212, https://doi.org/10.5194/nhess-2024-212, 2024
Preprint under review for NHESS
Short summary
Short summary
The deadly collapse of the Marmolada Glacier in Italy in July 2022, is part of a global trend of rapid glacial retreat due to climate change. The event was influenced by permafrost degradation and abnormal warming. Historical data, geophysical surveys, and numerical simulations were used to analyze the collapse. Ice fracturing, water infiltration, and basal lubrication were key contributors. Predicting glacier instability is rather complex but monitoring is vital to cope with the hazard.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Cassandra E.M. Koenig, Christin Hilbich, Christian Hauck, Lukas U. Arenson, and Pablo Wainstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2244, https://doi.org/10.5194/egusphere-2024-2244, 2024
Short summary
Short summary
This study presents an analysis of ground temperature data from 53 high-altitude boreholes in permafrost regions of the Central Andes. Results show that thermal characteristics of the region align with other mountain permafrost areas, while also showing unique features. The dataset could improve permafrost models and monitoring efforts, and inform mitigation strategies. The study highlights a notable collaboration between industry, academia, and regulators for advancing climate change research.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Adam Emmer, Oscar Vilca, Cesar Salazar Checa, Sihan Li, Simon Cook, Elena Pummer, Jan Hrebrina, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-2316, https://doi.org/10.5194/egusphere-2024-2316, 2024
Short summary
Short summary
We report in detail the most recent large landslide-triggered glacial lake outburst flood (GLOF) in the Peruvian Andes (the 2023 Rasac GLOF), analyze its preconditions, consequences, and the role of changing climate. Our study contibutes to understanding GLOF occurrence patterns in space and time and corroborates increasing frequency of such events in changing mountains.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023, https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Short summary
Across the Tibetan Plateau, many large lakes have been changing level during the last decades as a response to climate change. In high-mountain environments, water fluxes from the land to the lakes are linked to the ground temperature of the land and to the energy fluxes between the ground and the atmosphere, which are modified by climate change. With a numerical model, we test how these water and energy fluxes have changed over the last decades and how they influence the lake level variations.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022, https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Short summary
In view of water scarcity in the Andes, the significance of permafrost as a future water resource is often debated focusing on satellite-detected features such as rock glaciers. We present data from > 50 geophysical surveys in Chile and Argentina to quantify the ground ice volume stored in various permafrost landforms, showing that not only rock glacier but also non-rock-glacier permafrost contains significant ground ice volumes and is relevant when assessing the hydrological role of permafrost.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Cristian Scapozza, Chantal Del Siro, Christophe Lambiel, and Christian Ambrosi
Geogr. Helv., 76, 401–423, https://doi.org/10.5194/gh-76-401-2021, https://doi.org/10.5194/gh-76-401-2021, 2021
Short summary
Short summary
Exposure ages make it possible to determine the time of weathering of a rock surface. They can be determined from rebound values measured with the Schmidt hammer and calibrated on surfaces of known age, defined in this study thanks to historical cartography and two mule tracks built in 300 and 1250 CE, which allowed us to reconstruct glacier fluctuations over the last 3 centuries in Val Scaradra and to define the time of deglaciation and rock glacier development in the Splügenpass region.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Sebastián Vivero, Reynald Delaloye, and Christophe Lambiel
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2021-8, https://doi.org/10.5194/esurf-2021-8, 2021
Preprint withdrawn
Short summary
Short summary
We use repeated drone flights to measure the velocities of a rock glacier located in the western Swiss Alps. The results are validated by comparing with simultaneous GPS measurements. Between 2016 and 2019, the rock glacier doubled its overall frontal velocity, from 5 m to more than 10 m per year. These high velocities and the development of a scarp feature indicate a rock glacier destabilisation phase. Finally, this work highlights the use of drones for rock glacier monitoring.
Maximilian Weigand, Florian M. Wagner, Jonas K. Limbrock, Christin Hilbich, Christian Hauck, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 9, 317–336, https://doi.org/10.5194/gi-9-317-2020, https://doi.org/10.5194/gi-9-317-2020, 2020
Short summary
Short summary
In times of global warming, permafrost is starting to degrade at alarming rates, requiring new and improved characterization approaches. We describe the design and test installation, as well as detailed data quality assessment, of a monitoring system used to capture natural electrical potentials in the subsurface. These self-potential signals are of great interest for the noninvasive investigation of water flow in the non-frozen or partially frozen subsurface.
Mohammad Farzamian, Gonçalo Vieira, Fernando A. Monteiro Santos, Borhan Yaghoobi Tabar, Christian Hauck, Maria Catarina Paz, Ivo Bernardo, Miguel Ramos, and Miguel Angel de Pablo
The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020, https://doi.org/10.5194/tc-14-1105-2020, 2020
Short summary
Short summary
A 2-D automated electrical resistivity tomography (A-ERT) system was installed for the first time in Antarctica at Deception Island to (i) monitor subsurface freezing and thawing processes on a daily and seasonal basis and map the spatial and temporal variability of thaw depth and to (ii) study the impact of short-lived extreme meteorological events on active layer dynamics.
Christoph Rohner, David Small, Jan Beutel, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019, https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Short summary
The recent increase in ice flow and calving rates of ocean–terminating glaciers contributes substantially to the mass loss of the Greenland Ice Sheet. Using in situ reference observations, we validate the satellite–based method of iterative offset tracking of Sentinel–1A data for deriving flow speeds. Our investigations highlight the importance of spatial resolution near the fast–flowing calving front, resulting in significantly higher ice velocities compared to large–scale operational products.
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Short summary
We present a long-term multisite electrical resistivity tomography monitoring network (more than 1000 datasets recorded from six mountain permafrost sites). Despite harsh and remote measurement conditions, the datasets are of good quality and show consistent spatio-temporal variations yielding significant added value to point-scale borehole information. Observed long-term trends are similar for all permafrost sites, showing ongoing permafrost thaw and ground ice loss due to climatic conditions.
Jan Mudler, Andreas Hördt, Anita Przyklenk, Gianluca Fiandaca, Pradip Kumar Maurya, and Christian Hauck
The Cryosphere, 13, 2439–2456, https://doi.org/10.5194/tc-13-2439-2019, https://doi.org/10.5194/tc-13-2439-2019, 2019
Short summary
Short summary
The capacitively coupled resistivity (CCR) method enables the determination of frequency-dependent electrical parameters of the subsurface. CCR is well suited for application in cryospheric areas because it provides logistical advantages regarding coupling on hard surfaces and highly resistive grounds. With our new spectral two-dimensional inversion, we can identify subsurface structures based on full spectral information. We show the first results of the inversion method on the field scale.
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
Jérome Faillettaz, Martin Funk, Jan Beutel, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 19, 1399–1413, https://doi.org/10.5194/nhess-19-1399-2019, https://doi.org/10.5194/nhess-19-1399-2019, 2019
Short summary
Short summary
We developed a new strategy for real-time early warning of
gravity-driven slope failures (such as landslides, rockfalls, glacier break-off, etc.). This method enables us to investigate natural slope stability based on continuous monitoring and interpretation of seismic waves generated by the potential instability. Thanks to a pilot experiment, we detected typical patterns of precursory events prior to slide events, demonstrating the potential of this method for real-word applications.
Alessandro Cicoira, Jan Beutel, Jérome Faillettaz, Isabelle Gärtner-Roer, and Andreas Vieli
The Cryosphere, 13, 927–942, https://doi.org/10.5194/tc-13-927-2019, https://doi.org/10.5194/tc-13-927-2019, 2019
Short summary
Short summary
Rock glacier flow varies on multiple timescales. The variations have been linked to climatic forcing, but a quantitative understanding is still missing.
We use a 1-D numerical modelling approach coupling heat conduction to a creep model in order to study the influence of temperature variations on rock glacier flow. Our results show that heat conduction alone cannot explain the observed variations. Other processes, likely linked to water, must dominate the short-term velocity signal.
Sebastián Vivero and Christophe Lambiel
Geogr. Helv., 74, 59–69, https://doi.org/10.5194/gh-74-59-2019, https://doi.org/10.5194/gh-74-59-2019, 2019
Matthias Meyer, Samuel Weber, Jan Beutel, and Lothar Thiele
Earth Surf. Dynam., 7, 171–190, https://doi.org/10.5194/esurf-7-171-2019, https://doi.org/10.5194/esurf-7-171-2019, 2019
Short summary
Short summary
Monitoring rock slopes for a long time helps to understand the impact of climate change on the alpine environment. Measurements of seismic signals are often affected by external influences, e.g., unwanted anthropogenic noise. In the presented work, these influences are automatically identified and removed to enable proper geoscientific analysis. The methods presented are based on machine learning and intentionally kept generic so that they can be equally applied in other (more generic) settings.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Benjamin Mewes, Christin Hilbich, Reynald Delaloye, and Christian Hauck
The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, https://doi.org/10.5194/tc-11-2957-2017, 2017
Cécile Pellet and Christian Hauck
Hydrol. Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017, https://doi.org/10.5194/hess-21-3199-2017, 2017
Short summary
Short summary
This paper presents a detailed description of the new Swiss soil moisture monitoring network SOMOMOUNT, which comprises six stations distributed along an elevation gradient ranging from 1205 to 3410 m. The liquid soil moisture (LSM) data collected during the first 3 years are discussed with regard to their soil type and climate dependency as well as their altitudinal distribution. The elevation dependency of the LSM was found to be non-linear with distinct dynamics at high and low elevation.
Jonas Wicky and Christian Hauck
The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, https://doi.org/10.5194/tc-11-1311-2017, 2017
Short summary
Short summary
Talus slopes are a widespread geomorphic feature, which may show permafrost conditions even at low elevation due to cold microclimates induced by a gravity-driven internal air circulation. We show for the first time a numerical simulation of this internal air circulation of a field-scale talus slope. Results indicate that convective heat transfer leads to a pronounced ground cooling in the lower part of the talus slope favoring the persistence of permafrost.
Samuel Weber, Jan Beutel, Jérome Faillettaz, Andreas Hasler, Michael Krautblatter, and Andreas Vieli
The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, https://doi.org/10.5194/tc-11-567-2017, 2017
Short summary
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
V. Wirz, S. Gruber, R. S. Purves, J. Beutel, I. Gärtner-Roer, S. Gubler, and A. Vieli
Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, https://doi.org/10.5194/esurf-4-103-2016, 2016
W. Haeberli
The Cryosphere Discuss., https://doi.org/10.5194/tc-2015-222, https://doi.org/10.5194/tc-2015-222, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Area- and slope-related approaches for estimating thicknesses and calculating volumes of unmeasured glaciers are compared with respect to statistical regression/correlation, area definition, error propagation, calibration/validation and average versus distributed values. Slope-related techniques and numerical modeling making full use of 3-D-information are better constrained and provide realistic glacier-bed topographies. Corresponding results are available at local to regional and global scales
A. Ekici, S. Chadburn, N. Chaudhary, L. H. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. D. Friend, C. Hauck, G. Krinner, M. Langer, P. A. Miller, and C. Beer
The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015, https://doi.org/10.5194/tc-9-1343-2015, 2015
Short summary
Short summary
This paper compares the performance of different land models in estimating soil thermal regimes at distinct cold region landscape types. Comparing models with different processes reveal the importance of surface insulation (snow/moss layer) and soil internal processes (heat/water transfer). The importance of model processes also depend on site conditions such as high/low snow cover, dry/wet soil types.
P. Pogliotti, M. Guglielmin, E. Cremonese, U. Morra di Cella, G. Filippa, C. Pellet, and C. Hauck
The Cryosphere, 9, 647–661, https://doi.org/10.5194/tc-9-647-2015, https://doi.org/10.5194/tc-9-647-2015, 2015
Short summary
Short summary
This study presents the thermal state and recent evolution of permafrost at Cime Bianche.
The analysis reveals that (i) spatial variability of MAGST is greater than its interannual variability and is controlled by snow duration and air temperature during the snow-free period, (ii) the ALT has a pronounced spatial variability caused by a different subsurface ice and water content, and (iii) permafrost is warming at significant rates below 8m of depth.
B. Staub, A. Marmy, C. Hauck, C. Hilbich, and R. Delaloye
Geogr. Helv., 70, 45–62, https://doi.org/10.5194/gh-70-45-2015, https://doi.org/10.5194/gh-70-45-2015, 2015
A. Ekici, C. Beer, S. Hagemann, J. Boike, M. Langer, and C. Hauck
Geosci. Model Dev., 7, 631–647, https://doi.org/10.5194/gmd-7-631-2014, https://doi.org/10.5194/gmd-7-631-2014, 2014
M. Scherler, S. Schneider, M. Hoelzle, and C. Hauck
Earth Surf. Dynam., 2, 141–154, https://doi.org/10.5194/esurf-2-141-2014, https://doi.org/10.5194/esurf-2-141-2014, 2014
S. Schneider, S. Daengeli, C. Hauck, and M. Hoelzle
Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, https://doi.org/10.5194/gh-68-265-2013, 2013
W. Haeberli and A. Linsbauer
The Cryosphere, 7, 817–821, https://doi.org/10.5194/tc-7-817-2013, https://doi.org/10.5194/tc-7-817-2013, 2013
Related subject area
Discipline: Frozen ground | Subject: Geomorphology
Review article: Retrogressive thaw slump characteristics and terminology
The cryostratigraphy of thermo-erosion gullies in the Canadian High Arctic demonstrates the resilience of permafrost
A climate-driven, altitudinal transition in rock glacier dynamics detected through integration of geomorphological mapping and synthetic aperture radar interferometry (InSAR)-based kinematics
Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes
Assessment of rock glaciers and their water storage in Guokalariju, Tibetan Plateau
Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements
Permafrost degradation at two monitored palsa mires in north-west Finland
Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain
Recent degradation of interior Alaska permafrost mapped with ground surveys, geophysics, deep drilling, and repeat airborne lidar
Thaw-driven mass wasting couples slopes with downstream systems, and effects propagate through Arctic drainage networks
Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina
Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau
Permafrost distribution and conditions at the headwalls of two receding glaciers (Schladming and Hallstatt glaciers) in the Dachstein Massif, Northern Calcareous Alps, Austria
Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica
Evaluating the destabilization susceptibility of active rock glaciers in the French Alps
Nina Nesterova, Marina Leibman, Alexander Kizyakov, Hugues Lantuit, Ilya Tarasevich, Ingmar Nitze, Alexandra Veremeeva, and Guido Grosse
The Cryosphere, 18, 4787–4810, https://doi.org/10.5194/tc-18-4787-2024, https://doi.org/10.5194/tc-18-4787-2024, 2024
Short summary
Short summary
Retrogressive thaw slumps (RTSs) are widespread in the Arctic permafrost landforms. RTSs present a big interest for researchers because of their expansion due to climate change. There are currently different scientific schools and terminology used in the literature on this topic. We have critically reviewed existing concepts and terminology and provided clarifications to present a useful base for experts in the field and ease the introduction to the topic for scientists who are new to it.
Samuel Gagnon, Daniel Fortier, Étienne Godin, and Audrey Veillette
The Cryosphere, 18, 4743–4763, https://doi.org/10.5194/tc-18-4743-2024, https://doi.org/10.5194/tc-18-4743-2024, 2024
Short summary
Short summary
Thermo-erosion gullies (TEGs) are one of the most common forms of abrupt permafrost degradation. While their inception has been examined in several studies, the processes of their stabilization remain poorly documented. For this study, we investigated two TEGs in the Canadian High Arctic. We found that, while the formation of a TEG leaves permanent geomorphological scars in landscapes, in the long term, permafrost can recover to conditions similar to those pre-dating the initial disturbance.
Aldo Bertone, Nina Jones, Volkmar Mair, Riccardo Scotti, Tazio Strozzi, and Francesco Brardinoni
The Cryosphere, 18, 2335–2356, https://doi.org/10.5194/tc-18-2335-2024, https://doi.org/10.5194/tc-18-2335-2024, 2024
Short summary
Short summary
Traditional inventories display high uncertainty in discriminating between intact (permafrost-bearing) and relict (devoid) rock glaciers (RGs). Integration of InSAR-based kinematics in South Tyrol affords uncertainty reduction and depicts a broad elevation belt of relict–intact coexistence. RG velocity and moving area (MA) cover increase linearly with elevation up to an inflection at 2600–2800 m a.s.l., which we regard as a signature of sporadic-to-discontinuous permafrost transition.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Mengzhen Li, Yanmin Yang, Zhaoyu Peng, and Gengnian Liu
The Cryosphere, 18, 1–16, https://doi.org/10.5194/tc-18-1-2024, https://doi.org/10.5194/tc-18-1-2024, 2024
Short summary
Short summary
We map a detailed rock glaciers inventory to further explore the regional distribution controlling factors, water storage, and permafrost probability distribution in Guokalariju. Results show that (i) the distribution of rock glaciers is controlled by the complex composition of topo-climate factors, increases in precipitation are conducive to rock glaciers forming at lower altitudes, and (ii) 1.32–3.60 km3 of water is stored in the rock glaciers, or ~ 59 % of the water glaciers presently store.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Mariana Verdonen, Alexander Störmer, Eliisa Lotsari, Pasi Korpelainen, Benjamin Burkhard, Alfred Colpaert, and Timo Kumpula
The Cryosphere, 17, 1803–1819, https://doi.org/10.5194/tc-17-1803-2023, https://doi.org/10.5194/tc-17-1803-2023, 2023
Short summary
Short summary
The study revealed a stable and even decreasing thickness of thaw depth in peat mounds with perennially frozen cores, despite overall rapid permafrost degradation within 14 years. This means that measuring the thickness of the thawed layer – a commonly used method – is alone insufficient to assess the permafrost conditions in subarctic peatlands. The study showed that climate change is the main driver of these permafrost features’ decay, but its effect depends on the peatland’s local conditions.
Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, and Reinhard Pienitz
The Cryosphere, 16, 2837–2857, https://doi.org/10.5194/tc-16-2837-2022, https://doi.org/10.5194/tc-16-2837-2022, 2022
Short summary
Short summary
Buried glacier ice is widespread in Arctic regions that were once covered by glaciers and ice sheets. In this study, we investigated the influence of buried glacier ice on the formation of Arctic tundra lakes on Bylot Island, Nunavut. Our results suggest that initiation of deeper lakes was triggered by the melting of buried glacier ice. Given future climate projections, the melting of glacier ice permafrost could create new aquatic ecosystems and strongly modify existing ones.
Thomas A. Douglas, Christopher A. Hiemstra, John E. Anderson, Robyn A. Barbato, Kevin L. Bjella, Elias J. Deeb, Arthur B. Gelvin, Patricia E. Nelsen, Stephen D. Newman, Stephanie P. Saari, and Anna M. Wagner
The Cryosphere, 15, 3555–3575, https://doi.org/10.5194/tc-15-3555-2021, https://doi.org/10.5194/tc-15-3555-2021, 2021
Short summary
Short summary
Permafrost is actively degrading across high latitudes due to climate warming. We combined thousands of end-of-summer active layer measurements, permafrost temperatures, geophysical surveys, deep borehole drilling, and repeat airborne lidar to quantify permafrost warming and thawing at sites across central Alaska. We calculate the mass of permafrost soil carbon potentially exposed to thaw over the past 7 years (0.44 Pg) is similar to the yearly carbon dioxide emissions of Australia.
Steven V. Kokelj, Justin Kokoszka, Jurjen van der Sluijs, Ashley C. A. Rudy, Jon Tunnicliffe, Sarah Shakil, Suzanne E. Tank, and Scott Zolkos
The Cryosphere, 15, 3059–3081, https://doi.org/10.5194/tc-15-3059-2021, https://doi.org/10.5194/tc-15-3059-2021, 2021
Short summary
Short summary
Climate-driven landslides are transforming glacially conditioned permafrost terrain, coupling slopes with aquatic systems, and triggering a cascade of downstream effects. Nonlinear intensification of thawing slopes is primarily affecting headwater systems where slope sediment yields overwhelm stream transport capacity. The propagation of effects across watershed scales indicates that western Arctic Canada will be an interconnected hotspot of thaw-driven change through the coming millennia.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Johannes Buckel, Eike Reinosch, Andreas Hördt, Fan Zhang, Björn Riedel, Markus Gerke, Antje Schwalb, and Roland Mäusbacher
The Cryosphere, 15, 149–168, https://doi.org/10.5194/tc-15-149-2021, https://doi.org/10.5194/tc-15-149-2021, 2021
Short summary
Short summary
This study presents insights into the remote cryosphere of a mountain range at the Tibetan Plateau. Small-scaled studies and field data about permafrost occurrence are very scarce. A multi-method approach (geomorphological mapping, geophysics, InSAR time series analysis) assesses the lower occurrence of permafrost the range of 5350 and 5500 m above sea level (a.s.l.) in the Qugaqie basin. The highest, multiannual creeping rates up to 150 mm/yr are observed on rock glaciers.
Matthias Rode, Oliver Sass, Andreas Kellerer-Pirklbauer, Harald Schnepfleitner, and Christoph Gitschthaler
The Cryosphere, 14, 1173–1186, https://doi.org/10.5194/tc-14-1173-2020, https://doi.org/10.5194/tc-14-1173-2020, 2020
Kelsey Winsor, Kate M. Swanger, Esther Babcock, Rachel D. Valletta, and James L. Dickson
The Cryosphere, 14, 1–16, https://doi.org/10.5194/tc-14-1-2020, https://doi.org/10.5194/tc-14-1-2020, 2020
Short summary
Short summary
We studied an ice-cored rock glacier in Taylor Valley, Antarctica, coupling ground-penetrating radar analyses with stable isotope and major ion geochemistry of (a) surface ponds and (b) buried clean ice. These analyses indicate that the rock glacier ice is fed by a nearby alpine glacier, recording multiple Holocene to late Pleistocene glacial advances. We demonstrate the potential to use rock glaciers and buried ice, common throughout Antarctica, to map previous glacial extents.
Marco Marcer, Charlie Serrano, Alexander Brenning, Xavier Bodin, Jason Goetz, and Philippe Schoeneich
The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, https://doi.org/10.5194/tc-13-141-2019, 2019
Short summary
Short summary
This study aims to assess the occurrence of rock glacier destabilization in the French Alps, a process that causes a landslide-like behaviour of permafrost debris slopes. A significant number of the landforms in the region were found to be experiencing destabilization. Multivariate analysis suggested a link between destabilization occurrence and permafrost thaw induced by climate warming. These results call for a regional characterization of permafrost hazards in the context of climate change.
Cited articles
Amschwand, D., Scherler, M., Hoelzle, M., Krummenacher, B., Haberkorn, A., Kienholz, C., and Gubler, H.: Surface heat fluxes at coarse blocky Murtèl rock glacier (Engadine, eastern Swiss Alps), The Cryosphere, 18, 2103–2139, https://doi.org/10.5194/tc-18-2103-2024, 2024.
Archie, G. E.: The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Trans. AIME, 146, 54–62, https://doi.org/10.2118/942054-G, 1942.
Ballantyne, C. K.: Periglacial Geomorphology, John Wiley & Sons, 496 pp., 2018.
Benn, D. I., Wiseman, S., and Hands, K. A.: Growth and drainage of supraglacial lakes on debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal, J. Glaciol., 47, 626–638, https://doi.org/10.3189/172756501781831729, 2001.
Bosson, J.-B. and Lambiel, C.: Internal Structure and Current Evolution of Very Small Debris-Covered Glacier Systems Located in Alpine Permafrost Environments, Front. Earth Sci., 4, 39, https://doi.org/10.3389/feart.2016.00039, 2016.
Bosson, J.-B., Deline, P., Bodin, X., Schoeneich, P., Baron, L., Gardent, M., and Lambiel, C.: The influence of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two cirque glacier systems, Earth Surf. Process. Landf., 40, 666–680, https://doi.org/10.1002/esp.3666, 2015.
Buri, P., Pellicciotti, F., Steiner, J. F., Miles, E. S., and Immerzeel, W. W.: A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers, Ann. Glaciol., 57, 199–211, https://doi.org/10.3189/2016AoG71A059, 2016.
Carturan, L., Rastner, P., and Paul, F.: On the disequilibrium response and climate change vulnerability of the mass-balance glaciers in the Alps, J. Glaciol., 66, 1034–1050, https://doi.org/10.1017/jog.2020.71, 2020.
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the seasonal rhythm of rock glacier flow, Earth Planet. Sci. Lett., 528, 115844, https://doi.org/10.1016/j.epsl.2019.115844, 2019.
Cicoira, A., Marcer, M., Gärtner‐Roer, I., Bodin, X., Arenson, L. U., and Vieli, A.: A general theory of rock glacier creep based on in‐situ and remote sensing observations, Permafr. Periglac. Process., 32, 139–153, https://doi.org/10.1002/ppp.2090, 2021.
Cicoira, A., Weber, S., Biri, A., Buchli, B., Delaloye, R., Da Forno, R., Gärtner-Roer, I., Gruber, S., Gsell, T., Hasler, A., Lim, R., Limpach, P., Mayoraz, R., Meyer, M., Noetzli, J., Phillips, M., Pointner, E., Raetzo, H., Scapozza, C., Strozzi, T., Thiele, L., Vieli, A., Vonder Mühll, D., Wirz, V., and Beutel, J.: In situ observations of the Swiss periglacial environment using GNSS instruments, Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, 2022.
Colombo, N., Salerno, F., Martin, M., Malandrino, M., Giardino, M., Serra, E., Godone, D., Said-Pullicino, D., Fratianni, S., Paro, L., Tartari, G., and Freppaz, M.: Influence of permafrost, rock and ice glaciers on chemistry of high-elevation ponds (NW Italian Alps), Sci. Total Environ., 685, 886–901, https://doi.org/10.1016/j.scitotenv.2019.06.233, 2019.
Cusicanqui, D., Bodin, X., Duvillard, P.-A., Schoeneich, P., Revil, A., Assier, A., Berthet, J., Peyron, M., Roudnitska, S., and Rabatel, A.: Glacier, permafrost and thermokarst interactions in Alpine terrain: Insights from seven decades of reconstructed dynamics of the Chauvet glacial and periglacial system (Southern French Alps), Earth Surf. Process. Landf., 48, 2595–2612, https://doi.org/10.1002/esp.5650, 2023.
Debella-Gilo, M. and Kääb, A.: Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation, Remote Sens. Environ., 115, 130–142, https://doi.org/10.1016/j.rse.2010.08.012, 2011.
Del Siro, C., Scapozza, C., Perga, M.-E., and Lambiel, C.: Investigating the origin of solutes in rock glacier springs in the Swiss Alps: A conceptual model, Front. Earth Sci., 11, 1056305, https://doi.org/10.3389/feart.2023.1056305, 2023.
Draebing, D.: Application of refraction seismics in alpine permafrost studies: A review, Earth-Sci. Rev., 155, 136–152, https://doi.org/10.1016/j.earscirev.2016.02.006, 2016.
Etzelmüller, B. and Hagen, J. O.: Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard, Geol. Soc. Lond. Spec. Publ., 242, 11–27, https://doi.org/10.1144/GSL.SP.2005.242.01.02, 2005.
Gärtner-Roer, I. and Bast, A.: (Ground) Ice in the Proglacial Zone, in: Geomorphology of Proglacial Systems, Springer, 85–98, ISBN 978-3-319-94182-0, 2019.
Gärtner-Roer, I., Brunner, N., Delaloye, R., Haeberli, W., Kääb, A., and Thee, P.: Glacier–permafrost relations in a high-mountain environment: 5 decades of kinematic monitoring at the Gruben site, Swiss Alps, The Cryosphere, 16, 2083–2101, https://doi.org/10.5194/tc-16-2083-2022, 2022.
Glover, P. W. J.: A generalized Archie's law for n phases, Geophysics, 75, E247–E265, https://doi.org/10.1190/1.3509781, 2010.
Günther, T. and Rücker, C.: Boundless Electrical Resistivity Tomography BERT 2 – the user tutorial, version 2.4.1, http://www.resistivity.net/download/bert-tutorial.pdf (last access: 16 December 2024), 2023.
Haeberli, W.: Eistemperaturen in den Alpen, Z. Für Gletscherkunde Glazialgeol., XI/2, 203–220, 1976.
Haeberli, W.: Investigating glacier-permafrost relationships in high-mountain areas: historical background, selected examples and research needs, Geol. Soc. Lond. Spec. Publ., 242, 29–37, https://doi.org/10.1144/GSL.SP.2005.242.01.03, 2005.
Haeberli, W. and Vonder Mühll, D.: On the characteristics and possible origins of ice in rock glacier permafrost, Zeitschrift für Geomorphologie, 43–57, 1996.
Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V., Ladanyi, B., Matsuoka, N., Springman, S., and Mühll, D. V.: Permafrost creep and rock glacier dynamics, Permafr. Periglac. Process., 17, 189–214, https://doi.org/10.1002/ppp.561, 2006.
Haeberli, W., Arenson, L. U., Wee, J., Hauck, C., and Mölg, N.: Discriminating viscous-creep features (rock glaciers) in mountain permafrost from debris-covered glaciers – a commented test at the Gruben and Yerba Loca sites, Swiss Alps and Chilean Andes, The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, 2024.
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021.
Hauck, C.: Geophysical methods for detecting permafrost in high mountains, PhD Thesis, ETH Zurich, https://doi.org/10.3929/ethz-a-004172478, 2001.
Hauck, C. and Kneisel, C.: Applied geophysics in periglacial environments, Cambridge University Press, ISBN 978-0-521-88966-7, 2008.
Hauck, C., Böttcher, M., and Maurer, H.: A new model for estimating subsurface ice content based on combined electrical and seismic data sets, The Cryosphere, 5, 453–468, https://doi.org/10.5194/tc-5-453-2011, 2011.
Herring, T., Lewkowicz, A. G., Hauck, C., Hilbich, C., Mollaret, C., Oldenborger, G. A., Uhlemann, S., Farzamian, M., Calmels, F., and Scandroglio, R.: Best practices for using electrical resistivity tomography to investigate permafrost, Permafr. Periglac. Process., 34, 494–512, https://doi.org/10.1002/ppp.2207, 2023.
Hilbich, C.: Time-lapse refraction seismic tomography for the detection of ground ice degradation, The Cryosphere, 4, 243–259, https://doi.org/10.5194/tc-4-243-2010, 2010.
Hilbich, C., Hauck, C., Mollaret, C., Wainstein, P., and Arenson, L. U.: Towards accurate quantification of ice content in permafrost of the Central Andes – Part 1: Geophysics-based estimates from three different regions, The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022, 2022.
Huss, M. and Fischer, M.: Sensitivity of Very Small Glaciers in the Swiss Alps to Future Climate Change, Front. Earth Sci., 4, 34, https://doi.org/10.3389/feart.2016.00034, 2016.
IPA Action Group RGIK: Guidelines for inventorying rock glaciers, https://doi.org/10.51363/unifr.srr.2023.002, 2023.
Isaksen, K., Ødegård, R. S., Eiken, T., and Sollid, J. L.: Composition, flow and development of two tongue-shaped rock glaciers in the permafrost of Svalbard, Permafr. Periglac. Process., 11, 241–257, https://doi.org/10.1002/1099-1530(200007/09)11:3<241::AID-PPP358>3.0.CO;2-A, 2000.
Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W., and Schlüchter, C.: Latest Pleistocene and Holocene glacier variations in the European Alps, Quat. Sci. Rev., 28, 2137–2149, https://doi.org/10.1016/j.quascirev.2009.03.009, 2009.
Kääb, A. and Haeberli, W.: Evolution of a high-mountain thermokarst lake in the Swiss Alps, Arct. Antarct. Alp. Res., 33, 385–390, 2001.
Kääb, A. and Vollmer, M.: Surface Geometry, Thickness Changes and Flow Fields on Creeping Mountain Permafrost: Automatic Extraction by Digital Image Analysis, Permafr. Periglac. Process., 11, 315–326, https://doi.org/10.1002/1099-1530(200012)11:4<315::AID-PPP365>3.0.CO;2-J, 2000.
Kääb, A., Haeberli, W., and Gudmundsson, G. H.: Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps, Permafr. Periglac. Process., 8, 409–426, https://doi.org/10.1002/(SICI)1099-1530(199710/12)8:4<409::AID-PPP267>3.0.CO;2-C, 1997.
Kellerer-Pirklbauer, A., Bodin, X., Delaloye, R., Lambiel, C., Gärtner-Roer, I., Bonnefoy-Demongeot, M., Carturan, L., Damm, B., Eulenstein, J., Fischer, A., Hartl, L., Ikeda, A., Kaufmann, V., Krainer, K., Matsuoka, N., Cella, U. M. D., Noetzli, J., Seppi, R., Scapozza, C., Schoeneich, P., Stocker-Waldhuber, M., Thibert, E., and Zumiani, M.: Acceleration and interannual variability of creep rates in mountain permafrost landforms (rock glacier velocities) in the European Alps in 1995–2022, Environ. Res. Lett., 19, 034022, https://doi.org/10.1088/1748-9326/ad25a4, 2024.
Kenner, R.: Geomorphological analysis on the interaction of Alpine glaciers and rock glaciers since the Little Ice Age, Land Degrad. Dev., 30, 580–591, https://doi.org/10.1002/ldr.3238, 2019.
Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H., and Phillips, M.: Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps, The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, 2019.
King, L., Fisch, W., Haeberli, W., and Wächter, H. P.: Comparison of resistivity and radio-echo sounding on rock glacier permafrost, Z. Für Gletscherkunde Glazialgeol., 32, 77–97, 1987.
Kneisel, C. and Kääb, A.: Mountain permafrost dynamics within a recently exposed glacier forefield inferred by a combined geomorphological, geophysical and photogrammetrical approach, Earth Surf. Process. Landf., 32, 1797–1810, https://doi.org/10.1002/esp.1488, 2007.
Kunz, J. and Kneisel, C.: Glacier–Permafrost Interaction at a Thrust Moraine Complex in the Glacier Forefield Muragl, Swiss Alps, Geosciences, 10, 205, https://doi.org/10.3390/geosciences10060205, 2020.
Kunz, J., Ullmann, T., and Kneisel, C.: Internal structure and recent dynamics of a moraine complex in an alpine glacier forefield revealed by geophysical surveying and Sentinel-1 InSAR time series, Geomorphology, 398, 108052, https://doi.org/10.1016/j.geomorph.2021.108052, 2022.
Lambiel, C. and Delaloye, R.: Contribution of real-time kinematic GPS in the study of creeping mountain permafrost: examples from the Western Swiss Alps, Permafr. Periglac. Process., 15, 229–241, https://doi.org/10.1002/ppp.496, 2004.
Maisch, M., Haeberli, W., Frauenfelder, R., Kääb, A., and Rothenbühler, C.: Lateglacial and Holocene evolution of glaciers and permafrost in the Val Muragl, Upper Engadin, Swiss Alps, in: Proceedings 8th International Conference on Permafrost, International Conference on Permafrost, 20–15 July 2003, Zurich, Switzerland, 717–722, ISBN 90 5809 582 7, 2003.
Mölg, N., Ferguson, J., Bolch, T., and Vieli, A.: On the influence of debris cover on glacier morphology: How high-relief structures evolve from smooth surfaces, Geomorphology, 357, 107092, https://doi.org/10.1016/j.geomorph.2020.107092, 2020.
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., and Hauck, C.: Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, 2019.
Mollaret, C., Wagner, F. M., Hilbich, C., Scapozza, C., and Hauck, C.: Petrophysical Joint Inversion Applied to Alpine Permafrost Field Sites to Image Subsurface Ice, Water, Air, and Rock Contents, Front. Earth Sci., 8, 85, https://doi.org/10.3389/feart.2020.00085, 2020.
Monnier, S. and Kinnard, C.: Reconsidering the glacier to rock glacier transformation problem: New insights from the central Andes of Chile, Geomorphology, 238, 47–55, https://doi.org/10.1016/j.geomorph.2015.02.025, 2015.
Monnier, S., Kinnard, C., Surazakov, A., and Bossy, W.: Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30°08′ S., 69°55′ W.), Geomorphology, 207, 126–140, https://doi.org/10.1016/j.geomorph.2013.10.031, 2014.
Navarro, G., Valois, R., MacDonell, S., De Pasquale, G., and Díaz, J. P.: Internal structure and water routing of an ice-debris landform assemblage using multiple geophysical methods in the semiarid Andes, Front. Earth Sci., 11, 1102620, https://doi.org/10.3389/feart.2023.1102620, 2023.
Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer using meteorological data, J. Glaciol., 52, 463–470, https://doi.org/10.3189/172756506781828584, 2006.
Noetzli, J. and Pellet, C. (Eds.): PERMOS 2023. Swiss Permafrost Bulletin 2022 (Annual report No. 4 on permafrost observation in the Swiss Alps), Cryospheric Commission of the Swiss Academy of Sciences, https://doi.org/10.13093/permos-bull-2023, 2023.
PERMOS: PERMOS Database, Swiss Permafrost Monitoring Network, Davos and Fribourg, Switzerland [data set], https://doi.org/10.13093/permos-2024-01, 2024.
Redpath, T. A. N., Sirguey, P., Fitzsimons, S. J., and Kääb, A.: Accuracy assessment for mapping glacier flow velocity and detecting flow dynamics from ASTER satellite imagery: Tasman Glacier, New Zealand, Remote Sens. Environ., 133, 90–101, https://doi.org/10.1016/j.rse.2013.02.008, 2013.
Reynard, E., Lambiel, C., Delaloye, R., Devaud, G., Baron, L., Chapellier, D., Marescot, L., and Monnet, R.: Glacier/permafrost relationships in forefields of small glaciers (Swiss Alps), in: Proceedings 8th international conference on permafrost, International Conference on Permafrost, 20–15 July 2003, Zurich, Switzerland, 947–952, ISBN 90 5809 582 7, 2003.
Ribolini, A., Guglielmin, M., Fabre, D., Bodin, X., Marchisio, M., Sartini, S., Spagnolo, M., and Schoeneich, P.: The internal structure of rock glaciers and recently deglaciated slopes as revealed by geoelectrical tomography: insights on permafrost and recent glacial evolution in the Central and Western Alps (Italy–France), Quat. Sci. Rev., 29, 507–521, https://doi.org/10.1016/j.quascirev.2009.10.008, 2010.
Robson, B. A., Bolch, T., MacDonell, S., Hölbling, D., Rastner, P., and Schaffer, N.: Automated detection of rock glaciers using deep learning and object-based image analysis, Remote Sens. Environ., 250, 112033, https://doi.org/10.1016/j.rse.2020.112033, 2020.
Rounce, D. R., Quincey, D. J., and McKinney, D. C.: Debris-covered glacier energy balance model for Imja–Lhotse Shar Glacier in the Everest region of Nepal, The Cryosphere, 9, 2295–2310, https://doi.org/10.5194/tc-9-2295-2015, 2015.
Rücker, C., Günther, T., and Wagner, F. M.: pyGIMLi: An open-source library for modelling and inversion in geophysics, Comput. Geosci., 109, 106–123, https://doi.org/10.1016/j.cageo.2017.07.011, 2017.
Seppi, R., Zanoner, T., Carton, A., Bondesan, A., Francese, R., Carturan, L., Zumiani, M., Giorgi, M., and Ninfo, A.: Current transition from glacial to periglacial processes in the Dolomites (South-Eastern Alps), Geomorphology, 228, 71–86, https://doi.org/10.1016/j.geomorph.2014.08.025, 2015.
Seppi, R., Carturan, L., Carton, A., Zanoner, T., Zumiani, M., Cazorzi, F., Bertone, A., Baroni, C., and Salvatore, M. C.: Decoupled kinematics of two neighbouring permafrost creeping landforms in the Eastern Italian Alps, Earth Surf. Process. Landf., 44, 2703–2719, https://doi.org/10.1002/esp.4698, 2019.
Staub, B., Lambiel, C., and Delaloye, R.: Rock glacier creep as a thermally-driven phenomenon: A decade of inter-annual observation from the Swiss Alps, XI International Conference on Permafrost – Book of Abstracts, 96–97, https://doi.org/10.2312/GFZ.LIS.2016.001, 2016.
Streletskiy, D., Noetzli, J., Smith, S. L., Vieira, G., Schoeneich, P., Hrbacek, F., and Irrgang, A. M.: Strategy and Implementation Plan for the Global Terrestrial Network for Permafrost (GTN-P) 2021–2024, Zenodo [data set], https://doi.org/10.5281/zenodo.6075468, 2021.
Sun, Z., Hu, Y., Racoviteanu, A., Liu, L., Harrison, S., Wang, X., Cai, J., Guo, X., He, Y., and Yuan, H.: TPRoGI: a comprehensive rock glacier inventory for the Tibetan Plateau using deep learning, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2024-28, in review, 2024.
Timur, A.: Velocity of compressional waves in porous media at permafrost temperatures, Geophysics, 33, 584–595, https://doi.org/10.1190/1.1439954, 1968.
Vivero, S., Bodin, X., Farías-Barahona, D., MacDonell, S., Schaffer, N., Robson, B. A., and Lambiel, C.: Combination of Aerial, Satellite, and UAV Photogrammetry for Quantifying Rock Glacier Kinematics in the Dry Andes of Chile (30° S) Since the 1950s, Front. Remote Sens., 2, https://doi.org/10.3389/frsen.2021.784015, 2021.
Vivero, S., Hendrickx, H., Frankl, A., Delaloye, R., and Lambiel, C.: Kinematics and geomorphological changes of a destabilising rock glacier captured from close-range sensing techniques (Tsarmine rock glacier, Western Swiss Alps), Front. Earth Sci., 10, 1017949, https://doi.org/10.3389/feart.2022.1017949, 2022.
Wagner, F. M., Mollaret, C., Günther, T., Kemna, A., and Hauck, C.: Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data, Geophys. J. Int., 219, 1866–1875, https://doi.org/10.1093/gji/ggz402, 2019.
Wee, J. and Delaloye, R.: Post-glacial dynamics of an alpine Little Ice Age glacitectonized frozen landform (Aget, western Swiss Alps), Permafr. Periglac. Process., 33, 370–385, https://doi.org/10.1002/ppp.2158, 2022.
Whalley, W. B.: Gruben glacier and rock glacier, Wallis, Switzerland: glacier ice exposures and their interpretation, Geogr. Ann. Ser. Phys. Geogr., 102, 141–161, https://doi.org/10.1080/04353676.2020.1765578, 2020.
Wirz, V., Beutel, J., Gruber, S., Gubler, S., and Purves, R. S.: Estimating velocity from noisy GPS data for investigating the temporal variability of slope movements, Nat. Hazards Earth Syst. Sci., 14, 2503–2520, https://doi.org/10.5194/nhess-14-2503-2014, 2014.
Wirz, V., Geertsema, M., Gruber, S., and Purves, R. S.: Temporal variability of diverse mountain permafrost slope movements derived from multi-year daily GPS data, Mattertal, Switzerland, Landslides, 13, 67–83, https://doi.org/10.1007/s10346-014-0544-3, 2016.
Short summary
This study highlights the importance of a multi-method and multi-disciplinary approach to better understand the influence of the internal structure of the Gruben glacier-forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
This study highlights the importance of a multi-method and multi-disciplinary approach to better...