Articles | Volume 18, issue 7
https://doi.org/10.5194/tc-18-3117-2024
https://doi.org/10.5194/tc-18-3117-2024
Research article
 | 
04 Jul 2024
Research article |  | 04 Jul 2024

A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery

Lanqing Huang and Irena Hajnsek

Related authors

Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry
Lanqing Huang, Georg Fischer, and Irena Hajnsek
The Cryosphere, 15, 5323–5344, https://doi.org/10.5194/tc-15-5323-2021,https://doi.org/10.5194/tc-15-5323-2021, 2021
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Grounded ridge detection and characterization along the Alaska Arctic coastline using ICESat-2 surface height retrievals
Kennedy A. Lange, Alice C. Bradley, Kyle Duncan, and Sinéad L. Farrell
The Cryosphere, 19, 2045–2065, https://doi.org/10.5194/tc-19-2045-2025,https://doi.org/10.5194/tc-19-2045-2025, 2025
Short summary
Novel methods to study sea ice deformation, linear kinematic features and coherent dynamic clusters from imaging remote sensing data
Polona Itkin
The Cryosphere, 19, 1135–1151, https://doi.org/10.5194/tc-19-1135-2025,https://doi.org/10.5194/tc-19-1135-2025, 2025
Short summary
Drift-aware sea ice thickness maps from satellite remote sensing
Robert Ricker, Thomas Lavergne, Stefan Hendricks, Stephan Paul, Emily Down, Mari Anne Killie, and Marion Bocquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-359,https://doi.org/10.5194/egusphere-2025-359, 2025
Short summary
Snow depth estimation on leadless landfast ice using Cryo2Ice satellite observations
Monojit Saha, Julienne Stroeve, Dustin Isleifson, John Yackel, Vishnu Nandan, Jack Christopher Landy, and Hoi Ming Lam
The Cryosphere, 19, 325–346, https://doi.org/10.5194/tc-19-325-2025,https://doi.org/10.5194/tc-19-325-2025, 2025
Short summary
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary

Cited articles

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. a
Castellani, G., Lüpkes, C., Hendricks, S., and Gerdes, R.: Variability of Arctic sea-ice topography and its impact on the atmospheric surface drag, J. Geophys. Res.-Oceans, 119, 6743–6762, https://doi.org/10.1002/2013JC009712, 2014. a, b
Cloude, S.: Polarisation: applications in remote sensing, Oxford University Press, https://doi.org/10.1093/acprof:oso/9780199569731.001.0001, 2010. a, b
Dall, J.: InSAR elevation bias caused by penetration into uniform volumes, IEEE T. Geosci. Remote, 45, 2319–2324, https://doi.org/10.1109/TGRS.2007.896613, 2007. a
Dammann, D. O., Eicken, H., Mahoney, A. R., Saiet, E., Meyer, F. J., and George, J. C.: Traversing sea ice–linking surface roughness and ice trafficability through SAR polarimetry and interferometry, IEEE J. Sel. Top. Appl., 11, 416–433, https://doi.org/10.1109/JSTARS.2017.2764961, 2017. a
Download
Short summary
Interferometric synthetic aperture radar can measure the total freeboard of sea ice but can be biased when radar signals penetrate snow and ice. We develop a new method to retrieve the total freeboard and analyze the regional variation of total freeboard and roughness in the Weddell and Ross seas. We also investigate the statistical behavior of the total freeboard for diverse ice types. The findings enhance the understanding of Antarctic sea ice topography and its dynamics in a changing climate.
Share