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Abstract. The total freeboard, which is the ice layer above
water level and includes the snow thickness, is needed to re-
trieve the ice thickness and ice surface topography. Single-
pass interferometric synthetic aperture radar (InSAR) allows
for the generation of digital elevation models (DEMs) over
the drifting sea ice. However, accurate sea ice DEMs (i.e.,
the total freeboard) derived from InSAR are impeded due to
variation in the penetration of the radar signals into the snow
and ice layers. This research introduces a novel methodology
for retrieving sea ice DEMs using dual-polarization interfer-
ometric SAR images, considering the variation in radar pen-
etration bias across multiple ice types. The accuracy of the
method is verified through photogrammetric measurements,
demonstrating that the derived DEM has a root-mean-square
error of 0.26 m over a 200 km× 19 km area. The method is
further applied to broader regions in the Weddell Sea and
the Ross Sea, offering new insights into the regional vari-
ations of the sea ice topography in the Antarctic. We also
characterize the non-Gaussian statistical behavior of the total
freeboard using log-normal and exponential-normal distribu-
tions. The results suggest that the exponential-normal distri-
bution is superior in the thicker-sea-ice region (average to-
tal freeboard > 0.5 m), whereas the two distributions exhibit
similar performance in the thinner-ice region (average total
freeboard < 0.5 m). These findings offer an in-depth repre-
sentation of the total freeboard and roughness in the Weddell
and Ross seas. The novel methodology introduced here can
be conducted on time series data to comprehend the dynam-
ics of the sea ice, including its growth and deformation.

1 Introduction

The sea ice topography refers to the shape, height, and large-
scale roughness of sea ice at the meter scale. It encompasses
a variety of ice features, including rafted ice, ridges, rubble
fields, and hummocks, all of which contribute to the intricate
nature of the sea ice topography (Weeks and Ackley, 1986).
The presence of snow cover atop the ice surface further influ-
ences the topographic characteristics, adding another layer of
complexity to the overall sea ice topography (Massom et al.,
2001).

The sea ice surface topography plays a crucial role in un-
derstanding sea ice dynamics and interactions within the air–
ocean–ice system. It determines the spatial distribution of
distinct surface features such as snow dunes (Trujillo et al.,
2016; Iacozza and Barber, 1999) and deformed ice (Haas
et al., 1999; Petty et al., 2016), which are impacted by the
forces from winds and currents. Moreover, the atmospheric
drag coefficient over sea ice, which is topography dependent,
is an important parameter for understanding interactions at
the ice–atmosphere boundary (Garbrecht et al., 2002; Castel-
lani et al., 2014).

The sea ice topography can be described through a digital
elevation model (DEM), which refers to the total freeboard
(snow+ ice) above the local sea surface. The DEM (i.e., total
freeboard) can be converted to the thickness if the snow depth
is known and the values of the snow, ice, and seawater den-
sities are assumed (Kwok and Kacimi, 2018). Estimating sea
ice thickness over time offers valuable insights into the over-
all stability of sea ice in the changing climate. Furthermore,
mapping the sea ice topography is paramount for safe navi-
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gation in polar oceans. By providing information on ice de-
formation and identifying safe routes, accurate sea ice topog-
raphy maps contribute to ensuring the safety and efficiency
of ship navigation in challenging environments (Dammann
et al., 2017).

Sea ice DEMs can be obtained using laser altime-
ters mounted on different platforms, including helicopters
(Dierking, 1995), aircraft such as IceBridge (Petty et al.,
2016), and satellites like ICESat-1 (Zwally et al., 2008) and
ICESat-2 (Kacimi and Kwok, 2020). These laser altimeters
provide high spatial resolution (< 1 m) when measuring the
total freeboard. However, limited spatial coverage and long
revisit times (e.g., 91 d for ICESat-2) restrict their capac-
ity for consistent and comprehensive sea ice monitoring. In
recent decades, synthetic aperture radar (SAR) has been of
significant importance for Earth observation as it offers a
balance between spatial resolution (meters to tens of me-
ters) and swath coverage (tens to hundreds of kilometers).
SAR is unaffected by weather conditions or daylight limita-
tions, enabling consistent data acquisition with a revisit time
of around 10 days. Notably, the single-pass interferometric
SAR (InSAR) sensor, exemplified by TanDEM-X, presents
an unprecedented opportunity to generate sea ice DEMs over
landfast sea ice (Dierking et al., 2017; Yitayew et al., 2018).
For drifting ice, the accuracy of InSAR-derived DEMs can
be affected by additional phase shifts induced by ice motion.
Dierking et al. (2017) calculated and theoretically discussed
the sensitivity of InSAR-derived DEMs concerning the drift-
ing velocity of the ice, the InSAR frequency, and the baseline
configuration.

Nevertheless, an InSAR-derived DEM can be affected by
the variation in the penetration of microwaves into the snow
and ice layers. Dry snow can have penetration depths of
up to hundreds of wavelengths (Guneriussen et al., 2001).
For X-band SAR, the penetration into younger ice, such as
new and first-year ice, is minimal due to the high salinity
of the ice surface (Hallikainen and Winebrenner, 1992). On
the other hand, for older and desalinated ice, such as multi-
year ice, the penetration depth varies from 0–1 m depending
on the temperature and salinity (Hallikainen and Winebren-
ner, 1992; Huang et al., 2021). To account for the mecha-
nism of the scattering from the volumes (snow and ice) and
layers (snow–ice–water interfaces), a two-layer-plus-volume
(TLPV) model (Huang et al., 2021) has been developed to
determine the penetration depth over snow-covered old ice
in the Antarctic. This model improves the precision of sea
ice topographic mapping by offsetting the InSAR phase cen-
ter to the top surface.

SAR polarimetry complements interferometry by provid-
ing valuable insights into scattering processes and has proven
useful for characterizing sea ice properties (Winebrenner
et al., 1995; Ressel et al., 2016; Singha et al., 2018). For old
and deformed ice, a radar theory has been developed to ex-
amine the relationship between scattering mechanisms and
the sea ice DEM (Nghiem et al., 2022), resulting in a geo-

physical model function based on co-polarimetric coherence
for retrieving the sea ice DEM (Huang et al., 2022). These
findings emphasize the significance of integrating polarimet-
ric and interferometric information for accurate sea ice to-
pography mapping using SAR imagery.

Given the variations in the microwaves’ penetration depth
into snow and ice, the capacity to derive a sea ice DEM
from SAR imagery over a broad spatial scale encompass-
ing diverse ice types is still constrained. In this study, we
develop an innovative two-step method to generate a sea ice
DEM across multiple ice types using machine learning and
polarimetric-interferometry SAR techniques. The initial step
involves the development of a random-forest classifier using
specific SAR features to categorize sea ice into two groups,
small-penetration-condition ice (SPI) and large-penetration-
condition ice (LPI), based on the penetration depth of mi-
crowaves into the snow and ice. Subsequently, a sea ice DEM
is created for each ice type. In the case of SPI, standard In-
SAR processing is applied to determine the total freeboard.
For LPI, a novel inversion algorithm is proposed to estimate
the parameters of the developed TLPV model (Huang et al.,
2021). This model allows for the correction of the penetra-
tion bias in the InSAR signal over LPI, resulting in accu-
rate retrieval of the total freeboard. We validate the proposed
method against the photogrammetric DEM from the Ice-
Bridge aircraft. A root-mean-square error (RMSE) of 0.26 m
between the derived DEM and reference data indicates an
improved accuracy of total freeboard retrieval.

We further apply the proposed two-step approach to 162
SAR images covering 12 segments (each covering an area
of ∼ 500 km× 20 km) in the Weddell and Ross seas. This
allows broad mapping of the sea ice DEM and roughness,
offering new insights into the topographic patterns of sea
ice at a large spatial scale. Note that the roughness in this
study refers to the macroscale roughness, which is defined
as the standard deviation of the total freeboard within a
50 m× 50 m window. We analyze the variation in sea ice
DEM and roughness in the southwards direction and asso-
ciate it with the variation in sea ice classes obtained from
an operational product from the US National Ice Center. The
statistics of the total freeboard over various regions are mod-
eled using the log-normal and exponential-modified normal
distributions. The findings enhance our understanding of sea
ice formation and dynamics and can be used to interpret geo-
physical parameters associated with the sea ice topography.

The paper is structured as follows. Section 2 describes the
data sets and data-processing procedures. The two-step ap-
proach for sea ice DEM retrieval is introduced in Sect. 3. The
retrieval results and interpretation of topographic character-
istics are given in Sect. 4 and further discussed in Sect. 5.
Finally, Sect. 6 summarizes the study.
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Figure 1. Geolocation of the study area. The northernmost position in each segment is marked with a star symbol and serves as a reference
point for calculating the relative distance in Sect. 4.2.

2 Data sets and processing

2.1 Study area

The region of interest includes both the Weddell Sea and the
Ross Sea, as shown in Fig. 1. The SAR footprints over the
two seas are enlarged in boxes A and B, respectively. The
footprints consist of 12 segments, each corresponding to a
sequence of SAR images within the same orbit that were ac-
quired with only a few seconds’ difference. The segments
will be referred to as W1-U, W1-L, W2-U, W2-L, W3-U,
W3-L, W4, W5-U, W5-L, R1-U, R1-L, and R5 in the fol-
lowing sections for conciseness.

2.2 SAR imagery

The TanDEM-X is a SAR interferometer that operates as a
bistatic single-pass system that is capable of acquiring two
images simultaneously (Krieger et al., 2007). The two im-
ages are co-registered single-look complex products, which
can be processed to derive the sea ice DEM through interfer-
ometry.

In the study, we collected 162 SAR images over the 12
segments in StripMap mode in dual-pol (dual-polarimetric)
channels (HH and VV). The pixel spacing is around
0.9 m× 2.7 m in slant range and azimuth. The acquisition
time and the number of images for each segment are listed
in Table 1. The incidence angle (InA) is measured at the cen-
ter of the scene, and the height of ambiguity (HoA) corre-
sponds to an interferometric phase change of 2π . Note that
for R5, the larger HoA leads to higher average uncertainty
in the derived InSAR height (hInSAR) compared to other In-

SAR configurations with a smaller HoA. More details can be
found in Sect. A1 in the Appendix.

The multilook processing was conducted using a 4× 12
window, resulting in ∼ 10 m× 10 m pixel spacing in az-
imuth and ground range. This resolution (∼ 10 m× 10 m)
was subsequently utilized for the sea ice classification and
DEM retrieval detailed in Sect. 3. The backscattering inten-
sity σmeasure of the images includes additive thermal noise,
which can be described by the noise-equivalent sigma zero
(NESZ) and is assumed to be uncorrelated with the signal
(Nghiem et al., 1995). Removing the thermal noise allows
for a better representation of sea ice features, which is cru-
cial for ice classification. We denoised backscattering in-
tensities for the different polarizations (i.e., HH, VV, Pauli-
1 (HH+VV), and Pauli-2 (HH−VV)) by subtracting the
NESZ from σmeasure (Huang et al., 2022). More details about
the thermal noise removal can be found in Sect. A2 in the
Appendix. The denoised backscattering intensities are used
in the following sections.

2.3 Optical digital mapping system (DMS) data

With an objective to investigate the Antarctic sea ice topogra-
phy, Operation IceBridge (OIB) and the TanDEM-X Antarc-
tic Science Campaign (OTASC) (Nghiem et al., 2018) were
successfully carried out along a portion of W1, as shown
in Fig. 2a. Equipped with a digital mapping system (DMS),
the OIB aircraft captured optical images (Dominguez, 2010)
and generated a DEM using photogrammetric techniques at
a spatial resolution of approximately 40 cm× 40 cm with a
vertical accuracy of 0.2 m (Dotson and Arvesen., 2012). The
DMS acquisitions occurred between 17:45 and 18:44 UTC
on 29 October 2017. Figure 2b and c showcase DMS optical
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Table 1. Summary of SAR acquisitions and ice charts over the study area.

Segment Number of SAR acquisition HoA (m) InA (°) Weekly average
SAR images time ice chart

(end date)

W1-L 20 24 Oct 2017 T 23:30 30–35 29 26 Oct 2017
W1-U 13 29 Oct 2017 T 23:41 33–35 35 2 Nov 2017
W2-L 19 25 Oct 2017 T 23:13 30–35 29 26 Oct 2017
W2-U 12 30 Oct 2017 T 23:23 32–34 35 2 Nov 2017
W3-L 18 26 Oct 2017 T 22:56 30–35 29 2 Nov 2017
W3-U 8 22 Nov 2017 T 23:05 36–37 35 23 Nov 2017
W4 12 1 Nov 2017 T 22:49 32–34 35 2 Nov 2017
W5-L 18 2 Nov 2017 T 22:30 30–34 29 9 Nov 2017
W5-U 15 27 Oct 2017 T 22:41 31–34 35 2 Nov 2017
R1-L 12 11 Nov 2017 T 07:16 33–35 31 16 Nov 2017
R1-U 6 25 Oct 2017 T 07:25 34–35 36 26 Oct 2017
R5 9 7 Nov 2017 T 09:58 40–42 35 9 Nov 2017

Figure 2. (a) Geolocation of DMS measurements superimposed on four SAR footprints in segment W1-U. Zoomed-in views of the DMS
digital images at points A and B (green dots) are displayed in (b) and (c), respectively.

images taken over specific areas, highlighting a diverse range
of sea ice features, including ridges, deformed ice, smooth
ice with snow cover, and snow-free ice.

In this study, we geocoded the DMS DEM to match the co-
ordinates and resolution of the multilooked SAR image, the
latter of which is approximately 10 m× 10 m in both range
and azimuth. Note that the DMS DEM gives height values
relative to the WGS-84 ellipsoid. To obtain the total free-
board, we calibrated the DMS DEM to the local sea level
through manual selection of the water surface from DMS
images (Huang et al., 2021). The calibrated DMS DEM is
henceforth referred to as the DMS DEM for brevity.

As the sea ice is constantly moving, co-registration is
crucial to compensate for the time lag (∼ 6 h) between the
DMS sensor and TanDEM-X. To achieve this, we carefully
aligned the two data sets by identifying distinctive sea ice
features in both the optical and the SAR images (Huang et al.,
2021, 2022). Note that the segments lacking distinctive sea

ice features in the optical and SAR images were eliminated to
ensure co-registration quality. The co-registered DMS DEM
is used as reference data in this study.

2.4 Ice charts

The US National Ice Center’s Antarctic sea ice charts (re-
ferred to simply as “ice charts” hereafter) offer weekly prod-
ucts detailing the total sea ice concentration, partial concen-
tration, and stage of development (U.S. National Ice Center,
2022). The ice charts covering the date of SAR acquisitions
are listed in Table 1.

The ice charts are provided in Shapefile format as grids
with a spatial resolution of 10 km× 10 km. For each spec-
ified latitude and longitude, three ice concentration values
are given, each corresponding to a different stage of ice de-
velopment. Details of these stages and their corresponding
thicknesses can be found in the first and second columns of
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Figure 3. The dominant ice type from the US National Ice Center’s Antarctica weekly sea ice chart (26 October 2017).

Table 2, respectively. The postprocessing of the ice charts
consisted of two steps. First, we categorized the three stages
of ice into thin ice (TI), first-year ice (FYI), and multiyear
ice (MYI) types according to the third column of Table 2.
Next, we extracted the ice concentration values for TI, FYI,
and MYI, respectively. An example of an ice chart, which
shows the dominant ice type, is provided in Fig. 3. Note that
the dominant ice type refers to the ice type with the highest
concentration values.

2.5 SAR interferometry

A single-pass interferometer acquires two simultaneous ob-
servations, denoted as s1 and s2. The complex interfero-
gram γ and the interferometric phase φγ can be described
as (Cloude, 2010)

γ = s1s
∗

2 (1)
φγ = arg{s1s∗2 }. (2)

The further processing of φγ includes flat-earth removal,
interferogram filtering, low-coherence area masking, and
phase unwrapping (Huang and Hajnsek, 2021). The result-
ing φ′γ can be converted to height using

hInSAR = ha
φ′γ

2π
, (3)

Table 2. Stages of development for each ice type category (U.S.
National Ice Center, 2022).

Stage of ice Thickness (cm) Ice type
development

New ice < 10 Thin ice (TI)
Nilas, ice rind < 10
Young ice 10 to < 30
Gray ice 10 to < 15
Gray-white ice 15 to < 30

FYI ≥ 30–200 First-year ice (FYI)
Thin FYI 30 to < 70
Medium FYI 70 to < 120
Thick FYI ≥ 120

Old ice Multiyear ice (MYI)
Second-year ice
Multiyear ice

where hInSAR is the height of the InSAR phase center and
ha is the HoA related to the InSAR baseline configuration
provided in Table 1.

The complex interferometric coherence γ̃InSAR between
the two images can be estimated by (Cloude, 2010)

γ̃InSAR = γInSAR · e
iφγ =

〈s1s
∗

2 〉√
〈s1s
∗

1 〉〈s2s
∗

2 〉
, (4)
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where the symbol 〈.〉 denotes an ensemble average within a
4× 12 multilooking window. Pixels with γInSAR< 0.3 were
designated as water areas and excluded from further process-
ing. The above interferometric processing was carried out us-
ing the GAMMA software.

The hInSAR obtained from Eq. (3) was further calibrated to
the average water surface. Instead of identifying water pixels
that were masked out due to the low InSAR coherence (less
than 0.3), we selected smooth and new ice regions, assum-
ing they were thin enough and their elevations (i.e., radar
freeboards) were negligible and approximately equal to the
water surface. Smooth and thin ice regions typically exhibit
very low backscattering intensities in SAR images (Dierking
et al., 2017). Therefore, we selected pixels with backscatter-
ing intensities within the range of −19 to −18 dB, slightly
above TanDEM-X’s noise level (−19 dB), and generated a
histogram of hInSAR values for these pixels. We determined
the third percentile of the height of these pixels as the wa-
ter surface elevation. The threshold value, i.e., the third per-
centile, was chosen by applying the method to four SAR sce-
narios overlaid with the DMS DEM. By choosing the third
percentile as the water surface level, we ensured alignment
between the water surface levels derived from InSAR and
those from the DMS data, thus validating the threshold value.
Note that we estimate a single value representing the wa-
ter surface for each SAR scene. However, it is important to
note that this method may introduce inaccuracies due to the
centimeter-level radar freeboard of the selected thin and new
ice as well as the fluctuating water surface within each SAR
scenario.

2.6 SAR polarimetry

SAR polarimetry reflects the scattering mechanisms and has
been proven to be a proxy for characterizing sea ice prop-
erties (Wakabayashi et al., 2004; Ressel et al., 2016; Huang
and Hajnsek, 2021; Singha et al., 2018; Nghiem et al., 2022).

2.6.1 Co-polarization ratio

The co-polarization (coPol) ratio (RcoPol) measures the
backscattering intensity ratio between the dual-pol channels
and can be calculated as follows:

RcoPol =
σHH

σVV
, (5)

where σHH and σVV are the denoised SAR backscattering in-
tensities in the dual-pol channels on a linear scale. RcoPol,
extracted from L-band SAR images, is associated with the di-
electric constant and has therefore been used as an indicator
of ice thickness (Wakabayashi et al., 2004). Further investi-
gation is required to determine if RcoPol from the X band can
also serve as a proxy for ice thickness. Additionally, RcoPol
has been identified as an important feature for discriminating
thicker ice and water and is an effective tool for classifying
sea ice in X-band SAR imagery (Ressel et al., 2016).

2.6.2 Pauli-polarization ratio

Similarly, we can obtain the Pauli-polarization ratio (RPauli)
from

RPauli =
σP1

σP2
=
|sHH+ sVV|

2

|sHH− sVV|2
, (6)

where σP1 and σP2 are the denoised SAR backscattering in-
tensities in Pauli-1 and Pauli-2 polarizations on a linear scale,
respectively. sHH and sVV are single-look complex images in
dual-pol channels.

2.6.3 Complex coPol coherence

The complex coPol correlation γ̃coPol is calculated as (Lee
and Pottier, 2009)

γ̃coPol = γcoPol · e
iφcoPol =

〈sVVs
∗
HH〉√

〈sVVs
∗
VV〉〈sHHs

∗
HH〉

, (7)

where γcoPol is the coPol coherence magnitude and φcoPol is
the coPol phase.
γcoPol measures the degree of electromagnetic wave depo-

larization caused by the surface roughness and the volume
scattering. This parameter has been shown to be associated
with sea ice DEM (Huang and Hajnsek, 2021) and thickness
(Kim et al., 2011).
φcoPol is sensitive to the anisotropic structure of the

medium and deviates from 0° when the signal delay becomes
polarization dependent (Leinss et al., 2014). φcoPol has been
utilized to retrieve the fresh-snow anisotropy over the ground
(Leinss et al., 2016) and to characterize the topography of the
snow layer (Huang and Hajnsek, 2021).

3 Methodology

This section introduces an innovative two-step approach for
retrieving sea ice DEM across various ice conditions. The
initial step is to categorize sea ice into LPI and SPI types
based on the radar penetration depths. The second step in-
volves generating the sea ice DEM using different methods
for the two ice categories. The two-step approach is pre-
sented in Fig. 4a, and the two steps are detailed in Sect. 3.1
and 3.2, respectively. The method is developed and validated
using the four SAR images (Fig. 2) that were overlapped with
the DMS DEM.

3.1 Sea ice classification

As shown in Fig. 4a, in Step 1, the sea ice is classified
into SPI and LPI types using a random-forest (RF) classifier
(Breiman, 2001). A detailed description of the training and
validation process for the classifier is given in Fig. 4b, where
the DMS DEM (hDMS) is utilized as reference data. The pen-
etration depth hpene=hDMS−hInSAR, where hDMS measures
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Figure 4. (a) The proposed two-step approach for sea ice DEM retrieval. (b) The details (training and validation) of the sea ice classifier.
(c) The PolInSAR height retrieval module.

the total freeboard, i.e., the elevation from the snow–air sur-
face relative to the water level. The InSAR DEM (hInSAR)
measures the radar freeboard, i.e., the elevation of the In-
SAR phase center relative to the water level, which can be
somewhere inside the snow or ice, depending on the snow
and ice conditions. hInSAR is generated from the TanDEM-X
InSAR pair, following the principles described in Sect. 2.5.
In general, microwaves can penetrate much shallower into
the younger and more saline sea ice than into the older and
less saline sea ice. According to Hallikainen and Winebren-
ner (1992), the penetration depth into multi-year ice varies
between 0.3 and 1 m at the X band, depending on the salinity
and temperature. Desalination within ice ridges increases the
effective penetration depth compared to level ice (Dierking
et al., 2017). Considering these findings, and given the study
area’s snow cover and the presence of deformed ice forma-
tions such as ridges, we chose a penetration depth of 0.3 m
as the threshold for distinguishing the two ice types. Hence,

pixels with hpene< 0.3 m are labeled as SPI, whereas those
with hpene≥ 0.3 m are LPI.

We investigate a range of features for classification, in-
cluding the denoised backscattering intensity in HH polar-
ization (σHH), polarimetric features such as the coPol ratio
(RcoPol), the Pauli-polarization ratio (RPauli), the coPol co-
herence magnitude (γcoPol), and the coPol phase (φcoPol), as
well as interferometric features, including the InSAR coher-
ence magnitude (γInSAhR) and the height of the interferomet-
ric phase center (hInSAR). To improve computational perfor-
mance, we rank features based on Gini importance (i.e., the
mean decrease in impurity), which measures the average gain
of purity achieved by splitting a given variable. The top five
features (i.e., RPauli, σHH, hInSAR, γcoPol, and γInSAR) are se-
lected as effective predictors for the RF classifier. The rank-
ing of all the SAR features is given in Fig. A3 in the Ap-
pendix. Note that the computed Gini importance is not in-
herently specific to a particular class or ice type. Instead, it
represents the relative importance of features when making
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overall classification decisions within the context of the en-
tire data set. Therefore, the importance level determined by
the Gini importance is not specific to individual ice types but
reflects the significance of features for the classifier’s overall
predictive performance across all classes.

The selected features together with the ice labels (i.e., LPI
and SPI) form the sample set. 75 % are used for training the
RF classifier, which is implemented in Python using the de-
fault hyperparameters. Since the sample numbers for the SPI
and LPI classes are well balanced (48 % and 52 %, respec-
tively), it is not necessary to implement a specific balanced
training strategy. The validation of ice classification over the
testing subset (25 %) is given in Sect. 4.1.

3.2 DEM generation

As shown in Fig. 4a, in Step 2, we separately retrieve the
sea ice DEMs for the two categories of ice based on the
classification map. For SPI, conventional InSAR processing
(Sect. 2.5) is conducted, given the minimal penetration depth
attributed to the saline ice. On the other hand, for LPI, which
is subject to radar signal penetration, we apply the TLPV
model developed in (Huang et al., 2021), which incorporates
InSAR processing and corrects for the bias from radar pene-
tration into the snow-covered old ice.

The TLPV model includes surface scattering from the top
and bottom interfaces and volume scattering from the snow
and ice, as shown in Fig. 5. The model was further simpli-
fied by merging the contributions of the snow volume, the
ice volume, and the top layer into one Dirac delta (Huang
et al., 2021):

γ̃InSAR ≈ e
iφ0

1 · eiφ1 +m · eiφ2

1+m
= eiφ0 γ̃mod(m,z1,z2)

= eiφ0 γ̃mod(m,z1,hv), (8)

where φ0 is the topographic phase at the snow–air interface,
φ1 = κz_volz1, φ2 = κz_volz2, and z1 and z2 are the locations
of the layers, respectively. hv = z1− z2 refers to the depth
between the top and bottom layers. It is worth noting that the
bottom layer may not always be at the ice–water interface.
In certain situations, there might be a lower basal saline ice
layer, and strong surface scattering arises from the ice–basal
layer interface (Nghiem et al., 2022). Brine inclusions with
higher salinity occur in this basal saline layer upon transition-
ing towards the ice–seawater interface (Tison et al., 2008).
κz_vol is the vertical wavenumber in the volume, which de-
pends on the InSAR configuration (such as the HoA and
the incidence angle) and the dielectric constant of the vol-
ume (Dall, 2007; Sharma et al., 2012; Huang et al., 2021).
m refers to the layer-to-layer scattering ratio, which is the
backscattering power ratio between the top and bottom lay-
ers:

Figure 5. Schematic of the proposed TLPV model for sea ice
(Huang et al., 2021).

m=
σbottom(ω)

σtop(ω)
, (9)

where σtop(ω) and σbottom(ω) denote the backscattering
power from the top and bottom interfaces, respectively, at
a given polarization ω. m potentially reveals the relative im-
portance of scattering from these interfaces, which depends
on factors like the interface roughness, dielectric constant,
and radar polarization. A larger value of m signifies that sur-
face scattering from the bottom layer predominates, while a
smaller m indicates that surface scattering from the top layer
is more significant.

The aim is to estimate φ0 and convert it into the height
(hmod), which is the total freeboard of LPI. When fixing the
origin at the air–snow interface, z1 is equivalent to the snow
depth, which can be obtained from the AMSR level-3 data
(Meier et al., 2018). However, Eq. (8) still contains two un-
known variables, m and hv, preventing the direct estimation
of φ0. Therefore, we develop a PolInSAR height retrieval
module to invert the TLPV model and estimate m and hv, as
shown in Fig. 4c. We first establish an empirical relation (RF
regression) between SAR features and the true values of m
and hv, which can be derived using the DMS DEM as a pri-
ori information. Specifically, we simulate the interferometric
phase (φDMS = φ0) from the height (hDMS) using Eq. (3) tai-
lored to the specific InSAR configuration with the ha given in
Table 1. With the snow depth z1 and γ̃InSAR from the AMSR
data and InSAR observations, respectively, m and hv values
are derived by inverting Eq. (8), and these are used as the true
values for training the RF regressor.

We use the Gini importance to rank the seven features for
regression, selecting the top five predictors for estimating m̂
and ĥv: σHH, hInSAR, γInSAR, RPauli, and φcoPol. The ranking
of the SAR features is given in Fig. A4 in the Appendix. The
selected features, together with the true m and hv, form the
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sample set. 75 % are used for training the RF regressor. Note
that the RF regressor is trained using the same sample set as
the sea ice classification.

The well-trained RF regressor is subsequently utilized to
estimate m̂ and ĥv for SAR scenes that do not overlap with
DMS measurements. Selected features from SAR images,
along with the z1 from ancillary data, serve as inputs to
the RF regression model for estimating m̂ and ĥv. Subse-
quently, the topographic phase φ̂0 can be derived by solving
Eq. (8) and then transformed into the total freeboard hmod
using Eq. (3). For SAR scenes overlaid with DMS measure-
ments, the validation of the height retrieval accuracy over the
testing subset (25 %) is given in Sect. 4.1.

4 Results

Following the two-step approach developed in Sect. 3, this
section obtains the SAR-derived DEM from 162 dual-pol In-
SAR pairs that cover the sea ice in the Weddell and Ross
seas. We verify the accuracy of the SAR-derived DEM. We
further analyze the variation of the total freeboard and rough-
ness along the southwards direction and examine the statisti-
cal characteristics of sea ice DEM across various geographic
regions.

4.1 Sea ice topography retrieval and validation

The proposed two-step approach for sea ice DEM retrieval
is visually and quantitatively validated based on the four
scenes that are overlapped with DMS measurements. The
SAR backscattering intensities over the four scenes are dis-
played in the left column in Fig. 6. In the first step, the pro-
posed classification scheme demonstrates good performance
on the testing set, with an accuracy of 0.84; the confusion
matrix is presented in Fig. 7a. The classifier is then applied
to the entire SAR image, including the region not overlapped
by the DMS DEM, and the classified maps are shown in the
middle column of Fig. 6.

In the second step, the sea ice DEM (hmod_SAR) is ob-
tained by merging hmod and hInSAR over LPI and SPI. Note
that hmod_SAR represents the total freeboard relative to the
water surface retrieved from the pixel at a spacing size of
10 m× 10 m. The retrieved sea ice DEMs are compared with
hDMS over the testing set, as shown in Fig. 7b. The RMSE be-
tween hmod_SAR and hDMS is 0.26 m. This result is promis-
ing, as Dierking et al. (2017) suggested that a satisfactory
accuracy for a sea ice DEM is less than 0.3 m. Note that the
average RMSE value of LPI without compensating for the
penetration bias is ∼ 1.10 m (Huang et al., 2021).

The hmod_SAR over the entire SAR image is displayed in
the right column of Fig. 6. For each scene, the dashed white
line delineates a 50 km× 100 m strip that overlaps with the
DMS DEM. By extracting the values at the center of the
strip, the height profiles are obtained. These are presented

in Fig. 8, where hmod_SAR shows good agreement with the
reference data (hDMS) and captures the topographic variation
well. Considering that hDMS already contains an uncertainty
of 0.2 m (Dotson and Arvesen., 2012), these results prove the
effectiveness of the proposed two-step approach for sea ice
DEM retrieval over both SPI and LPI.

4.2 Sea ice topography in the southwards direction

We obtain the sea ice DEM over the total 162 images using
the two-step approach. A visualization of the derived sea ice
DEM can be found in the Appendix (Figs. A5 and A6). The
derived DEM is downsampled to a resolution of 500 m and
utilized in the subsequent analyses.

The northernmost location in each segment is selected and
marked with a star symbol in Fig. 1. Subsequently, we char-
acterize the variation of the sea ice category, total freeboard,
and roughness moving southwards using distances relative to
the northernmost locations and averaging over every 100 km
interval. These topographic variations along the distance are
illustrated in Figs. 9–11.

The first column shows the LPI percentages estimated
from the proposed two-step approach and compared with the
ice charts. The overall trend in estimated LPI percentages
correlates well with the dominant ice types and ice concen-
trations from the ice charts across most segments (W1-U,
W1-L, W2-U, W4, W5-U, W5-L, and R5). W1-U and W1-
L are explained as two examples. From 0–120 km, W1-U is
covered by 100 % MYI, and the LPI percentage reaches its
highest value (58 %). From 120–400 km, the dominant ice
transitions from MYI to FYI, with the LPI percentage de-
creasing accordingly. There is a dominance of MYI ice from
400–600 km, with a corresponding increasing LPI percent-
age. For W1-L, between 500–600 km there is 100 % MYI
and the LPI percentage peaks, but the LPI percentage de-
creases after 650 km as FYI becomes dominant. The lowest
LPI percentage is found at around 1200 km, consistent with
the occurrence of TI at this distance.

The observation of similar trends can be explained by the
general assumption that MYI is thicker and less saline, al-
lowing for deeper radar penetration compared to FYI and
TI. However, penetration depth is influenced by various fac-
tors as well as ice age, including ice salinity, snow condition,
flooding effects, and temperature. This explains the discrep-
ancies for other segments (W2-L, W3-U, W3-L, R1-U, and
R1-L). Furthermore, discrepancies can also be attributed to
differences in spatial resolution and temporal gaps between
ice charts and SAR imagery, considering the dynamic nature
of sea ice.

It is essential to clarify that we utilized ice chart data as
external information to interpret the classification results and
spatial variation of topography. However, we did not use ice
charts to quantitatively validate the proposed method. For
validation purposes, we conducted pixel-by-pixel compar-
isons using co-registered DMS data.
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Figure 6. First column: SAR backscattering intensity in HH polarization. Second column: sea ice classification. Third column: sea ice DEM
(hmod_SAR) over the four scenarios. The rows correspond to scene nos. 1–4 in Fig. 2, respectively. The spatial resolution is 10 m× 10 m. The
void pixels in the second and third columns represent water areas excluded from processing because γInSAR< 0.3. The dashed white line
indicates the flight track overlapped by the DEM DEM (hDMS).
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Figure 7. (a) Confusion matrix for sea ice classification. (b) Comparison between the reference height and the derived height over LPI and
SPI.

The second and third columns in Figs. 9–11 display the
distance dependencies of the total freeboard (hmod_SAR)
and the roughness (σR), respectively. Sea ice roughness
is the standard deviation of the total freeboard within a
50 m× 50 m area. For each 100 km distance interval, we cal-
culate and display the average and median values as well as
the first and third quartiles of hmod_SAR and σR using box-
plots.

The ice charts are also used to validate and explain the to-
pographic variation of the sea ice. In general, a region with
thicker ice (e.g., MYI) is anticipated to display a higher to-
tal freeboard or larger roughness compared to an area with
thinner ice, such as FYI and TI. This hypothesis is substanti-
ated by the agreement between topographical variations (to-
tal freeboard and roughness) and ice types observed in Figs. 9
to 11 across most segments, with the exception of W3-L and
W5-L. The sea ice is identified as MYI at distances between
450–750 km in W3-L and 650–950 km in W5-L. However,
neither total freeboard nor roughness significantly increases
within these specific ranges. Minor discrepancies also per-
sist, for instance, in W1-U and W2-L, where there is no clear
reduction in either total freeboard or roughness when FYI is
present at around 600 km. These discrepancies may arise due
to local cases where rough FYI exhibits greater roughness
than smooth, level MYI. FYI may also show higher eleva-
tions when covered by very thick snow. In addition, consid-
ering that the ice chart data are weekly products, the incon-
sistencies could be attributed to mis-coregistration caused by
sea ice drift during the time lag between the ice charts and
the SAR images.

In the northwestern Weddell Sea, we observe that the
sea ice near the Antarctic Peninsula (AP) in the W1-U and
W2-U segments exhibits the highest average total freeboard
(mean > 0.7 m) and roughness (mean= 0.19 m), as shown
in the first and third rows in Fig. 9. This observation aligns
with a previous study that used OIB Airborne Topographic
Mapper (ATM) data from 14 and 22 November 2017 (Wang

et al., 2020), which reported that the total freeboard near the
eastern AP ranges from 1.5–2.5 m. Moving outwards from
the AP, the total freeboard and roughness along W1-U and
W2-U sharply decrease within approximately 0–200 km be-
fore gradually increasing upon heading southwards. Similar
trends are observed in W3-U (first row in Fig. 10) and W5-U
(first row in Fig. 11), with a more subtle decrease in the to-
tal freeboard within the 0–200 km range compared to W1-U
and W2-U, followed by a southwards increase. Conversely,
in the initial 0–200 km of W4 (third row in Fig. 10), there
is no observed decrease in total freeboard or roughness. In-
stead, a gradual increase in both parameters is evident as one
moves southwards, consistent with the dominance of MYI
beyond 100 km from the ice chart data. In the southeastern re-
gion, segments W1-L, W2-L, W3-L, and W5-L exhibit simi-
lar patterns of topographic variation, with total freeboard and
roughness generally decreasing towards the south as Coats
Land is approached (see the location in Fig. 1). This trend
can be explained by the increasing occurrence of FYI or TI
at distances beyond around 1000 km from the ice chart data.

The observed variation in sea ice topography could result
from the formation and dynamics of sea ice in the East Wed-
dell (E-Wedd) and West Weddell (W-Wedd) regions, which
are defined by specific longitude ranges: E-Wedd encom-
passes 15° E to 40° W, while W-Wedd extends from 40 to
62° W. Segments of W1-U, W2-U, W3-U, W4, and W5-U
are located within W-Wedd, in which the presence of Antarc-
tic MYI has been reported (Lange and Eicken, 1991). Sea ice
initially forms in the eastern region and then circulates clock-
wise within the cyclonic gyre of the southern Weddell Sea.
Later, older sea ice drifts outward in a northwestern direction
(Kacimi and Kwok, 2020). The sea ice undergoes thickening
and deformation as it drifts (Vernet et al., 2019; Kacimi and
Kwok, 2020), resulting in an increased total freeboard and
greater roughness in the northwestern Weddell Sea.

In the western Ross Sea, the sea ice along the R5 segment
(the last row in Fig. 10) exhibits greater total freeboard and
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Figure 8. Comparison between the total-freeboard profiles (hmod_SAR) from the proposed method and the DMS DEM (hDMS) along the
dotted line (from A to B) over scene nos. 1–4 in Fig. 6c. The spatial resolution is 10 m× 10 m. The data gaps are the water areas and segments
that were excluded due to the absence of distinctive features, ensuring co-registration quality.

roughness near Terra Nova Bay (see Fig. 1 for the location),
with these decreasing in a southeastward direction. This ob-
servation aligns with the transition of the dominant ice type
from FYI to TI in that direction. It is also consistent with re-
cent research (Rack et al., 2021): airborne measurements in
November 2017 revealed deformed sea ice exceeding 10 m

in thickness within the first 100 km south of Terra Nova Bay,
while thinner ice was observed towards the southeastern area
near McMurdo Sound (see Fig. 1 for the location). Satellite
data also confirmed a region of thinner ice influenced by the
Ross Sea polynya, with thicker ice located westward (Kurtz
and Markus, 2012). The observed pattern can be attributed

The Cryosphere, 18, 3117–3140, 2024 https://doi.org/10.5194/tc-18-3117-2024



L. Huang and I. Hajnsek: Retrieving sea ice topography in the Ross and Weddell seas 3129

Figure 9. Sea ice characteristics in the southwards direction along the W1 and W2 segments. The black line in the first column displays the
LPI percentages derived from SAR images, and the dots indicate the ice types obtained from the ice charts. The second and third columns plot
the total freeboard (hmod_SAR) and roughness (σR), respectively. Distance is measured from the northernmost SAR image reference point
towards the south. The orange line denotes the average values of hmod_SAR and σR. For each box, the upper and lower boundaries represent
the first (Q1) and third (Q3) quartiles, while the upper (lower) whisker extends to the last (first) sample outside of Q3± 1.5× (Q3−Q1).

to significant deformation in the western Ross Sea, caused
by wind-driven shearing, rafting, and ridging within a con-
vergent sea ice regime (Hollands and Dierking, 2016). This
deformation leads to potentially thicker sea ice compared to
the eastern part (Rack et al., 2021).

For the R1 segment located in the eastern Ross Sea (third
and fourth rows in Fig. 11), although the sea ice exhibits a
relatively stable total freeboard, which agrees with the con-
sistent predominance of FYI, the roughness decreases to-
wards the southeastern direction. This may be attributed to
the influence of the ocean circulation, considering that the
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Figure 10. Sea ice characteristics in the southwards direction along the W3, W4, and R5 segments. The black line in the first column displays
the LPI percentages derived from SAR images, and the dots indicate the ice types obtained from the ice charts. The second and third columns
plot the total freeboard (hmod_SAR) and roughness (σR), respectively.

R1 segment is situated farther from the land than the other
segments. The variation of the roughness along the R1 seg-
ment suggests that ice topography provides add-on informa-
tion that can be useful to integrate into operational ice chart-
ing. Furthermore, since the edges of ice floes with open water
between the floes can also contribute to the ice roughness,

combining ice topography with ice concentration can help
characterize the sea ice more comprehensively.

4.3 Regional variation of sea ice topography

Figure 12a displays the topographic variation across different
segments. We present the average and median values as well
as the first and third quartiles of total freeboard and rough-
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Figure 11. Sea ice characteristics in the southwards direction along W5 and R1 segments. The black line in the first column displays the LPI
percentages derived from SAR images, and the dots indicate the ice types obtained from the ice charts. The second and third columns plot
the total freeboard (hmod_SAR) and roughness (σR), respectively.

ness using boxplots. The mean values are listed in Table 3.
Additionally, the percentages of the three ice types within
each segment, calculated from the ice charts for reference,
are presented in Fig. 12b.

Generally, sea ice in the northwestern Weddell Sea (W1-U,
W2-U, W3-U, W4, and W5-U) exhibits a higher average to-
tal freeboard (> 0.5 m) compared to that in the southeastern

Weddell Sea and the Ross Sea (W1-L, W2-L, W3-L, W5-L,
R1-U, R1-L, and R5); see the detailed values in Table 3. W1-
U and W2-U exhibit the highest average total freeboards of
0.8 and 0.72 m, respectively, along with the largest average
roughness of 0.19 m. This is comparable with the total free-
board retrieved from ICESat-2 (Kacimi and Kwok, 2020),
which reported an average total freeboard of 0.6–0.7 m near
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Figure 12. (a) Total freeboard (hmod_SAR) and roughness (σR) derived from SAR images across the 12 segments. (b) The percentages of
multi-year ice (MYI), first-year ice (FYI), and thin ice (TI) from the ice charts. (c) Probability density functions (PDFs) of derived total
freeboard (hmod_SAR) and fits to the PDFs using exponential-normal, log-normal, and normal distributions.

the eastern AP between 1 April and 16 November 2019. W4
and W5-U show average total freeboards of 0.57 and 0.52 m
and average roughness values of 0.18 and 0.16 m, respec-
tively. The above topographic values (i.e., total freeboard
and roughness) are consistent with the ice types presented in
Fig. 12b, where W1-U, W2-U, W4, and W5-U exhibit a sub-
stantial proportion (≥ 57 %) of MYI, known for its greater
total freeboard and roughness. W3-U, which consists of 47 %
MYI, exhibits a total freeboard of 0.50 m but a relatively low

roughness of 0.11 m, suggesting the possibility of a smooth
snow–air interface over older and thicker ice.

For the segments in the southeastern Weddell Sea and
the Ross Sea (W1-L, W2-L, W3-L, W5-L, R1-L, and R5),
the average total freeboard remains below 0.46 m and the
roughness is around 0.11 m. The reduced average total free-
board and roughness correspond to ice types with fewer MYI
percentages (≤ 52 %) and greater amounts of FYI and TI
(> 52 %). R1-U demonstrates an average total freeboard of
0.49 m and a roughness of 0.18 m, with FYI predominating
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Table 3. Average total freeboard and roughness for each segment
as well as the Kolmogorov–Smirnov (KS) values for comparisons
between the observed total-freeboard and modeled distributions
(which were modeled using exponential-normal (exp-normal) and
log-normal distributions). The smallest KS value for each segment
is shown in bold.

Segment Mean total Mean KS KS
freeboard roughness exp-normal log-normal

(m) (m)

W1-U 0.80 0.19 0.083 0.106
W1-L 0.46 0.12 0.064 0.05
W2-U 0.72 0.19 0.052 0.07
W2-L 0.42 0.12 0.079 0.054
W3-U 0.50 0.11 0.113 0.2
W3-L 0.39 0.12 0.065 0.05
W4 0.57 0.18 0.035 0.072
W5-U 0.52 0.16 0.074 0.076
W5-L 0.44 0.11 0.038 0.078
R1-U 0.49 0.18 0.053 0.049
R1-L 0.45 0.11 0.049 0.106
R5 0.46 0.10 0.052 0.039

Overall 0.063 0.079

throughout the region. This observation suggests a plausible
scenario of a rougher snow–air interface over younger and
thinner ice (Tin and Jeffries, 2001; Tian et al., 2020).

4.4 Statistical analyses of the sea ice topography

Studies on sea ice topography in the Arctic have extensively
examined the applicability of statistical distributions such as
the log-normal distribution (Landy et al., 2020; Duncan and
Farrell, 2022) and the exponentially modified normal (exp-
normal) distribution (Yi et al., 2022). However, there remains
a gap in our understanding of the most suitable distribution
models for describing the total freeboard of Antarctic sea ice.
We aim to address this gap by evaluating three distribution
models – Gaussian, log-normal, and exp-normal – to deter-
mine the most appropriate probability density function (PDF)
for describing the sea ice total freeboard across segments.

The PDF of a Gaussian distribution with mean µg and
standard deviation σg is defined as

G(x)=
1√

2πσ 2
g

e
−
(x−µg)2

2σ2
g . (10)

Following Gaddum (1945), the PDF of a log-normal dis-
tribution with mean e(µl+σl
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2
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2
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The PDF of an exp-normal distribution with mean µe+

1/λ and variance σ 2
e + 1/λ2 is given by (Foley and Dorsey,

1984)
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where erfc(·) is the complementary error function, with
erfc(x)= 2

√
π

∫
∞

x
e−t

2
dt .

The observed and modeled distributions of total freeboard
over each segment are depicted in the left column of Fig. 12c.
In all segments, the observed distributions are asymmetri-
cal, with long tails. A closer examination of the tail regions
(right column in Fig. 12c) reveals significant deviations from
the Gaussian distribution, particularly in segments W1-U and
W2-U, which are covered by deformed and thicker sea ice.
The observed non-Gaussian nature of the total-freeboard dis-
tribution aligns with previous studies (Hughes, 1991; Davis
and Wadhams, 1995; Castellani et al., 2014; Landy et al.,
2019; Huang et al., 2021). To quantitatively evaluate the fit
of each non-Gaussian distribution (i.e., the log-normal and
exp-normal distributions) to the observed total freeboard, we
employ the Kolmogorov–Smirnov (KS) test (Massey, 1951).
This test measures the goodness of fit by calculating the dis-
tance between the observed distribution function and the the-
oretical cumulative distribution function. The values from the
KS test are given in Table 3, where a lower value indicates a
better fit.

In the northwestern Weddell Sea, where the segments
(W1-U, W2-U, W3-U, W4, and W5-U) have an average to-
tal freeboard of greater than 0.5 m, the exp-normal distribu-
tion demonstrates superior fitting performance, as evidenced
by its smaller KS values. This can be attributed to the exp-
normal distribution’s incorporation of an exponential com-
ponent, which enables a better fit to data with heavy or long
tails compared to the log-normal distribution. Consequently,
the exp-normal distribution is better suited for characterizing
the statistics of older and thicker sea ice, which often involves
strong deformation and exhibits a significant total freeboard.

In the southern Weddell Sea and the Ross Sea, segments
average below 0.5 m in total freeboard, with the best distri-
bution to use for fitting varying between the exp-normal and
the log-normal distribution. The log-normal distribution ex-
hibits a better fit for W1-L, W2-L, W3-L, R1-U, and R5,
while the exp-normal distribution is more appropriate for
W5-L and R1-L. This observation suggests that the two dis-
tributions perform comparably well in characterizing the to-
tal freeboard of younger and thinner sea ice.

Evaluating the overall performance across all segments,
the exp-normal distribution outperforms the log-normal dis-
tribution, as indicated by a smaller average KS value of
0.063.
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5 Discussion

5.1 Factors affecting the model performance

In the proposed two-step method (Fig. 4), we obtain the snow
depth from AMSR products (Meier et al., 2018), which pro-
vide a 5 d running average of snow depth over the sea ice.
Due to the limited spatial (12.5 km) and temporal resolution
of the snow depth data, we assume a constant value of snow
depth across one SAR image. Hence, for each SAR acquisi-
tion covering a spatial extent of 50 km× 19 km, we compute
the mean snow depth and utilize it as the input parameter z1
in the TLPV model.

In Fig. 8, it appears that the derived total freeboard
(hmod_SAR) underestimates some high and low peaks in the
reference data (hDMS). One factor that could contribute to
the underestimation of the total freeboard is the assumption
of a constant average snow depth over one SAR scene. Using
a single average value of snow depth may lead to an under-
estimation of snow depth in high-peak areas such as ridges,
consequently resulting in an underestimation of the total free-
board. Our prior study (Huang et al., 2021) demonstrated
a mean difference of 0.31 m in the derived total freeboard
due to snow depth variations from 0.05 to 0.75 m over scene
no.1, highlighting the impact on peak estimation. In the fu-
ture, it would be interesting to adapt the proposed method
to use available co-located high-resolution snow depth mea-
surements across the test sites.

Another factor that could potentially lead to the underesti-
mation of high and low peaks is the residual shift between the
SAR and DMS images. Although we carefully co-registered
the four SAR scenes with the DMS data, this co-registration
cannot be perfect. In the process, we divided the entire over-
lapped transect into small patches (each corresponding to
100 m× 1000 m). We assumed the same drift location over
one patch and no rotation; thus, only one shift vector was
used for co-registration over each patch. This could result in
small residual shifts when ice floes or features do not drift
at the same velocity or there are rotations within the patch.
The presence of low- and high-peak ice features with nar-
row sizes spanning just a few pixels, poses a challenge. Even
slight residual shifts as small as 1–2 pixels can lead to a loss
or misalignment of peak structures in SAR images. Conse-
quently, inputting these slightly misaligned SAR images into
the proposed model may result in an underestimation of the
total freeboard.

5.2 Comparison of the InSAR-derived total freeboard
with an existing study

Wang et al. (2020) calculated the mean total freeboard in the
Weddell Sea using IceBridge laser altimetry. In this subsec-
tion, we conduct a visual comparison between the results in
Wang et al. (2020) (Fig. 13) and the four segments (W2-U,
W2-L, W3-U, and W3-L) in our study (Figs. 9 and 10). Note

Figure 13. The total freeboard calculated from IceBridge laser al-
timetry (this is a copy of Fig. 6l in Wang et al., 2020). We labeled the
two tracks Track-W and Track-E. The region with latitudes < 70° S
(> 70° S) is referred to as the northern (southern) track.

that the window is tens of kilometers in size in Wang et al.
(2020), significantly exceeding the 500 m× 500 m window
size we used.

We denote the region in Fig. 13 with latitudes < 70° S
(> 70° S) as the northern (southern) track. The northern and
southern Track-W segments are partially overlaid with W2-
U and W2-L, respectively. In our study, the total freeboard
of W2-U and W2-L in Fig. 9 reaches a mean value of ∼ 1 m
and a 75th percentile value of∼ 1.5 m within the first 100 km,
which agrees with the red dot in Track-W in Fig. 13. Then,
the total freeboard goes down to a mean value of ∼ 0.7 m
and a 75th percentile value of∼ 0.75 m from 100–200 m. Al-
though there is a data gap in Fig. 13, we can see that the
color of the dots changes from red to yellow, which is con-
sistent with the decreasing trend in the total freeboard within
300 km from our results. For W2-L, the mean total freeboard
from our results is around 0.5 m, which agrees with the mix
of green and yellow dots (0.4–0.9 m) in the southern Track-
W in Fig. 13. Note that the OIB ATM data used in (Wang
et al., 2020) were acquired on 14 and 22 November 2017,
while the SAR images in our study were acquired on 30 and
25 October 2017 for W2-U and W2-L, respectively. Sea ice
drifting and potential melting could have induced the slight
differences between our results and Wang et al. (2020).

W3-U and W3-L can be compared with northern and
southern Track-E, respectively. From Fig. 13, a mix of green
and yellow dots in northern Track-E represent a total free-
board of 0.5–1.2 m, which agrees well with our result for
W3-U; see the first row in Fig. 10. At around 70° S, the
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dots transit to a mix of cyan and blue colors representing
a total freeboard of 0.2–0.7 m, which is consistent with W3-
L in Fig. 10. The slight difference can be attributed to the
temporal difference from the SAR images used in our study.
Specifically, the image for W3-L was acquired on 26 October
2017, while the Track-E image was acquired on 22 Novem-
ber 2017.

6 Conclusions

In this study, we proposed a novel two-step approach in-
tegrating machine-learning and polarimetric interferometry
techniques to retrieve the total freeboard from dual-pol
single-pass InSAR images, taking into account the variations
in penetration bias across different ice classes. Initially, a
random-forest classifier was employed to categorize sea ice
(i.e., SPI and LPI) based on the microwaves’ penetration.
Subsequently, the standard InSAR processing technique was
applied to retrieve the total freeboard over SPI regions, where
the penetration depth is negligible. For LPI regions, an inver-
sion algorithm for the TLPV model was developed. This al-
gorithm can effectively compensate for the bias in radar pen-
etration into snow and ice, allowing an accurate sea ice DEM
(i.e., total freeboard) to be obtained. The uncertainty level is
satisfactory for LPI, with an RMSE of 0.26 m. However, this
accuracy is insufficient for thinner ice with a height above sea
level of only tens of centimeters (or even less). Given that a
substantial portion of the Antarctic sea ice consists of first-
year ice with a thickness of approximately 1 m (Scott, 2023),
achieving accurate DEM retrieval over thinner ice remains a
challenge. In the future, applying a potential single-pass In-
SAR configuration that uses a higher frequency, such as the
Ku band, along with a longer cross-track baseline would re-
sult in a smaller height of ambiguity (HoA) of less than 5 m
(López-Dekker et al., 2011). This setup can enhance InSAR
sensitivity and improve the accuracy of total-freeboard mea-
surements.

The proposed approach was applied to a broad area in
Antarctica. Overall, sea ice in the northwestern Weddell Sea
exhibits a higher average total freeboard (> 0.5 m) than the
southeastern region and the Ross Sea, where the average to-
tal freeboard is lower (< 0.5 m). In the northwestern Wed-
dell Sea, sea ice experiences substantial deformation near the
eastern AP, followed by a pronounced decline in both total
freeboard and roughness within a range of 0–200 km. Sub-
sequently, there is a gradual increase in these parameters as
one moves southwards. In the southeastern Weddell Sea, the
total freeboard and roughness generally decrease towards the
south as Coats Land is approached. In the Western Ross Sea,
thicker and rougher ice was observed near Terra Nova Bay,
while thinner ice was found in the southeastern area near Mc-
Murdo Sound. In the eastern Ross Sea, the stable total free-
board aligns with the prevalent presence of FYI, but rough-
ness decreases in the southeastern direction. These findings

emphasize that topographic mapping can enhance ice cate-
gory delineation, allowing an in-depth understanding of sea
ice characteristics.

Furthermore, the statistical analyses of the total freeboard
confirmed its non-Gaussian distribution. The results further
suggested that the exp-normal distribution outperforms the
log-normal distribution when they are used to fit the to-
tal freeboards of regions with an average total freeboard of
greater than 0.5 m, particularly for older and thicker sea ice,
whereas both distributions perform comparably for regions
with an average total freeboard of lower than 0.5 m.

The spatial distribution of penetration depth (total free-
board minus radar freeboard) could be an interesting topic
for future research. In snow-covered sea ice, penetration is
significantly influenced by local snow conditions. Hence,
a coordinated campaign encompassing TanDEM-X acqui-
sitions, lidar measurements, and in situ snow assessments
would hold great promise as a means to analyze the relation
between radar freeboard and total freeboard across different
snow conditions. Future studies will also involve linking the
derived sea ice topographic characteristics associated with
oceanographic factors (ocean currents and bathymetry) and
climatology parameters (wind and temperature). We aim to
further advance our comprehension of sea ice dynamics and
evolution in Antarctica.

Appendix A: Further details on the data processing and
figures

A1 InSAR height uncertainty across various
height-of-ambiguity values

The HoA (ha) is the height of ambiguity determined by the
specific InSAR configuration, such as the radar wavelength,
orbit height, incidence angle, and baseline. A larger HoA will
elevate the uncertainty in the InSAR-derived height. This un-
certainty (σh) can be estimated by (Madsen, 1998)

σh =
ha

2π
σ1φ ,

where σ1φ is the phase noise, which can be expressed as a
function of the interferometric coherence (γInSAR) and the
independent number of looks (NL) (Rosen et al., 2000):

σ 2
1φ
=

1
2NL

1− γ 2
InSAR

γ 2
InSAR

.

The variation in the simulated σh for different ha and
γInSAR values is illustrated in Fig. A1. At γInSAR= 0.75, σh
increases from 0.35 to 0.48 m as ha ranges from 30 to 42 m.
Across the studied region, both the mean and median values
of γInSAR are around 0.75. Consequently, in the case of R5,
the larger ha induces a relatively large average uncertainty in
the derived InSAR height (hInSAR) compared to the smaller
ha InSAR configuration in our data set.
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Figure A1. Simulation of the variation in σh as ha and γInSAR are
varied, with NL set to be 73.

Figure A2. NESZ patterns for one TanDEM-X acquisition (scene
no. 1 in Fig. 2) used as an example.

A2 SAR-thermal-noise removal

The SAR-measured backscattering intensity (σmeasure) con-
taining additive thermal noise can be denoted as

σmeasure = 〈(Sdenoised+N)× (Sdenoised+N)
∗
〉, (A1)

where Sdenoised is the noise-subtracted backscattering am-
plitude, and N is the additive thermal noise. Considering
Sdenoised and N to be uncorrelated, the noise-subtracted
backscattering intensity can be obtained from the following
simple equation: (Nghiem et al., 1995)

σdenoised = σmeasure−NESZ, (A2)

where NESZ is the noise floor (i.e., the noise-equivalent
sigma zero (NESZ)), and all terms are on a linear scale.

The TanDEM-X product contains a set of polynomial co-
efficients that describe the NESZ pattern for each polariza-
tion along the range direction (Eineder et al., 2008) for both
the TanDEM-X (TDX) and TerraSAR-X (TSX) images. An

Figure A3. Gini importance computed from the RF classifier.

Figure A4. Gini importance computed from the RF regressor for
estimating m and hv.

example of the calculated NESZ is shown in Fig. A2 on a
dB scale. By converting to a linear scale, σdenoised can be
calculated by subtracting NESZ from σmeasure. We calcu-
late the NESZ pattern for each SAR acquisition and employ
Eq. (A2) to generate denoised backscattering intensities for
the different polarizations (i.e., HH, VV, Pauli-1 (HH+VV),
and Pauli-2 (HH−VV)) from the TSX image. Note that for
Pauli-1 and Pauli-2, we use the average NESZ between the
HH and VV channels.

A3 Ranking of SAR features

The Gini importance computed from the random-forest (RF)
classifier is given in Fig A3.

The Gini importance computed from the RF regressor for
estimating m and hv is given in Fig A4.

A4 Overview of the InSAR-derived total freeboard

The derived total freeboards over the Weddell and Ross seas
are given in Figs. A5 and A6, respectively.
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Figure A5. Sea ice DEM (hmod_SAR) over the Weddell Sea re-
trieved from SAR images. The northernmost location in each seg-
ment is marked with a star symbol and serves as a reference point
for calculating the relative distance. hmod_SAR was downsampled
to 500 m pixel size.

Figure A6. Sea ice DEM (hmod_SAR) over the Ross Sea retrieved
from SAR images. The northernmost location in each segment is
marked with a star symbol and serves as a reference point for calcu-
lating the relative distance. hmod_SAR was downsampled to 500 m
pixel size.

Data availability. TanDEM-X imagery can be acquired from the
German Aerospace Center (DLR) by submitting a scientific pro-
posal and then downloading it from the website https://eoweb.dlr.de
(DLR, 2024). Additionally, DMS data can be obtained from the Na-
tional Snow and Ice Data Center at https://nsidc.org/data/icebridge
(NSIDC, 2024), while ice chart data from the National Snow and
Ice Data Center are available at https://doi.org/10.7265/46cc-3952
(U.S. National Ice Center, 2020).
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