Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-2141-2024
https://doi.org/10.5194/tc-18-2141-2024
Research article
 | 
30 Apr 2024
Research article |  | 30 Apr 2024

Sources of low-frequency variability in observed Antarctic sea ice

David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun

Related authors

Forced and internal components of observed Arctic sea-ice changes
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153, https://doi.org/10.5194/tc-17-4133-2023,https://doi.org/10.5194/tc-17-4133-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Antarctic
Brief communication: New perspectives on the skill of modelled sea ice trends in light of recent Antarctic sea ice loss
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
The Cryosphere, 18, 5641–5652, https://doi.org/10.5194/tc-18-5641-2024,https://doi.org/10.5194/tc-18-5641-2024, 2024
Short summary
Quantifying the influence of snow over sea ice morphology on L-band passive microwave satellite observations in the Southern Ocean
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024,https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
The role of atmospheric conditions in the Antarctic sea ice extent summer minima
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024,https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024,https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023,https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary

Cited articles

Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and Talley, L. D.: Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning, Nat. Geosci., 9, 596–601, 2016. a
Arrigo, K. R. and van Dijken, G. L.: Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica, Deep-Sea Res. Pt. II, 51, 117–138, 2004. a
Arrigo, K. R., Worthen, D. L., Lizotte, M. P., Dixon, P., and Dieckmann, G.: Primary production in Antarctic sea ice, Science, 276, 394–397, 1997. a
Årthun, M., Wills, R. C., Johnson, H. L., Chafik, L., and Langehaug, H. R.: Mechanisms of decadal North Atlantic climate variability and implications for the recent cold anomaly, J. Climate, 34, 3421–3439, 2021. a, b
Bintanja, R., van Oldenborgh, G. J., Drijfhout, S., Wouters, B., and Katsman, C.: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, Nat. Geosci., 6, 376–379, 2013. a
Short summary
Antarctic sea ice has exhibited variability over satellite records, including a period of gradual expansion and a period of sudden decline. We use a novel statistical method to identify sources of variability in observed Antarctic sea ice changes. We find that the gradual increase in sea ice is likely related to large-scale temperature trends, and periods of abrupt sea ice decline are related to specific flavors of equatorial tropical variability known as the El Niño–Southern Oscillation.