Articles | Volume 18, issue 3
https://doi.org/10.5194/tc-18-1419-2024
https://doi.org/10.5194/tc-18-1419-2024
Research article
 | 
28 Mar 2024
Research article |  | 28 Mar 2024

Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)

Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang

Related authors

Reconstructing ice phenology of lake with complex surface cover: A case study of Lake Ulansu during 1941–2023
Puzhen Huo, Peng Lu, Bin Cheng, Miao Yu, Qingkai Wang, Xuewei Li, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-849,https://doi.org/10.5194/egusphere-2024-849, 2024
Short summary
Sea ice cover in the Copernicus Arctic Regional Reanalysis
Yurii Batrak, Bin Cheng, and Viivi Kallio-Myers
The Cryosphere, 18, 1157–1183, https://doi.org/10.5194/tc-18-1157-2024,https://doi.org/10.5194/tc-18-1157-2024, 2024
Short summary
Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: a case based on ice cores from 2008 to 2016
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024,https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter
Zhaoqing Dong, Lijian Shi, Mingsen Lin, Yongjun Jia, Tao Zeng, and Suhui Wu
The Cryosphere, 17, 1389–1410, https://doi.org/10.5194/tc-17-1389-2023,https://doi.org/10.5194/tc-17-1389-2023, 2023
Short summary
Sensitivity of NEMO4.0-SI3 model parameters on sea ice budgets in the Southern Ocean
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023,https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Sea-ice variations and trends during the Common Era in the Atlantic sector of the Arctic Ocean
Ana Lúcia Lindroth Dauner, Frederik Schenk, Katherine Elizabeth Power, and Maija Heikkilä
The Cryosphere, 18, 1399–1418, https://doi.org/10.5194/tc-18-1399-2024,https://doi.org/10.5194/tc-18-1399-2024, 2024
Short summary
Melt pond fractions on Arctic summer sea ice retrieved from Sentinel-3 satellite data with a constrained physical forward model
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024,https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Extent, duration and timing of the sea ice cover in Hornsund, Svalbard, from 2014–2023
Zuzanna M. Swirad, A. Malin Johansson, and Eirik Malnes
The Cryosphere, 18, 895–910, https://doi.org/10.5194/tc-18-895-2024,https://doi.org/10.5194/tc-18-895-2024, 2024
Short summary
Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: a case based on ice cores from 2008 to 2016
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024,https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Calibration of short-term sea ice concentration forecasts using deep learning
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
EGUsphere, https://doi.org/10.5194/egusphere-2023-2439,https://doi.org/10.5194/egusphere-2023-2439, 2023
Short summary

Cited articles

Aagaard, K. and Carmack, E. C.: The role of sea ice and other fresh water in the Arctic circulation, J. Geophys. Res.-Oceans, 94, 14485–14498, https://doi.org/10.1029/JC094iC10p14485, 1989. 
Arya, S. P. S.: Contribution of form drag on pressure ridges to the air stress on Arctic ice, J. Geophys. Res., 78, 7092–7099, https://doi.org/10.1029/JC078i030p07092, 1973. 
Arya, S. P. S.: A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice, J. Geophys. Res., 80, 3447–3454, https://doi.org/10.1029/JC080i024p03447, 1975. 
Colony, R. and Thorndike, A. S.: An estimate of the mean field of Arctic sea ice motion, J. Geophys. Res., 89, 10623, https://doi.org/10.1029/JC089iC06p10623, 1984. 
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and 21st century drying, Clim. Dynam., 43, 2607–2627, https://doi.org/10.1007/s00382-014-2075-y, 2014. 
Download
Short summary
We retrieved sea ice drift in Fram Strait using the Chinese HaiYang 1D Coastal Zone Imager. The dataset is has hourly and daily intervals for analysis, and validation is performed using a synthetic aperture radar (SAR)-based product and International Arctic Buoy Programme (IABP)  buoys. The differences between them are explained by investigating the spatiotemporal variability in sea ice motion. The accuracy of flow direction retrieval for sea ice drift is also related to sea ice displacement.