Articles | Volume 17, issue 12
https://doi.org/10.5194/tc-17-5255-2023
https://doi.org/10.5194/tc-17-5255-2023
Research article
 | 
12 Dec 2023
Research article |  | 12 Dec 2023

Impact of the Nares Strait sea ice arches on the long-term stability of the Petermann Glacier ice shelf

Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner

Related authors

Weakening of meltwater plume reduces basal melting in summer at Ekström Ice Shelf, Antarctica
Ole Zeising, Tore Hattermann, Lars Kaleschke, Sophie Berger, Reinhard Drews, M. Reza Ershadi, Tanja Fromm, Frank Pattyn, Daniel Steinhage, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2109,https://doi.org/10.5194/egusphere-2024-2109, 2024
Short summary
Hydrography and circulation below Fimbulisen Ice Shelf, East Antarctica, from 12 years of moored observations
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
EGUsphere, https://doi.org/10.5194/egusphere-2024-904,https://doi.org/10.5194/egusphere-2024-904, 2024
Short summary
Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet-ocean modelling
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-244,https://doi.org/10.5194/gmd-2023-244, 2024
Revised manuscript accepted for GMD
Short summary
The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023,https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Insights into the vulnerability of Antarctic glaciers from the ISMIP6 ice sheet model ensemble and associated uncertainty
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023,https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024,https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, West Greenland
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
EGUsphere, https://doi.org/10.5194/egusphere-2024-1040,https://doi.org/10.5194/egusphere-2024-1040, 2024
Short summary
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024,https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary
Reconciling ice dynamics and bed topography with a versatile and fast ice thickness inversion
Thomas Frank, Ward J. J. van Pelt, and Jack Kohler
The Cryosphere, 17, 4021–4045, https://doi.org/10.5194/tc-17-4021-2023,https://doi.org/10.5194/tc-17-4021-2023, 2023
Short summary
Exploring the ability of the variable-resolution Community Earth System Model to simulate cryospheric–hydrological variables in High Mountain Asia
René R. Wijngaard, Adam R. Herrington, William H. Lipscomb, Gunter R. Leguy, and Soon-Il An
The Cryosphere, 17, 3803–3828, https://doi.org/10.5194/tc-17-3803-2023,https://doi.org/10.5194/tc-17-3803-2023, 2023
Short summary

Cited articles

Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Sci. Adv., 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a
Cai, C., Rignot, E., Menemenlis, D., and Nakayama, Y.: Observations and modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland, Geophys. Res. Lett., 44, 8396–8403, 2017. a, b
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A., and Stearns, L. A.: Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation, J. Phys. Oceanogr., 45, 2169–2185, 2015. a
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A., and Stearns, L. A.: Subglacial discharge-driven renewal of tidewater glacier fjords, J. Geophys. Res.-Oceans, 122, 6611–6629, 2017. a
Chen, C., Huang, H., Beardsley, R. C., Liu, H., Xu, Q., and Cowles, G.: A finite volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models, J. Geophys. Res.-Oceans, 112, C03018, https://doi.org/10.1029/2006JC003485, 2007. a, b, c
Download
Short summary
Sea ice arch formation in the Nares Strait has shielded the Petermann Glacier ice shelf from enhanced basal melting. However, with the sustained decline of the Arctic sea ice predicted to continue, the ice shelf is likely to be exposed to a year-round mobile and thin sea ice cover. In such a scenario, our modelled results show that elevated temperatures, and more importantly, a stronger ocean circulation in the ice shelf cavity, could result in up to two-thirds increase in basal melt.