Articles | Volume 17, issue 12
https://doi.org/10.5194/tc-17-5255-2023
https://doi.org/10.5194/tc-17-5255-2023
Research article
 | 
12 Dec 2023
Research article |  | 12 Dec 2023

Impact of the Nares Strait sea ice arches on the long-term stability of the Petermann Glacier ice shelf

Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner

Related authors

Evaluating an accelerated forcing approach for improving computational efficiency in coupled ice sheet–ocean modelling
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024,https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Warm proglacial lake temperatures and thermal undercutting drives rapid retreat of an Arctic glacier
Adrian Dye, Robert Bryant, Francesca Falcini, Joseph Mallalieu, Miles Dimbleby, Michael Beckwith, David Rippin, and Nina Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-2510,https://doi.org/10.5194/egusphere-2024-2510, 2024
Short summary
Weakening of meltwater plume reduces basal melting in summer at Ekström Ice Shelf, Antarctica
Ole Zeising, Tore Hattermann, Lars Kaleschke, Sophie Berger, Reinhard Drews, M. Reza Ershadi, Tanja Fromm, Frank Pattyn, Daniel Steinhage, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2109,https://doi.org/10.5194/egusphere-2024-2109, 2024
Short summary
Hydrography and circulation below Fimbulisen Ice Shelf, East Antarctica, from 12 years of moored observations
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
EGUsphere, https://doi.org/10.5194/egusphere-2024-904,https://doi.org/10.5194/egusphere-2024-904, 2024
Short summary
The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023,https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024,https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024,https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Quantifying the Buttressing Contribution of Sea Ice to Crane Glacier
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1499,https://doi.org/10.5194/egusphere-2024-1499, 2024
Short summary
A new glacier thickness and bed map for Svalbard
Ward van Pelt and Thomas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2024-1525,https://doi.org/10.5194/egusphere-2024-1525, 2024
Short summary
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024,https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary

Cited articles

Aschwanden, A., Fahnestock, M. A., Truffer, M., Brinkerhoff, D. J., Hock, R., Khroulev, C., Mottram, R., and Khan, S. A.: Contribution of the Greenland Ice Sheet to sea level over the next millennium, Sci. Adv., 5, eaav9396, https://doi.org/10.1126/sciadv.aav9396, 2019. a
Cai, C., Rignot, E., Menemenlis, D., and Nakayama, Y.: Observations and modeling of ocean-induced melt beneath Petermann Glacier Ice Shelf in northwestern Greenland, Geophys. Res. Lett., 44, 8396–8403, 2017. a, b
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A., and Stearns, L. A.: Modeling turbulent subglacial meltwater plumes: Implications for fjord-scale buoyancy-driven circulation, J. Phys. Oceanogr., 45, 2169–2185, 2015. a
Carroll, D., Sutherland, D. A., Shroyer, E. L., Nash, J. D., Catania, G. A., and Stearns, L. A.: Subglacial discharge-driven renewal of tidewater glacier fjords, J. Geophys. Res.-Oceans, 122, 6611–6629, 2017. a
Chen, C., Huang, H., Beardsley, R. C., Liu, H., Xu, Q., and Cowles, G.: A finite volume numerical approach for coastal ocean circulation studies: Comparisons with finite difference models, J. Geophys. Res.-Oceans, 112, C03018, https://doi.org/10.1029/2006JC003485, 2007. a, b, c
Download
Short summary
Sea ice arch formation in the Nares Strait has shielded the Petermann Glacier ice shelf from enhanced basal melting. However, with the sustained decline of the Arctic sea ice predicted to continue, the ice shelf is likely to be exposed to a year-round mobile and thin sea ice cover. In such a scenario, our modelled results show that elevated temperatures, and more importantly, a stronger ocean circulation in the ice shelf cavity, could result in up to two-thirds increase in basal melt.