Articles | Volume 17, issue 9
https://doi.org/10.5194/tc-17-4165-2023
https://doi.org/10.5194/tc-17-4165-2023
Research article
 | 
27 Sep 2023
Research article |  | 27 Sep 2023

Comparing elevation and backscatter retrievals from CryoSat-2 and ICESat-2 over Arctic summer sea ice

Geoffrey J. Dawson and Jack C. Landy

Related authors

A long-term proxy for sea ice thickness in the Canadian Arctic: 1996–2020
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023,https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Grounding line retreat and tide-modulated ocean channels at Moscow University and Totten Glacier ice shelves, East Antarctica
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 17, 1003–1022, https://doi.org/10.5194/tc-17-1003-2023,https://doi.org/10.5194/tc-17-1003-2023, 2023
Short summary
Mass evolution of the Antarctic Peninsula over the last 2 decades from a joint Bayesian inversion
Stephen J. Chuter, Andrew Zammit-Mangion, Jonathan Rougier, Geoffrey Dawson, and Jonathan L. Bamber
The Cryosphere, 16, 1349–1367, https://doi.org/10.5194/tc-16-1349-2022,https://doi.org/10.5194/tc-16-1349-2022, 2022
Short summary
A high-resolution Antarctic grounding zone product from ICESat-2 laser altimetry
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
Earth Syst. Sci. Data, 14, 535–557, https://doi.org/10.5194/essd-14-535-2022,https://doi.org/10.5194/essd-14-535-2022, 2022
Short summary
Mapping the grounding zone of Larsen C Ice Shelf, Antarctica, from ICESat-2 laser altimetry
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 14, 3629–3643, https://doi.org/10.5194/tc-14-3629-2020,https://doi.org/10.5194/tc-14-3629-2020, 2020
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Assessing the representation of Arctic sea ice and the marginal ice zone in ocean–sea ice reanalyses
Francesco Cocetta, Lorenzo Zampieri, Julia Selivanova, and Doroteaciro Iovino
The Cryosphere, 18, 4687–4702, https://doi.org/10.5194/tc-18-4687-2024,https://doi.org/10.5194/tc-18-4687-2024, 2024
Short summary
Sea-ice conditions from 1880 to 2017 on the Northeast Greenland continental shelf: a biomarker and observational record comparison
Joanna Davies, Kirsten Fahl, Matthias Moros, Alice Carter-Champion, Henrieka Detlef, Ruediger Stein, Christof Pearce, and Marit-Solveig Seidenkrantz
The Cryosphere, 18, 3415–3431, https://doi.org/10.5194/tc-18-3415-2024,https://doi.org/10.5194/tc-18-3415-2024, 2024
Short summary
The radiative and geometric properties of melting first-year landfast sea ice in the Arctic
Nathan J. M. Laxague, Christopher J. Zappa, Andrew R. Mahoney, John Goodwin, Cyrus Harris, Robert E. Schaeffer, Roswell Schaeffer Sr., Sarah Betcher, Donna D. W. Hauser, Carson R. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, and Alex Whiting
The Cryosphere, 18, 3297–3313, https://doi.org/10.5194/tc-18-3297-2024,https://doi.org/10.5194/tc-18-3297-2024, 2024
Short summary
Improving short-term sea ice concentration forecasts using deep learning
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024,https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary
Retrieval of sea ice drift in the Fram Strait based on data from Chinese satellite HaiYang (HY-1D)
Dunwang Lu, Jianqiang Liu, Lijian Shi, Tao Zeng, Bin Cheng, Suhui Wu, and Manman Wang
The Cryosphere, 18, 1419–1441, https://doi.org/10.5194/tc-18-1419-2024,https://doi.org/10.5194/tc-18-1419-2024, 2024
Short summary

Cited articles

Andersen, O. B., Knudsen, P., and Stenseng, L.: The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, in: International Association of Geodesy Symposia, edited by: Jin, S. and Barzaghi, R., Springer, 1–10, https://doi.org/10.1007/1345_2015_182, 2015. 
AVISO+: Satellite Altimetry Data, AVISO+ [data set], http://www.aviso.oceanobs.com/index.php?id=1615, last access: January 2022. 
Babb, D., Landy, J., Barber, D., and Galley, R.: Winter sea ice export from the Beaufort Sea as a preconditioning mechanism for enhanced summer melt: A case study of 2016, J. Geophys. Res., 124, 6575–6600, https://doi.org/10.1029/2019JC015053, 2019. 
Bagnardi, M., Kurtz, N. T., Petty, A. A., and Kwok, R.: Sea surface height anomalies of the Arctic Ocean from ICESat-2: A first examination and comparisons with CryoSat-2, Geophys. Res. Lett., 48, e2021GL093155, https://doi.org/10.1029/2021GL093155, 2021. 
Blockley, E. W. and Peterson, K. A.: Improving Met Office seasonal predictions of Arctic sea ice using assimilation of CryoSat-2 thickness, The Cryosphere, 12, 3419–3438, https://doi.org/10.5194/tc-12-3419-2018, 2018. 
Download
Short summary
In this study, we compared measurements from CryoSat-2 and ICESat-2 over Arctic summer sea ice to understand any possible biases between the two satellites. We found that there is a difference when we measure elevation over summer sea ice using CryoSat-2 and ICESat-2, and this is likely due to surface melt ponds. The differences we found were in good agreement with theoretical predictions, and this work will be valuable for summer sea ice thickness measurements from both altimeters.