Articles | Volume 17, issue 9
https://doi.org/10.5194/tc-17-4021-2023
https://doi.org/10.5194/tc-17-4021-2023
Research article
 | 
18 Sep 2023
Research article |  | 18 Sep 2023

Reconciling ice dynamics and bed topography with a versatile and fast ice thickness inversion

Thomas Frank, Ward J. J. van Pelt, and Jack Kohler

Related authors

Ice thickness and subglacial topography of Swedish reference glaciers revealed by radio-echo sounding
Zhuo Wang, Neil Ross, Thomas Frank, Jamie Barnett, Ilaria Santin, Martin Houssais, Johanna Dahlkvist, and Nina Kirchner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-745,https://doi.org/10.5194/essd-2025-745, 2026
Preprint under review for ESSD
Short summary
New glacier thickness and bed topography maps for Svalbard
Ward van Pelt and Thomas Frank
The Cryosphere, 19, 1–17, https://doi.org/10.5194/tc-19-1-2025,https://doi.org/10.5194/tc-19-1-2025, 2025
Short summary
Geometric controls of tidewater glacier dynamics
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022,https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary

Cited articles

Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res.-Sol. Ea., 102, 20355–20362, https://doi.org/10.1029/97JB01696, 1997. a
Bahr, D. B., Pfeffer, W. T., and Kaser, G.: Glacier volume estimation as an ill-posed inversion, J. Glaciol., 60, 922–934, https://doi.org/10.3189/2014JoG14J062, 2014. a, b, c, d, e
Blatter, H.: Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333–344, https://doi.org/10.3189/S002214300001621X, 1995. a
Bogorodsky, V. V., Bentley, C. R., and Gudmandsen, P. E.: Radioglaciology, Springer Science & Business 50 Media, ISBN 978-90-277-1893-8, 1985. a
Brinkerhoff, D. J., Aschwanden, A., and Truffer, M.: Bayesian Inference of Subglacial Topography Using Mass Conservation, Front. Earth Sci., 4, 8, https://doi.org/10.3389/feart.2016.00008, 2016. a
Download
Short summary
Since the ice thickness of most glaciers worldwide is unknown, and since it is not feasible to visit every glacier and observe their thickness directly, inverse modelling techniques are needed that can calculate ice thickness from abundant surface observations. Here, we present a new method for doing that. Our methodology relies on modelling the rate of surface elevation change for a given glacier, compare this with observations of the same quantity and change the bed until the two are in line.
Share