the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Widespread slowdown in thinning rates of West Antarctic ice shelves
Fernando S. Paolo
Alex S. Gardner
Chad A. Greene
Johan Nilsson
Michael P. Schodlok
Nicole-Jeanne Schlegel
Helen A. Fricker
Related authors
bioalbedo. Quantifying bioalbedo has not been achieved because of difficulties in isolating the biological contribution from the optical properties of ice and snow, and from inorganic impurities in field studies. In this paper, we provide a physical model that enables bioalbedo to be quantified from first principles and we use it to guide future field studies.
Related subject area
In Antarctica, supraglacial lakes often form near grounding lines due to surface melting. We model viscoelastic tidal flexure in these regions to assess its contribution to lake drainage via hydrofracturing. Results show that tidal flexure and lake-water pressure jointly control drainage near unconfined grounding lines. Sensitivity analysis indicates the importance of the Maxwell time of ice in modulating the tidal response.
We investigated the influence of several regional climate models on the Antarctic Ice Sheet when applied as forcing for the Parallel Ice Sheet Model (PISM). Our study shows that the choice of regional climate model forcing results in uncertainties of around a tenth of those in future sea level rise projections and also affects the extent of grounding line retreat in West Antarctica.
calving laws), under the assumption that Antarctic ice shelf front positions should be in steady state under the current climate forcing. We quantify how well each of these calving laws replicates the observed front positions. Our results suggest that the eigencalving and von Mises laws are most suitable for Antarctic ice shelves.