Articles | Volume 17, issue 8
https://doi.org/10.5194/tc-17-3291-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-3291-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Patterns of wintertime Arctic sea-ice leads and their relation to winds and ocean currents
Department of Environmental Meteorology, Trier University, Trier, Germany
Günther Heinemann
Department of Environmental Meteorology, Trier University, Trier, Germany
Frank Schnaase
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
Related authors
Umesh Dubey, Sascha Willmes, and Günther Heinemann
The Cryosphere, 19, 3535–3552, https://doi.org/10.5194/tc-19-3535-2025, https://doi.org/10.5194/tc-19-3535-2025, 2025
Short summary
Short summary
Sea-ice leads facilitate the exchange of heat and moisture between the ocean and the atmosphere during wintertime. We present a new dataset on monthly wintertime sea-ice leads in the Southern Ocean from 2003 to 2023. Our study reveals distinct regional patterns, seasonal variability, and small but significant trends. Here, we present initial findings on Southern Ocean lead dynamics to support future research into the complex pan-Antarctic interactions among sea ice, ocean, and atmosphere.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Alexander D. Fraser, Robert A. Massom, Kay I. Ohshima, Sascha Willmes, Peter J. Kappes, Jessica Cartwright, and Richard Porter-Smith
Earth Syst. Sci. Data, 12, 2987–2999, https://doi.org/10.5194/essd-12-2987-2020, https://doi.org/10.5194/essd-12-2987-2020, 2020
Short summary
Short summary
Landfast ice, or
fast ice, is a form of sea ice which is mechanically fastened to stationary parts of the coast. Long-term and accurate knowledge of its extent around Antarctica is critical for understanding a number of important Antarctic coastal processes, yet no accurate, large-scale, long-term dataset of its extent has been available. We address this data gap with this new dataset compiled from satellite imagery, containing high-resolution maps of Antarctic fast ice from 2000 to 2018.
Umesh Dubey, Sascha Willmes, and Günther Heinemann
The Cryosphere, 19, 3535–3552, https://doi.org/10.5194/tc-19-3535-2025, https://doi.org/10.5194/tc-19-3535-2025, 2025
Short summary
Short summary
Sea-ice leads facilitate the exchange of heat and moisture between the ocean and the atmosphere during wintertime. We present a new dataset on monthly wintertime sea-ice leads in the Southern Ocean from 2003 to 2023. Our study reveals distinct regional patterns, seasonal variability, and small but significant trends. Here, we present initial findings on Southern Ocean lead dynamics to support future research into the complex pan-Antarctic interactions among sea ice, ocean, and atmosphere.
Vanessa Teske, Ralph Timmermann, Cara Nissen, Rolf Zentek, Tido Semmler, and Günther Heinemann
Ocean Sci., 21, 1205–1221, https://doi.org/10.5194/os-21-1205-2025, https://doi.org/10.5194/os-21-1205-2025, 2025
Short summary
Short summary
We investigate the structural changes the Antarctic Slope Front in the southern Weddell Sea experiences in a warming climate by conducting two ocean simulations driven by atmospheric data of different horizontal resolutions. Cross-slope currents associated with a regime shift from a cold to a warm Filchner Trough on the continental shelf temporarily disturb the structure of the slope front and reduce its depth, but the primary reason for a regime shift is the cross-slope density gradient.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Lukrecia Stulic, Ralph Timmermann, Stephan Paul, Rolf Zentek, Günther Heinemann, and Torsten Kanzow
Ocean Sci., 19, 1791–1808, https://doi.org/10.5194/os-19-1791-2023, https://doi.org/10.5194/os-19-1791-2023, 2023
Short summary
Short summary
In the southern Weddell Sea, the strong sea ice growth in coastal polynyas drives formation of dense shelf water. By using a sea ice–ice shelf–ocean model with representation of the changing icescape based on satellite data, we find that polynya sea ice growth depends on both the regional atmospheric forcing and the icescape. Not just strength but also location of the sea ice growth in polynyas affects properties of the dense shelf water and the basal melting of the Filchner–Ronne Ice Shelf.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Alexander D. Fraser, Robert A. Massom, Kay I. Ohshima, Sascha Willmes, Peter J. Kappes, Jessica Cartwright, and Richard Porter-Smith
Earth Syst. Sci. Data, 12, 2987–2999, https://doi.org/10.5194/essd-12-2987-2020, https://doi.org/10.5194/essd-12-2987-2020, 2020
Short summary
Short summary
Landfast ice, or
fast ice, is a form of sea ice which is mechanically fastened to stationary parts of the coast. Long-term and accurate knowledge of its extent around Antarctica is critical for understanding a number of important Antarctic coastal processes, yet no accurate, large-scale, long-term dataset of its extent has been available. We address this data gap with this new dataset compiled from satellite imagery, containing high-resolution maps of Antarctic fast ice from 2000 to 2018.
Cited articles
Aksenov, Y., Ivanov, V. V., Nurser, A. J. G., Bacon, S., Polyakov, I. V.,
Coward, A. C., Naveira-Garabato, A. C., and Beszczynska-Moeller, A.: The
Arctic Circumpolar Boundary Current, J. Geophys. Res.-Oceans, 116, C09017, https://doi.org/10.1029/2010JC006637, 2011. a, b, c
Årthun, M., Eldevik, T., and Smedsrud, L. H.: The Role of Atlantic
Heat Transport in Future Arctic Winter Sea Ice Loss, J. Climate, 32, 3327–3341, https://doi.org/10.1175/JCLI-D-18-0750.1, 2019. a, b
Aue, L., Vihma, T., Uotila, P., and Rinke, A.: New Insights Into Cyclone
Impacts on Sea Ice in the Atlantic Sector of the Arctic Ocean
in Winter, Geophys. Res. Lett., 49, e2022GL100051,
https://doi.org/10.1029/2022GL100051, 2022. a
Babb, D. G., Landy, J. C., Barber, D. G., and Galley, R. J.: Winter Sea Ice
Export From the Beaufort Sea as a Preconditioning Mechanism for
Enhanced Summer Melt: A Case Study of 2016, J.
Geophys. Res.-Oceans, 124, 6575–6600, https://doi.org/10.1029/2019JC015053,
2019. a, b, c
Babb, D. G., Galley, R. J., Howell, S. E. L., Landy, J. C., Stroeve, J. C., and
Barber, D. G.: Increasing Multiyear Sea Ice Loss in the Beaufort
Sea: A New Export Pathway for the Diminishing Multiyear Ice
Cover of the Arctic Ocean, Geophys. Res. Lett., 49,
e2021GL097595, https://doi.org/10.1029/2021GL097595, 2022. a
Cassianides, A., Lique, C., Tréguier, A.-M., Meneghello, G., and De Marez,
C.: Observed Spatio-Temporal Variability of the Eddy-Sea Ice
Interactions in the Arctic Basin, J. Geophys. Res.-Oceans, 128, e2022JC019469, https://doi.org/10.1029/2022JC019469, 2023. a
Cohanim, K., Zhao, K. X., and Stewart, A. L.: Dynamics of Eddies Generated
by Sea Ice Leads, J. Phys. Oceanogr., 51, 3071–3092,
https://doi.org/10.1175/JPO-D-20-0169.1, 2021. a
Creamean, J. M., Barry, K., Hill, T. C. J., Hume, C., DeMott, P. J., Shupe,
M. D., Dahlke, S., Willmes, S., Schmale, J., Beck, I., Hoppe, C. J. M., Fong,
A., Chamberlain, E., Bowman, J., Scharien, R., and Persson, O.: Annual cycle
observations of aerosols capable of ice formation in central Arctic clouds,
Nat. Commun., 13, 3537–3537, https://doi.org/10.1038/s41467-022-31182-x,
2022. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J.,
Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b
Eicken, H., Shapiro, L., Heinrichs, T., Gens, R., Meyer, F., Mahoney, A.,
Gaylord, A., and Ak, H.: Mapping and characterization of recurring spring
leads and landfast ice in the Beaufort and Chukchi Seas, U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Alaska Region, Anchorage, AK, https://espis.boem.gov/technical summaries/5225.pdf (last access: 21 January 2023),
2012. a
Feltham, D. L.: Sea Ice Rheology, Annu. Rev. Fluid Mech., 40,
91–112, https://doi.org/10.1146/annurev.fluid.40.111406.102151, 2008. a
Frey, K. E., Moore, G. W. K., Cooper, L. W., and Grebmeier, J. M.: Divergent
patterns of recent sea ice cover across the Bering, Chukchi, and
Beaufort seas of the Pacific Arctic Region, Prog. Oceanogr.,
136, 32–49, https://doi.org/10.1016/j.pocean.2015.05.009, 2015. a
Graham, R. M., Itkin, P., Meyer, A., Sundfjord, A., Spreen, G., Smedsrud,
L. H., Liston, G. E., Cheng, B., Cohen, L., Divine, D., Fer, I., Fransson,
A., Gerland, S., Haapala, J., Hudson, S. R., Johansson, A. M., King, J.,
Merkouriadi, I., Peterson, A. K., Provost, C., Randelhoff, A., Rinke, A.,
Rösel, A., Sennéchael, N., Walden, V. P., Duarte, P., Assmy, P.,
Steen, H., and Granskog, M. A.: Winter storms accelerate the demise of sea
ice in the Atlantic sector of the Arctic Ocean, Sci. Rep.-UK 9,
9222, https://doi.org/10.1038/s41598-019-45574-5, 2019. a
Gutjahr, O., Heinemann, G., Preußer, A., Willmes, S., and Drüe, C.: Quantification of ice production in Laptev Sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model, The Cryosphere, 10, 2999–3019, https://doi.org/10.5194/tc-10-2999-2016, 2016. a
Harms, I. H. and Karcher, M. J.: Kara Sea freshwater dispersion and export in
the late 1990s, J. Geophys. Res.-Oceans, 110, C08007,
https://doi.org/10.1029/2004JC002744, 2005. a
Hegyi, B. M. and Taylor, P. C.: The regional influence of the Arctic
Oscillation and Arctic Dipole on the wintertime Arctic surface
radiation budget and sea ice growth, Geophys. Res. Lett., 44,
4341–4350, https://doi.org/10.1002/2017GL073281, 2017. a
Heinemann, G., Willmes, S., Schefczyk, L., Makshtas, A., Kustov, V., and
Makhotina, I.: Observations and Simulations of Meteorological
Conditions over Arctic Thick Sea Ice in Late Winter during the
Transarktika 2019 Expedition, Atmosphere, 12, 174,
https://doi.org/10.3390/atmos12020174, 2021. a
Heinemann, G., Schefczyk, L., Willmes, S., and Shupe, M. D.: Evaluation of
simulations of near-surface variables using the regional climate model CCLM
for the MOSAiC winter period, Elementa, 10, 00033,
https://doi.org/10.1525/elementa.2022.00033, 2022. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b, c, d, e
Hoffman, J. P., Ackerman, S. A., Liu, Y., and Key, J. R.: A 20-Year
Climatology of Sea Ice Leads Detected in Infrared Satellite
Imagery Using a Convolutional Neural Network, Remote Sens.-Basel, 14, 22,
https://doi.org/10.3390/rs14225763, 2022. a
Holloway, G. and Proshutinsky, A.: Role of tides in Arctic ocean/ice climate,
J. Geophys. Res.-Oceans, 112, C04S06, https://doi.org/10.1029/2006JC003643,
2007. a
Hutchings, J. K. and Rigor, I. G.: Role of ice dynamics in anomalous ice
conditions in the Beaufort Sea during 2006 and 2007, J.
Geophys. Res.-Oceans, 117, C00E04, https://doi.org/10.1029/2011JC007182, 2012. a
Hwang, B., Wilkinson, J., Maksym, T., Graber, H. C., Schweiger, A., Horvat, C.,
Perovich, D. K., Arntsen, A. E., Stanton, T. P., Ren, J., and Wadhams, P.:
Winter-to-summer transition of Arctic sea ice breakup and floe size
distribution in the Beaufort Sea, Elementa,
5, 40, https://doi.org/10.1525/elementa.232, 2017. a
Jakobsson, M., Mayer, L. A., Bringensparr, C., Castro, C. F., Mohammad, R.,
Johnson, P., Ketter, T., Accettella, D., Amblas, D., An, L., Arndt, J. E.,
Canals, M., Casamor, J. L., Chauché, N., Coakley, B., Danielson, S.,
Demarte, M., Dickson, M.-L., Dorschel, B., Dowdeswell, J. A., Dreutter, S.,
Fremand, A. C., Gallant, D., Hall, J. K., Hehemann, L., Hodnesdal, H., Hong,
J., Ivaldi, R., Kane, E., Klaucke, I., Krawczyk, D. W., Kristoffersen, Y.,
Kuipers, B. R., Millan, R., Masetti, G., Morlighem, M., Noormets, R.,
Prescott, M. M., Rebesco, M., Rignot, E., Semiletov, I., Tate, A. J.,
Travaglini, P., Velicogna, I., Weatherall, P., Weinrebe, W., Willis, J. K.,
Wood, M., Zarayskaya, Y., Zhang, T., Zimmermann, M., and Zinglersen, K. B.:
The International Bathymetric Chart of the Arctic Ocean Version
4.0, Sci. Data, 7, 176, https://doi.org/10.1038/s41597-020-0520-9, 2020. a, b, c, d
Janout, M. A. and Lenn, Y.-D.: Semidiurnal Tides on the Laptev Sea
Shelf with Implications for Shear and Vertical Mixing, J.
Phys. Oceanogr., 44, 202–219, https://doi.org/10.1175/JPO-D-12-0240.1, 2014. a
Janout, M. A., Aksenov, Y., Hölemann, J. A., Rabe, B., Schauer, U.,
Polyakov, I. V., Bacon, S., Coward, A. C., Karcher, M., Lenn, Y.-D., Kassens,
H., and Timokhov, L.: Kara Sea freshwater transport through Vilkitsky
Strait: Variability, forcing, and further pathways toward the western
Arctic Ocean from a model and observations, J. Geophys.
Res.-Oceans, 120, 4925–4944, https://doi.org/10.1002/2014JC010635, 2015. a, b
Janout, M. A., Hölemann, J., Laukert, G., Smirnov, A., Krumpen, T., Bauch,
D., and Timokhov, L.: On the Variability of Stratification in the
Freshwater-Influenced Laptev Sea Region, Front. Mar.
Sci., 7, 543489, https://doi.org/10.3389/fmars.2020.543489, 2020. a
Jewell, M. E. and Hutchings, J. K.: Observational Perspectives on Beaufort
Sea Ice Breakouts, Geophys. Res. Lett., 50, e2022GL101408,
https://doi.org/10.1029/2022GL101408, 2023. a
Jewell, M. E., Hutchings, J. K., and Geiger, C. A.: Atmospheric highs drive asymmetric sea ice drift during lead opening from Point Barrow, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2023-9, in review, 2023. a, b, c
Kirchmeier-Young, M. C., Zwiers, F. W., and Gillett, N. P.: Attribution of
Extreme Events in Arctic Sea Ice Extent, J. Climate, 30,
553–571, https://doi.org/10.1175/JCLI-D-16-0412.1, 2017. a
Kohnemann, S. and Heinemann, G.: A climatology of wintertime low-level jets in
Nares Strait, Polar Res., 40, 1–16, https://doi.org/10.33265/polar.v40.3622, 2021. a
Korosov, A., Rampal, P., Ying, Y., Ólason, E., and Williams, T.: Towards improving short-term sea ice predictability using deformation observations, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-46, in review, 2022. a, b
Kort, E. A., Wofsy, S. C., Daube, B. C., Diao, M., Elkins, J. W., Gao, R. S.,
Hintsa, E. J., Hurst, D. F., Jimenez, R., Moore, F. L., Spackman, J. R., and
Zondlo, M. A.: Atmospheric observations of Arctic Ocean methane emissions
up to 82∘ north, Nat. Geosci., 5, 318–321,
https://doi.org/10.1038/ngeo1452, 2012. a
Kwok, R., Spreen, G., and Pang, S.: Arctic sea ice circulation and drift speed:
Decadal trends and ocean currents, J. Geophys. Res.-Oceans,
118, 2408–2425, https://doi.org/10.1002/jgrc.20191, 2013. a, b
Levitus, S., Locarnini, R. A., Boyer, T. P., Mishonov, A. V., Antonov, J. I.,
Garcia, H. E., Baranova, O. K., Zweng, M. M., Johnson, D. R., and Seidov,
1948, D.: World ocean atlas 2009, NOAA atlas NESDIS,
https://repository.library.noaa.gov/view/noaa/1259 (last access: 1 June 2020), 2010. a
Lewis, B. J. and Hutchings, J. K.: Leads and Associated Sea Ice Drift
in the Beaufort Sea in Winter, J. Geophys. Res.-Oceans,
124, 3411–3427, https://doi.org/10.1029/2018JC014898, 2019. a, b, c
Liu, Z., Risi, C., Codron, F., Jian, Z., Wei, Z., He, X., Poulsen, C. J., Wang,
Y., Chen, D., Ma, W., Cheng, Y., and Bowen, G. J.: Atmospheric forcing
dominates winter Barents-Kara sea ice variability on interannual to
decadal time scales, P. Natl. Acad. Sci. USA, 119,
e212077011, https://doi.org/10.1073/pnas.2120770119, 2022. a, b, c
Lüpkes, C., Vihma, T., Birnbaum, G., and Wacker, U.: Influence of leads in
sea ice on the temperature of the atmospheric boundary layer during polar
night, Geophys. Res. Lett., 35, L03805, https://doi.org/10.1029/2007GL032461, 2008. a
Manucharyan, G. E. and Thompson, A. F.: Heavy footprints of upper-ocean eddies
on weakened Arctic sea ice in marginal ice zones, Nat. Commun.,
13, 2147, https://doi.org/10.1038/s41467-022-29663-0, 2022. a
Marcq, S. and Weiss, J.: Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere, The Cryosphere, 6, 143–156, https://doi.org/10.5194/tc-6-143-2012, 2012. a
Mioduszewski, J., Vavrus, S., and Wang, M.: Diminishing Arctic Sea Ice
Promotes Stronger Surface Winds, J. Climate, 31, 8101–8119,
https://doi.org/10.1175/JCLI-D-18-0109.1, 2018. a
Moore, C. W., Obrist, D., Steffen, A., Staebler, R. M., Douglas, T. A.,
Richter, A., and Nghiem, S. V.: Convective forcing of mercury and ozone in
the Arctic boundary layer induced by leads in sea ice, Nature, 506,
81–84, https://doi.org/10.1038/nature12924, 2014. a
Nguyen, A. T., Menemenlis, D., and Kwok, R.: Improved modeling of the Arctic
halocline with a subgrid-scale brine rejection parameterization, J.
Geophys. Res.-Oceans, 114, C11014, https://doi.org/10.1029/2008JC005121, 2009. a
Notz, D. and SIMIP community: Arctic Sea Ice in CMIP6,
Geophys. Res. Lett., 47, e2019GL086749,
https://doi.org/10.1029/2019GL086749, 2020. a
Pavlova, O., Pavlov, V., and Gerland, S.: The impact of winds and sea surface
temperatures on the Barents Sea ice extent, a statistical approach,
J. Marine Syst., 130, 248–255,
https://doi.org/10.1016/j.jmarsys.2013.02.011, 2014. a, b, c
Pnyushkov, A. V., Polyakov, I. V., Ivanov, V. V., Aksenov, Y., Coward, A. C.,
Janout, M., and Rabe, B.: Structure and variability of the boundary current
in the Eurasian Basin of the Arctic Ocean, Deep-Sea Res. Pt. I, 101, 80–97, https://doi.org/10.1016/j.dsr.2015.03.001,
2015. a, b
Polyakov, I. V., Rippeth, T. P., Fer, I., Alkire, M. B., Baumann, T. M.,
Carmack, E. C., Ingvaldsen, R., Ivanov, V. V., Janout, M., Lind, S., Padman,
L., Pnyushkov, A. V., and Rember, R.: Weakening of Cold Halocline Layer
Exposes Sea Ice to Oceanic Heat in the Eastern Arctic Ocean,
J. Climate, 33, 8107–8123, https://doi.org/10.1175/JCLI-D-19-0976.1, 2020. a
Qu, M., Pang, X., Zhao, X., Lei, R., Ji, Q., Liu, Y., and Chen, Y.: Spring
leads in the Beaufort Sea and its interannual trend using Terra/MODIS
thermal imagery, Remote Sens. Environ., 256, 112342,
https://doi.org/10.1016/j.rse.2021.112342, 2021. a
Reiser, F., Willmes, S., Hausmann, U., and Heinemann, G.: Predominant Sea
Ice Fracture Zones Around Antarctica and Their Relation to
Bathymetric Features, Geophys. Res. Lett., 46, 12117–12124,
https://doi.org/10.1029/2019GL084624, 2019. a, b
Schaffer, J., Timmermann, R., Arndt, J. E., Kristensen, S. S., Mayer, C., Morlighem, M., and Steinhage, D.: A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry, Earth Syst. Sci. Data, 8, 543–557, https://doi.org/10.5194/essd-8-543-2016, 2016. a
Sidorenko, D., Goessling, H., Koldunov, N., Scholz, P., Danilov, S., Barbi, D.,
Cabos, W., Gurses, O., Harig, S., Hinrichs, C., Juricke, S., Lohmann, G.,
Losch, M., Mu, L., Rackow, T., Rakowsky, N., Sein, D., Semmler, T., Shi, X.,
Stepanek, C., Streffing, J., Wang, Q., Wekerle, C., Yang, H., and Jung, T.:
Evaluation of FESOM2.0 Coupled to ECHAM6.3: Preindustrial and
HighResMIP Simulations, J. Adv. Model. Earth Sy.,
11, 3794–3815, https://doi.org/10.1029/2019MS001696, 2019. a
Schefczyk, L. and Heinemann, G.: CATS Projekt – Uni Trier – Simulation C15_Arctic, DOKU at DKRZ [data set], https://www.wdc-climate.de/ui/entry?acronym=DKRZ_LTA_474_dsg0001 (last access: February 2023), 2023. a
Smedsrud, L. H., Sirevaag, A., Kloster, K., Sorteberg, A., and Sandven, S.: Recent wind driven high sea ice area export in the Fram Strait contributes to Arctic sea ice decline, The Cryosphere, 5, 821–829, https://doi.org/10.5194/tc-5-821-2011, 2011. a
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using
AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03,
https://doi.org/10.1029/2005JC003384, 2008. a
Spreen, G., Kwok, R., Menemenlis, D., and Nguyen, A. T.: Sea-ice deformation in a coupled ocean–sea-ice model and in satellite remote sensing data, The Cryosphere, 11, 1553–1573, https://doi.org/10.5194/tc-11-1553-2017, 2017. a, b
Stabeno, P., Kachel, N., Ladd, C., and Woodgate, R.: Flow Patterns in the
Eastern Chukchi Sea: 2010–2015, J. Geophys.
Res.-Oceans, 123, 1177–1195, https://doi.org/10.1002/2017JC013135, 2018. a, b
Steger, C. and Bucchignani, E.: Regional Climate Modelling with
COSMO-CLM: History and Perspectives, Atmosphere, 11, 1250,
https://doi.org/10.3390/atmos11111250, 2020. a
Stirling, I.: The importance of polynyas, ice edges, and leads to marine
mammals and birds, J. Marine Syst., 10, 9–21,
https://doi.org/10.1016/S0924-7963(96)00054-1, 1997. a
Stroeve, J. and Notz, D.: Changing state of Arctic sea ice across all
seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018. a, b
Suzuki, T., Yamazaki, D., Tsujino, H., Komuro, Y., Nakano, H., and Urakawa, S.:
A dataset of continental river discharge based on JRA-55 for use in a
global ocean circulation model, J. Oceanogr., 74, 421–429,
https://doi.org/10.1007/s10872-017-0458-5, 2018. a
Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, 2014. a
Wang, Q., Danilov, S., Jung, T., Kaleschke, L., and Wernecke, A.: Sea ice leads
in the Arctic Ocean: Model assessment, interannual variability and
trends, Geophys. Res. Lett., 43, 7019–7027,
https://doi.org/10.1002/2016GL068696, 2016. a, b, c, d
Wang, Q., Wekerle, C., Danilov, S., Wang, X., and Jung, T.: A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4, Geosci. Model Dev., 11, 1229–1255, https://doi.org/10.5194/gmd-11-1229-2018, 2018.
Warner, J. L., Screen, J. A., and Scaife, A. A.: Links Between
Barents-Kara Sea Ice and the Extratropical Atmospheric
Circulation Explained by Internal Variability and Tropical
Forcing, Geophys. Res. Lett., 47,
e2019GL085679, https://doi.org/10.1029/2019GL085679, 2020. a
Wekerle, C., Wang, Q., von Appen, W.-J., Danilov, S., Schourup-Kristensen, V.,
and Jung, T.: Eddy-Resolving Simulation of the Atlantic Water
Circulation in the Fram Strait With Focus on the Seasonal
Cycle, J. Geophys. Res.-Oceans, 122, 8385–8405,
https://doi.org/10.1002/2017JC012974, 2017. a, b
Willmes, S. and Heinemann, G.: Pan-Arctic lead detection from MODIS thermal
infrared imagery, Ann. Glaciol., 56, 29–37,
https://doi.org/10.3189/2015AoG69A615, 2015.
Willmes, S. and Heinemann, G.: Sea-Ice Wintertime Lead Frequencies and
Regional Characteristics in the Arctic, 2003–2015, Remote
Sens., 8, 4, https://doi.org/10.3390/rs8010004, 2016. a, b, c, d
Willmes, S., Heinemann, G., and Reiser, F.: ArcLeads: Daily sea-ice lead maps for the Arctic, 2002–2021, NOV-APR, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.955561, 2023. a, b
Winsor, P. and Chapman, D. C.: Pathways of Pacific water across the Chukchi
Sea: A numerical model study, J. Geophys. Res.-Oceans,
109, C03002, https://doi.org/10.1029/2003JC001962, 2004. a
Woods, C. and Caballero, R.: The Role of Moist Intrusions in Winter
Arctic Warming and Sea Ice Decline, J. Climate, 29,
4473–4485, https://doi.org/10.1175/JCLI-D-15-0773.1, 2016. a
Zhang, J. and Rothrock, D. A.: Modeling Global Sea Ice with a Thickness
and Enthalpy Distribution Model in Generalized Curvilinear
Coordinates, Mon. Weather Rev., 131, 845–861,
https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003.
a
Zhang, J., Lindsay, R., Schweiger, A., and Rigor, I.: Recent changes in the
dynamic properties of declining Arctic sea ice: A model study,
Geophys. Res. Lett., 39, L20503, https://doi.org/10.1029/2012GL053545, 2012. a, b, c
Zhang, Y., Cheng, X., Liu, J., and Hui, F.: The potential of sea ice leads as a predictor for summer Arctic sea ice extent, The Cryosphere, 12, 3747–3757, https://doi.org/10.5194/tc-12-3747-2018, 2018. a
Short summary
Sea ice is an important constituent of the global climate system. We here use satellite data to identify regions in the Arctic where the sea ice breaks up in so-called leads (i.e., linear cracks) regularly during winter. This information is important because leads determine, e.g., how much heat is exchanged between the ocean and the atmosphere. We here provide first insights into the reasons for the observed patterns in sea-ice leads and their relation to ocean currents and winds.
Sea ice is an important constituent of the global climate system. We here use satellite data to...