Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2487-2023
https://doi.org/10.5194/tc-17-2487-2023
Research article
 | 
23 Jun 2023
Research article |  | 23 Jun 2023

A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting

Steven Fons, Nathan Kurtz, and Marco Bagnardi

Related authors

Linking scales of sea ice surface topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023,https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Retrieval of snow freeboard of Antarctic sea ice using waveform fitting of CryoSat-2 returns
Steven W. Fons and Nathan T. Kurtz
The Cryosphere, 13, 861–878, https://doi.org/10.5194/tc-13-861-2019,https://doi.org/10.5194/tc-13-861-2019, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Antarctic
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024,https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023,https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary
Signature of the stratosphere–troposphere coupling on recent record-breaking Antarctic sea-ice anomalies
Raúl R. Cordero, Sarah Feron, Alessandro Damiani, Pedro J. Llanillo, Jorge Carrasco, Alia L. Khan, Richard Bintanja, Zutao Ouyang, and Gino Casassa
The Cryosphere, 17, 4995–5006, https://doi.org/10.5194/tc-17-4995-2023,https://doi.org/10.5194/tc-17-4995-2023, 2023
Short summary
Southern Ocean polynyas and dense water formation in a high-resolution, coupled Earth system model
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023,https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Annual evolution of the ice–ocean interaction beneath landfast ice in Prydz Bay, East Antarctica
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023,https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary

Cited articles

Arthern, R. J., Wingham, D. J., and Ridout, A. L.: Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation, J. Geophys. Res.-Atmos., 106, 33471–33484, https://doi.org/10.1029/2001JD000498, 2001. a
Beaven, S. G., Lockhart, G. L., Gogineni, S. P., Hossetnmostafa, A. R., Jezek, K., Gow, A. J., Perovich, D. K., Fung, A. K., and Tjuatja, S.: Laboratory measurements of radar backscatter from bare and snow-covered saline ice sheets, Int. J. Remote Sens., 16, 851–876, https://doi.org/10.1080/01431169508954448, 1995. a, b
Brown, G. S.: The average impulse response of a rough surface and Its applications, IEEE J. Oceanic Eng., 2, 67–74, https://doi.org/10.1109/JOE.1977.1145328, 1977. a
Buynitskiy, V. K.: Structure, principal properties and strength of Antarctic sea ice, Sov. Antarct. Exped. Inf. Bull., 65, 504–510, 1967. a, b
Comiso, J. C.: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/7Q8HCCWS4I0R, 2017. a
Download
Short summary
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and complex snow cover on Antarctic sea ice, estimating the thickness of the ice pack is difficult using traditional methods in radar altimetry. In this work, we use a waveform model to estimate the freeboard and snow depth of Antarctic sea ice from CryoSat-2 and use these values to calculate sea ice thickness and volume between 2010 and 2021 and showcase how the sea ice pack has changed over this time.