Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2487-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-2487-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting
Steven Fons
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Nathan Kurtz
CORRESPONDING AUTHOR
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Marco Bagnardi
Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
ADNET Systems, Inc., Bethesda, MD, USA
Related authors
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Short summary
Information on sea ice surface topography is important for studies of sea ice as well as for ship navigation through ice. The ICESat-2 satellite senses the sea ice surface with six laser beams. To examine the accuracy of these measurements, we carried out a temporally coincident helicopter flight along the same ground track as the satellite and measured the sea ice surface topography with a laser scanner. This showed that ICESat-2 can see even bumps of only few meters in the sea ice cover.
Mengnan Zhao, Christopher Little, Nathan Kurtz, Rachel Tilling, and Jesse Wimert
EGUsphere, https://doi.org/10.5194/egusphere-2025-6155, https://doi.org/10.5194/egusphere-2025-6155, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We take advantage of ICESat-2 satellite, which measures surface heights with nominal resolution of meters to tens of meters, to characterize a near pan-Arctic winter sea ice leads, meter-scale elongated cracks in ice, from 2018 to 2024. We find that lead fractions are higher near the ice edge and sizes follow a power-law distribution. Four distinct features in the temporal evolution of lead fraction are also identified, with fraction increase associated with larger leads.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Robert Ricker, Steven Fons, Arttu Jutila, Nils Hutter, Kyle Duncan, Sinead L. Farrell, Nathan T. Kurtz, and Renée Mie Fredensborg Hansen
The Cryosphere, 17, 1411–1429, https://doi.org/10.5194/tc-17-1411-2023, https://doi.org/10.5194/tc-17-1411-2023, 2023
Short summary
Short summary
Information on sea ice surface topography is important for studies of sea ice as well as for ship navigation through ice. The ICESat-2 satellite senses the sea ice surface with six laser beams. To examine the accuracy of these measurements, we carried out a temporally coincident helicopter flight along the same ground track as the satellite and measured the sea ice surface topography with a laser scanner. This showed that ICESat-2 can see even bumps of only few meters in the sea ice cover.
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023, https://doi.org/10.5194/tc-17-127-2023, 2023
Short summary
Short summary
We present upgrades to winter Arctic sea ice thickness estimates from NASA's ICESat-2. Our new thickness results show better agreement with independent data from ESA's CryoSat-2 compared to our first data release, as well as new, very strong comparisons with data collected by moorings in the Beaufort Sea. We analyse three winters of thickness data across the Arctic, including 50 cm thinning of the multiyear ice over this 3-year period.
Isolde A. Glissenaar, Jack C. Landy, Alek A. Petty, Nathan T. Kurtz, and Julienne C. Stroeve
The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, https://doi.org/10.5194/tc-15-4909-2021, 2021
Short summary
Short summary
Scientists can estimate sea ice thickness using satellites that measure surface height. To determine the sea ice thickness, we also need to know the snow depth and density. This paper shows that the chosen snow depth product has a considerable impact on the findings of sea ice thickness state and trends in Baffin Bay, showing mean thinning with some snow depth products and mean thickening with others. This shows that it is important to better understand and monitor snow depth on sea ice.
Ron Kwok, Alek A. Petty, Marco Bagnardi, Nathan T. Kurtz, Glenn F. Cunningham, Alvaro Ivanoff, and Sahra Kacimi
The Cryosphere, 15, 821–833, https://doi.org/10.5194/tc-15-821-2021, https://doi.org/10.5194/tc-15-821-2021, 2021
Cited articles
Arthern, R. J., Wingham, D. J., and Ridout, A. L.: Controls on ERS altimeter
measurements over ice sheets: Footprint-scale topography, backscatter
fluctuations, and the dependence of microwave penetration depth on satellite
orientation, J. Geophys. Res.-Atmos., 106,
33471–33484, https://doi.org/10.1029/2001JD000498, 2001. a
Beaven, S. G., Lockhart, G. L., Gogineni, S. P., Hossetnmostafa, A. R., Jezek,
K., Gow, A. J., Perovich, D. K., Fung, A. K., and Tjuatja, S.: Laboratory
measurements of radar backscatter from bare and snow-covered saline ice
sheets, Int. J. Remote Sens., 16, 851–876,
https://doi.org/10.1080/01431169508954448, 1995. a, b
Brown, G. S.: The average impulse response of a rough surface and Its
applications, IEEE J. Oceanic Eng., 2, 67–74,
https://doi.org/10.1109/JOE.1977.1145328, 1977. a
Comiso, J. C.: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP
SSM/I-SSMIS, version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/7Q8HCCWS4I0R, 2017. a
EPA: Climate change indicators in the United States, Tech. Rep. April,
http://www.epa.gov/climatechange/ (last access: 6 April 2021), 2016. a
European Space Agency: L1b SAR precise orbit. Baseline D, Earth Online [data set],
https://doi.org/10.5270/CR2-2cnblvi, 2019a. a, b
European Space Agency: L1b SARIn precise orbit. Baseline D, Earth Online [data set],
https://doi.org/10.5270/CR2-u3805kw, 2019b. a
European Space Agency: CryoSat-2 product handbook: Baseline D 1.1, Tech.
rep.,
https://earth.esa.int/documents/10174/125272/CryoSat-Baseline-D-Product-Handbook (last access: 10 October 2022),
2019c. a
Farrell, S. L., Laxon, S. W., McAdoo, D. C., Yi, D., and Zwally, H. J.: Five
years of Arctic sea ice freeboard measurements from the Ice, Cloud and land
Elevation Satellite, J. Geophys. Res., 114, C04008,
https://doi.org/10.1029/2008JC005074, 2009. a
Fons, S., Kurtz, N., and Bagnardi, M.: Antarctic Sea Ice Thickness Estimates from CryoSat-2: 2010–2021 (0.1.1), Zenodo [data set] https://doi.org/10.5281/zenodo.7327711, 2022.
Garnier, F., Bocquet, M., Fleury, S., Bouffard, J., Tsamados, M., Remy, F.,
Garric, G., and Chenal, A.: Latest Altimetry-Based Sea Ice Freeboard and
Volume Inter-Annual Variability in the Antarctic over 2003–2020, Remote
Sens., 14, 4741, https://doi.org/10.3390/rs14194741, 2022.
a, b, c, d
Giles, K. A., Laxon, S. W., and Worby, A. P.: Antarctic sea ice elevation from
satellite radar altimetry, Geophys. Res. Lett., 35, 1–5,
https://doi.org/10.1029/2007GL031572, 2008. a
Giovinetto, M. B., Bromwich, D. H., and Wendler, G.: Atmospheric net transport
of water vapor and latent heat across 70∘ S, J. Geophys. Res., 97, 917–930, https://doi.org/10.1029/91JD02485, 1992. a
Hendricks, S., Paul, S., and Rinne, E.: ESA Sea Ice Climate Change Initiative
(Sea_Ice_cci): Southern hemisphere sea ice thickness from CryoSat-2 on
the satellite swath (L2P), v2.0, Centre for Environmental Data Analysis [data set],
https://doi.org/10.5285/fbfae06e787b4fefb4b03cba2fd04bc3, 2018. a, b, c
Herdman, H. F. P.: Early Discoverers XII: Some Notes on Sea Ice Observed By
Captain James Cook, R.N., During his Circumnavigation of Antarctica,
1772–75, J. Glaciol., 3, 534–541,
https://doi.org/10.3189/S0022143000017287, 1959. a
Holland, P. R.: The seasonality of Antarctic sea ice trends, Geophys.
Res. Lett., 41, 4230–4237, https://doi.org/10.1002/2014GL060172, 2014. a
Hutchings, J. K., Heil, P., Lecomte, O., Stevens, R., Steer, A., and Lieser,
J. L.: Comparing methods of measuring sea-ice density in the East Antarctic,
Ann. Glaciol., 56, 77–82, https://doi.org/10.3189/2015AoG69A814, 2015. a
Intergovernmental Panel on Climate Change (IPCC): Polar Regions, in: The Oceaon and Cryosphere in a Changing Climate, Cambridge University Press,
203–320, https://doi.org/10.1017/9781009157964.005, 2022. a
Kern, S. and Ozsoy-Çiçek, B.: Satellite remote sensing of snow
depth on Antarctic sea ice: an inter-comparison of two empirical approaches,
Remote Sens., 8, 450, https://doi.org/10.3390/rs8060450, 2016. a, b, c
Kern, S. and Spreen, G.: Uncertainties in Antarctic sea-ice thickness
retrieval from ICESat, Ann. Glaciol., 56, 107–119,
https://doi.org/10.3189/2015AoG69A736, 2015. a
Kurtz, N., Studinger, M., Harbeck, J., Onana, V., and Yi, D.: IceBridge L4 sea
ice freeboard, snow depth, and thickness, version 1, National Snow and Ice Data Center [data set],
https://doi.org/10.5067/G519SHCKWQV6, 2015. a
Kurtz, N. T. and Markus, T.: Satellite observations of Antarctic sea ice
thickness and volume, J. Geophys. Res.-Oceans, 117, C08025,
https://doi.org/10.1029/2012JC008141, 2012 (data available at: https://earth.gsfc.nasa.gov/cryo/data/antarctic-sea-ice-thickness, last access: 14 September 2022). a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Kurtz, N. T., Markus, T., Cavalieri, D. J., Krabill, W., Sonntag, J. G., and
Miller, J.: Comparison of ICESat data with airborne laser altimeter
measurements over arctic sea ice, IEEE T. Geosci. Remote, 46, 1913–1924, https://doi.org/10.1109/TGRS.2008.916639, 2008. a
Kwok, R.: Satellite remote sensing of sea-ice thickness and kinematics: A
review, J. Glaciol., 56, 1129–1140,
https://doi.org/10.3189/002214311796406167, 2011. a
Kwok, R.: Simulated effects of a snow layer on retrieval of CryoSat-2 sea ice
freeboard, Geophys. Res. Lett., 41, 5014–5020,
https://doi.org/10.1002/2014GL060993, 2014. a, b
Kwok, R. and Cunningham, G. F.: Variability of arctic sea ice thickness and
volume from CryoSat-2, Philos. T. R. Soc. A, 373, 20140157,
https://doi.org/10.1098/rsta.2014.0157, 2015. a
Kwok, R. and Kacimi, S.: Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2, The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, 2018. a
Kwok, R. and Maksym, T.: Snow depth of the Weddell and Bellingshausen sea ice
covers from IceBridge surveys in 2010 and 2011: An examination, J. Geophys. Res.-Oceans, 119, 4141–4167, https://doi.org/10.1002/2014JC009943,
2014. a
Kwok, R., Cunningham, G. F., Zwally, H. J., and Yi, D.: Ice, Cloud, and land
Elevation Satellite (ICESat) over Arctic sea ice: Retrieval of freeboard,
J. Geophys. Res.-Oceans, 112, C12013,
https://doi.org/10.1029/2006JC003978, 2007. a
Kwok, R., Kacimi, S., Webster, M. A., Kurtz, N. T., and Petty, A. A.: Arctic
snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: a
first examination, J. Geophys. Res.-Oceans, 125,
e2019JC016008, https://doi.org/10.1029/2019JC016008, 2020. a
Kwok, R., Petty, A., Cunningham, G., Markus, T., Hancock, D., Ivanoff, A.,
Wimert, J., Bagnardi, M., and Kurtz, N.: ATLAS/ICESat-2 L3A Sea Ice
Freeboard, Version 5, National Snow and Ice Data Center [data set], https://doi.org/10.5067/ATLAS/ATL10.005, 2021. a, b
Kwok, R., Petty, A., Bagnardi, M., Wimert, J. T., Cunningham, G. F., Hancock,
D. W., Ivanoff, A., and Kurtz, N.: Icesat-2 algorithm theoretical basis
document for sea ice products (atl07/atl10) release 005 Ice, Cloud, and land
Elevation satellite (ICESat-2) project algorithm theoretical basis document
(ATBD) for sea ice products, Tech. rep.,
https://nsidc.org/sites/default/files/icesat2_atl07_atl10_atl20_atl21_atbd_r005_1.pdf (last access: 14 September 2022),
2022. a
Landy, J. C., Petty, A. A., Tsamados, M., and Stroeve, J. C.: Sea ice
roughness overlooked as a key source of uncertainty in CryoSat-2 Ice
freeboard retrievals, J. Geophys. Res.-Oceans, 125, e2019JC015820,
https://doi.org/10.1029/2019JC015820, 2020. a
Laxon, S., Peacock, H., and Smith, D.: High interannual variability of sea ice
thickness in the Arctic region, Nature, 425, 947–950,
https://doi.org/10.1038/nature02050, 2003. a
Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen,
R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield,
R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic
sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737,
https://doi.org/10.1002/grl.50193, 2013. a, b
Li, H., Xie, H., Kern, S., Wan, W., Ozsoy, B., Ackley, S., and Hong, Y.:
Spatio-temporal variability of Antarctic sea-ice thickness and volume
obtained from ICESat data using an innovative algorithm, Remote Sens.
Environ., 219, 44–61, https://doi.org/10.1016/j.rse.2018.09.031, 2018. a, b, c
Liston, G. E., Polashenski, C., Rösel, A., Itkin, P., King, J.,
Merkouriadi, I., and Haapala, J.: A distributed snow-evolution model for
sea-ice applications (snowmodel), J. Geophys. Res.-Oceans,
123, 3786–3810, https://doi.org/10.1002/2017JC013706, 2018. a
Liston, G. E., Itkin, P., Stroeve, J., Tschudi, M., Stewart, J. S., Pedersen,
S. H., Reinking, A. K., and Elder, K.: A Lagrangian Snow-Evolution System for
Sea-Ice Applications (SnowModel-LG): Part I: Model Description, J. Geophys. Res.-Oceans, 125, e2019JC015913,
https://doi.org/10.1029/2019JC015913, 2020. a
Maksym, T. and Jeffries, M. O.: A one-dimensional percolation model of
flooding and snow ice formation on Antarctic sea ice, J. Geophys.
Res.-Oceans, 105, 26313–26331, https://doi.org/10.1029/2000JC900130, 2000. a
Maksym, T. and Markus, T.: Antarctic sea ice thickness and snow-to-ice
conversion from atmospheric reanalysis and passive microwave snow depth,
J. Geophys. Res.-Oceans, 113, C02S12,
https://doi.org/10.1029/2006JC004085, 2008. a, b, c
Mallett, R. D. C., Lawrence, I. R., Stroeve, J. C., Landy, J. C., and Tsamados, M.: Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates, The Cryosphere, 14, 251–260, https://doi.org/10.5194/tc-14-251-2020, 2020. a
Markus, T. and Cavalieri, D. J.: Snow depth distribution over sea ice in the
southern ocean from satellite passive microwave data, in: Antarctic Sea Ice:
Physical Processes, Interactions and Variability, edited by: Jeffries, M.,
American Geophysical Union, 19–39 pp., https://doi.org/10.1029/AR074p0019,
1998. a, b, c
Massom, R. A., Eicken, H., Haas, C., Jeffries, M. O., Drinkwater, M. R., Sturm,
M., Worby, A. P., Wu, X., Lytle, V. I., Ushio, S., Morris, K., Reid, P. A.,
Warren, S. G., and Allison, I.: Snow on Antarctic sea ice, Rev.
Geophys., 39, 413–445, https://doi.org/10.1029/2000RG000085, 2001. a, b
Meredith, M., Sommerkorn, M., Cassota, S., Derksen, C., Ekaykin, A., Hollowed,
A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M.,
Ottersen, G., Pritchard, H., Schuur, E., Boyd, P., Hobbs, W., and
Hodgson-Johnston, I.: Polar regions, IPCC Special Report on the Ocean and
Cryosphere in a Changing Climate, https://doi.org/10.1017/9781009157964.005, 2019. a
Nichols, T., Berkes, F., Jolly, D., Snow, N., and The Community of Sachs
Harbour: Climate Change and Sea Ice: Local Observations from the Canadian
Western Arctic, Arctic, 57, 68–79, https://doi.org/10.14430/arctic484, 2004. a
Ozsoy-Cicek, B., Ackley, S., Xie, H., Yi, D., and Zwally, J.: Sea ice thickness
retrieval algorithms based on in situ surface elevation and thickness values
for application to altimetry, J. Geophys. Res.-Oceans, 118,
3807–3822, https://doi.org/10.1002/jgrc.20252, 2013. a, b
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423, https://doi.org/10.1073/pnas.1906556116, 2019. a, b, c
Paul, S., Hendricks, S., Ricker, R., Kern, S., and Rinne, E.: Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative, The Cryosphere, 12, 2437–2460, https://doi.org/10.5194/tc-12-2437-2018, 2018. a, b, c, d, e, f
Persson, O. and Vihma, T.: The atmosphere over sea ice, in: Sea Ice, 3rd edn., John Wiley & Sons, Ltd., https://doi.org/10.1002/9781118778371.ch6, 2016. a
Petty, A. A., Webster, M., Boisvert, L., and Markus, T.: The NASA Eulerian Snow on Sea Ice Model (NESOSIM) v1.0: initial model development and analysis, Geosci. Model Dev., 11, 4577–4602, https://doi.org/10.5194/gmd-11-4577-2018, 2018. a
Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, 2014. a, b
Schwegmann, S., Rinne, E., Ricker, R., Hendricks, S., and Helm, V.: About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice, The Cryosphere, 10, 1415–1425, https://doi.org/10.5194/tc-10-1415-2016, 2016. a, b, c, d
Spreen, G., Kern, S., Stammer, D., and Hansen, E.: Fram Strait sea ice volume
export estimated between 2003 and 2008 from satellite data, Geophys.
Res. Lett., 36, L19502, https://doi.org/10.1029/2009GL039591, 2009. a, b
Stewart, J. S., Meier, W. N., and Scott, D. J.: Polar Stereographic Ancillary
Grid Information, Version 1, National Snow and Ice Data Center [data set], https://doi.org/10.5067/N6INPBT8Y104, 2022. a
Tilling, R., Ridout, A., and Shepherd, A.: Assessing the impact of lead and
floe sampling on Arctic sea ice thickness estimates from Envisat and
CryoSat‐2, J. Geophys. Res.-Oceans, 124, 7473–7485,
https://doi.org/10.1029/2019JC015232, 2019. a
Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea ice
thickness and volume using CryoSat-2 radar altimeter data, Adv. Space
Res., 62, 1203–1225, https://doi.org/10.1016/j.asr.2017.10.051, 2018. a, b, c, d
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin,
N. N., Aleksandrov, Y. I., and Colony, R.: Snow depth on Arctic sea ice,
J. Climate, 12, 1814–1829,
https://doi.org/10.1175/1520-0442(1999)012<1814:SDOASI>2.0.CO;2, 1999. a
Willatt, R. C., Giles, K. A., Laxon, S. W., Stone-Drake, L., and Worby, A. P.:
Field investigations of Ku-band radar penetration into snow cover on
antarctic sea ice, IEEE T. Geosci. Remote, 48,
365–372, https://doi.org/10.1109/TGRS.2009.2028237, 2010. a, b, c
Williams, G., Maksym, T., Wilkinson, J., Kunz, C., Murphy, C., Kimball, P., and
Singh, H.: Thick and deformed Antarctic sea ice mapped with autonomous
underwater vehicles, Nature Geosci., 8, 61–67, https://doi.org/10.1038/ngeo2299,
2015. a
Wingham, D. J., Francis, C. R., Baker, S., Bouzinac, C., Brockley, D., Cullen,
R., de Chateau-Thierry, P., Laxon, S. W., Mallow, U., Mavrocordatos, C.,
Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D. W.:
CryoSat: A mission to determine the fluctuations in Earth's land and marine
ice fields, Adv. Space Res., 37, 841–871,
https://doi.org/10.1016/j.asr.2005.07.027, 2006. a
Zwally, H. J., Schutz, B., Abdalati, W., Abshire, J., Bentley, C., Brenner, A.,
Bufton, J., Dezio, J., Hancock, D., Harding, D., Herring, T., Minster, B.,
Quinn, K., Palm, S., Spinhirne, J., and Thomas, R.: ICESat's laser
measurements of polar ice, atmosphere, ocean, and land, J.
Geodyn., 34, 405–445, https://doi.org/10.1016/S0264-3707(02)00042-X, 2002. a
Short summary
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and complex snow cover on Antarctic sea ice, estimating the thickness of the ice pack is difficult using traditional methods in radar altimetry. In this work, we use a waveform model to estimate the freeboard and snow depth of Antarctic sea ice from CryoSat-2 and use these values to calculate sea ice thickness and volume between 2010 and 2021 and showcase how the sea ice pack has changed over this time.
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and...