Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1445-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1445-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rapid sea ice changes in the future Barents Sea
Ole Rieke
Geophysical Institute, University of Bergen, Bergen, Norway
now at: Institute for Marine and Antarctic Studies, University of Tasmania, TAS, Hobart, Australia
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Jakob Simon Dörr
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
No articles found.
Jakob Simon Dörr, Carlo Jeffrey Mans, Marius Årthun, Kristofer Döös, Dafydd Gwyn Evans, and Yanchun He
EGUsphere, https://doi.org/10.5194/egusphere-2025-4345, https://doi.org/10.5194/egusphere-2025-4345, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Arctic Ocean plays a key role in the global ocean circulation by producing dense waters that feed the lower limb of the Atlantic meridional overturning circulation (AMOC). We use a high-resolution ocean simulation to investigate the pathways and mechanisms through which these dense waters are formed in the Arctic. Our results show that surface cooling in the Barents Sea dominates the dense water production, but that internal mixing plays a role at high densities.
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024, https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Short summary
Antarctic sea ice has exhibited variability over satellite records, including a period of gradual expansion and a period of sudden decline. We use a novel statistical method to identify sources of variability in observed Antarctic sea ice changes. We find that the gradual increase in sea ice is likely related to large-scale temperature trends, and periods of abrupt sea ice decline are related to specific flavors of equatorial tropical variability known as the El Niño–Southern Oscillation.
Jakob Simon Dörr, David B. Bonan, Marius Årthun, Lea Svendsen, and Robert C. J. Wills
The Cryosphere, 17, 4133–4153, https://doi.org/10.5194/tc-17-4133-2023, https://doi.org/10.5194/tc-17-4133-2023, 2023
Short summary
Short summary
The Arctic sea-ice cover is retreating due to climate change, but this retreat is influenced by natural (internal) variability in the climate system. We use a new statistical method to investigate how much internal variability has affected trends in the summer and winter Arctic sea-ice cover using observations since 1979. Our results suggest that the impact of internal variability on sea-ice retreat might be lower than what climate models have estimated.
Cited articles
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen,
R. B.: Quantifying the Influence of Atlantic Heat on Barents Sea Ice
Variability and Retreat, J. Climate, 25, 4736–4743,
https://doi.org/10.1175/JCLI-D-11-00466.1, 2012. a, b, c, d
Årthun, M., Onarheim, I. H., Dörr, J., and Eldevik, T.: The Seasonal and
Regional Transition to an Ice-Free Arctic, Geophys. Res. Lett., 48,
e2020GL090825, https://doi.org/10.1029/2020GL090825, 2021. a, b
Auclair, G. and Tremblay, L. B.: The Role of Ocean Heat Transport in Rapid Sea
Ice Declines in the Community Earth System Model Large Ensemble, J. Geophys. Res.-Oceans, 123, 8941–8957,
https://doi.org/10.1029/2018JC014525, 2018. a, b, c, d
Bonan, D. B., Lehner, F., and Holland, M. M.: Partitioning uncertainty in
projections of Arctic sea ice, Environmental Research Letters, 16,
https://doi.org/10.1088/1748-9326/abe0ec, 2021a. a, b, c
Bonan, D. B., Schneider, T., Eisenman, I., and Wills, R. C. J.: Constraining
the Date of a Seasonally Ice-Free Arctic Using a Simple Model, Geophys.
Res. Lett., 48, e2021GL094309,
https://doi.org/10.1029/2021GL094309, 2021b. a
Bonnet, R., Swingedouw, D., Gastineau, G., Boucher, O., Deshayes, J., Hourdin,
F., Mignot, J., Servonnat, J., and Sima, A.: Increased risk of near term
global warming due to a recent AMOC weakening, Nat. Commun., 12,
6108, https://doi.org/10.1038/s41467-021-26370-0, 2021. a
CMIP:
Coupled Model Intercomparison Project Phase 6 (CMIP6) data, Working Group on Coupled Modeling of the World Climate Research Programme, Earth System Grid Federation [data set], https://esgf-node.llnl.gov/search/cmip6, last access: March 2023. a
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio,
P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E.,
Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S.,
Randerson, J., Screen, J. A., Simpson, I. R., and Ting, M.: Insights from
Earth system model initial-condition large ensembles and future prospects,
Nat. Clim. Change, 10, 277–286,
https://doi.org/10.1038/s41558-020-0731-2, 2020. a
Docquier, D., Koenigk, T., Fuentes-Franco, R., Karami, M. P., and
Ruprich-Robert, Y.: Impact of ocean heat transport on the Arctic sea-ice
decline: a model study with EC-Earth3, Clim. Dynam., 56, 1407–1432,
https://doi.org/10.1007/s00382-020-05540-8, 2021. a, b
Dörr, J., Årthun, M., Eldevik, T., and Madonna, E.: Mechanisms of regional
winter sea-ice variability in a warming Arctic, J. Climate, 34, 8635–8653, https://doi.org/10.1175/JCLI-D-21-0149.1, 2021. a, b, c, d
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022. a
England, M., Jahn, A., and Polvani, L.: Nonuniform Contribution of Internal
Variability to Recent Arctic Sea Ice Loss, J. Climate, 32, 4039–4053, https://doi.org/10.1175/JCLI-D-18-0864.1, 2019. a, b, c
England, M. R., Eisenman, I., Lutsko, N. J., and Wagner, T. J. W.: The Recent
Emergence of Arctic Amplification, Geophys. Res. Lett., 48,
e2021GL094086, https://doi.org/10.1029/2021GL094086, 2021. a
Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, M. M.,
and Dolgov, A. V.: Recent warming leads to a rapid borealization of fish
communities in the Arctic, Nat. Clim. Change, 5, 673–677,
https://doi.org/10.1038/nclimate2647, 2015. a, b
Herbaut, C., Houssais, M.-N., Close, S., and Blaizot, A.-C.: Two wind-driven
modes of winter sea ice variability in the Barents Sea, Deep-Sea Res. Pt. I, 106, 97–115,
https://doi.org/10.1016/j.dsr.2015.10.005, 2015. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz
Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D.,
Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged
data on pressure levels from 1959 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.f17050d7, 2019. a, b
Holland, M. M., Bitz, C. M., and Tremblay, B.: Future abrupt reductions in the
summer Arctic sea ice, Geophys. Res. Lett., 33, L23503,
https://doi.org/10.1029/2006GL028024, 2006. a, b
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Jahn, A., Kay, J. E., Holland, M. M., and Hall, D. M.: How predictable is the
timing of a summer ice-free Arctic?, Geophys. Res. Lett., 43,
9113–9120, https://doi.org/10.1002/2016GL070067, 2016. a
Kay, J. and Deser, C.: The Community Earth System Model (CESM) Large Ensemble Projec,
UCAR/NCAR Climate Data Gateway [data set], https://doi.org/10.5065/d6j101d1,
2016. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G.,
Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M.,
Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A.,
Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The
Community Earth System Model (CESM) Large Ensemble Project: A Community
Resource for Studying Climate Change in the Presence of Internal Climate
Variability, B. Am. Meteorol. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015. a
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: losses
and coupled variability (1958–2018), Environm. Res. Lett., 13, 105005,
https://doi.org/10.1088/1748-9326/aae3ec, 2018. a
Labe, Z., Magnusdottir, G., and Stern, H.: Variability of Arctic sea ice
thickness using PIOMAS and the CESM large ensemble, J, Climate, 31,
3233–3247, https://doi.org/10.1175/JCLI-D-17-0436.1, 2018. a
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010. a
Lawrence, D. M., Slater, A. G., Tomas, R. A., Holland, M. M., and Deser, C.:
Accelerated Arctic land warming and permafrost degradation during rapid sea
ice loss, Geophys. Res. Lett., 35, L11506,
https://doi.org/10.1029/2008GL033985, 2008. a
Li, D., Zhang, R., and Knutson, T. R.: On the discrepancy between observed and
CMIP5 multi-model simulated Barents Sea winter sea ice decline, Nat.
Commun., 8, 14991, https://doi.org/10.1038/ncomms14991, 2017. a
Lien, V. S., Schlichtholz, P., Øystein Skagseth, and Vikebø, F. B.:
Wind-Driven Atlantic Water Flow as a Direct Mode for Reduced Barents Sea Ice
Cover, J. Climate, 300, 803–812,
https://doi.org/10.1175/JCLI-D-16-0025.1, 2017. a
Lind, S., Ingvaldsen, R. B., and Furevik, T.: Arctic warming hotspot in the
northern Barents Sea linked to declining sea-ice import, Nat. Clim.
Change, 8, 634–639, https://doi.org/10.1038/s41558-018-0205-y, 2018. a, b
Liu, Z., Risi, C., Codron, F., Jian, Z., Wei, Z., He, X., Poulsen, C. J., Wang,
Y., Chen, D., Ma, W., Cheng, Y., and Bowen, G. J.: Atmospheric forcing
dominates winter Barents-Kara sea ice variability on interannual to decadal
time scales, P. Natl. Acad. Sci. USA, 119,
e2120770119, https://doi.org/10.1073/pnas.2120770119, 2022. a, b
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann,
S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la
Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S.,
Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner,
K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E.
M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K.,
Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S.,
Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H.,
Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens,
B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H.,
Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M
Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing
CO2, J. Adv. Model. Earth Sy., 11, 998–1038,
https://doi.org/10.1029/2018MS001400, 2019. a
Melia, N., Haines, K., and Hawkins, E.: Sea ice decline and 21st century
trans-Arctic shipping routes, Geophys. Res. Lett., 43, 9720–9728,
https://doi.org/10.1002/2016GL069315, 2016. a
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed,
A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M.,
Ottersen, G., Pritchard, H., and Schuur, E.: Polar Regions, in: IPCC Special
Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O.,
Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E.,
Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and
Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY,
USA, 203–320, https://doi.org/10.1017/9781009157964.005, 2019. a
Milinski, S., Maher, N., and Olonscheck, D.: How large does a large ensemble need to be?, Earth Syst. Dynam., 11, 885–901, https://doi.org/10.5194/esd-11-885-2020, 2020. a
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose,
S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T.,
Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J.,
Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The
next generation of scenarios for climate change research and assessment,
Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010. a
Muilwijk, M., Smedsrud, L. H., Ilicak, M., and Drange, H.: Atlantic Water Heat
Transport Variability in the 20th Century Arctic Ocean From a Global Ocean
Model and Observations, J. Geophys. Res.-Oceans, 123,
8159–8179, https://doi.org/10.1029/2018JC014327, 2018. a
Nakanowatari, T., Sato, K., and Inoue, J.: Predictability of the Barents Sea
Ice in Early Winter: Remote Effects of Oceanic and Atmospheric Thermal
Conditions from the North Atlantic, J. Climate, 27, 8884–8901,
https://doi.org/10.1175/JCLI-D-14-00125.1, 2014. a, b
Notz, D. and SIMIP Community: Arctic Sea Ice in CMIP6, Geophys. Res.
Lett., 47, e2019GL086749, https://doi.org/10.1029/2019GL086749,
2020. a
Onarheim, I. H. and Årthun, M.: Toward an ice-free Barents Sea, Geophys.
Res. Lett., 44, 8387–8395, https://doi.org/10.1002/2017GL074304,
2017. a, b, c
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.: Seasonal
and Regional Manifestation of Arctic Sea Ice Loss, J. Climate, 31,
4917–4932, https://doi.org/10.1175/JCLI-D-17-0427.1, 2018. a
O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K.,
Rothman, D. S., van Ruijven, B. J., van Vuuren, D. P., Birkmann, J., Kok,
K., Levy, M., and Solecki, W.: The roads ahead: Narratives for shared
socioeconomic pathways describing world futures in the 21st century, Global
Environ. Chang., 42, 169–180,
https://doi.org/10.1016/j.gloenvcha.2015.01.004, 2017. a
Park, T.-W., Deng, Y., Cai, M., Jeong, J.-H., and Zhou, R.: A dissection of
the surface temperature biases in the Community Earth System Model, Clim.
Dynam., 43, 2043–2059, https://doi.org/10.1007/s00382-013-2029-9,
2014. a
Philip, S., Kew, S., van Oldenborgh, G. J., Otto, F., Vautard, R., van der Wiel, K., King, A., Lott, F., Arrighi, J., Singh, R., and van Aalst, M.: A protocol for probabilistic extreme event attribution analyses, Adv. Stat. Clim. Meteorol. Oceanogr., 6, 177–203, https://doi.org/10.5194/ascmo-6-177-2020, 2020. a
Sanderson, B. M., Xu, Y., Tebaldi, C., Wehner, M., O'Neill, B., Jahn, A., Pendergrass, A. G., Lehner, F., Strand, W. G., Lin, L., Knutti, R., and Lamarque, J. F.: Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures, Earth Syst. Dynam., 8, 827–847, https://doi.org/10.5194/esd-8-827-2017, 2017. a
Sandø, A. B., Mousing, E. A., Budgell, W. P., Hjøllo, S. S., Skogen, M. D.,
and Ådlandsvik, B.: Barents Sea plankton production and controlling factors
in a fluctuating climate, ICES J. Mar. Sci., 78, 1999–2016,
https://doi.org/10.1093/icesjms/fsab067, 2021. a
Schauer, U. and Beszczynska-Möller, A.: Problems with estimation and interpretation of oceanic heat transport – conceptual remarks for the case of Fram Strait in the Arctic Ocean, Ocean Sci., 5, 487–494, https://doi.org/10.5194/os-5-487-2009, 2009. a
Schlichtholz, P.: Influence of oceanic heat variability on sea ice anomalies
in the Nordic Seas, Geophys. Res. Lett., 38, L05705,
https://doi.org/10.1029/2010GL045894, 2011. a, b, c
Schlichtholz, P. and Houssais, M.-N.: Forcing of oceanic heat anomalies by
air-sea interactions in the Nordic Seas area, J. Geophys.
Res.-Oceans, 116, C01006, https://doi.org/10.1029/2009JC005944, 2011. a
Serreze, M. C., Barrett, A. P., Stroeve, J. C., Kindig, D. N., and Holland, M. M.: The emergence of surface-based Arctic amplification, The Cryosphere, 3, 11–19, https://doi.org/10.5194/tc-3-11-2009, 2009. a
Shu, Q., Wang, Q., Song, Z., and Qiao, F.: The poleward enhanced Arctic Ocean
cooling machine in a warming climate, Nat. Commun., 12, 2966,
https://doi.org/10.1038/s41467-021-23321-7, 2021. a
Shu, Q., Wang, Q., Årthun, M., Wang, S., Song, Z., Zhang, M., and Qiao, F.:
Arctic Ocean Amplification in a warming climate in CMIP6 models, Sci. Adv., 8, eabn9755,
https://doi.org/10.1126/sciadv.abn9755, 2022. a
Skagseth, O., Eldevik, T., and Årthun, M.: Reduced efficiency of the Barents
Sea cooling machine, Nat. Clim. Change, 10, 661–666,
https://doi.org/10.1038/s41558-020-0772-6, 2020. a, b, c
Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E., and Jahn, A.: Influence of
internal variability on Arctic sea-ice trends, Nat. Clim. Change, 5,
86–89, https://doi.org/10.1038/nclimate2483, 2015. a
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019. a
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019. a
Tsubouchi, T., Våge, K., Hansen, B., Larsen, K. M. H., Østerhus, S., Johnson,
C., Jónsson, S., and Valdimarsson, H.: Increased ocean heat transport into
the Nordic Seas and Arctic Ocean over the period 1993–2016, Nat. Clim.
Change, 11, 21–26, https://doi.org/10.1038/s41558-020-00941-3, 2021. a
Venegas, S. A. and Mysak, L. A.: Is There a Dominant Timescale of Natural
Climate Variability in the Arctic?, J. Climate, 13, 3412–3434,
https://doi.org/10.1175/1520-0442(2000)013<3412:ITADTO>2.0.CO;2, 2000. a
Walsh, J. E., Fetterer, F., Scott Stewart, J., and Chapman, W. L.: A database
for depicting Arctic sea ice variations back to 1850, Geograph. Rev.,
107, 89–107, https://doi.org/10.1111/j.1931-0846.2016.12195.x, 2017. a, b, c, d
Walsh, J. E., Chapman, W. L., Fetterer, F., and Stewart, J. S.: Gridded
Monthly Sea Ice Extent and Concentration, 1850 Onward, Version 2, Boulder, Colorado USA,
NSIDC: National Snow and Ice Data Center [data set],
https://doi.org/10.7265/jj4s-tq79, 2019. a
Wang, Q., Wang, X., Wekerle, C., Danilov, S., Jung, T., Koldunov, N., Lind, S.,
Sein, D., Shu, Q., and Sidorenko, D.: Ocean Heat Transport Into the Barents
Sea: Distinct Controls on the Upward Trend and Interannual Variability,
Geophys. Res. Lett., 46, 13180–13190,
https://doi.org/10.1029/2019GL083837, 2019.
a, b
Woods, C. and Caballero, R.: The Role of Moist Intrusions in Winter Arctic
Warming and Sea Ice Decline, J. Climate, 29, 4473–4485,
https://doi.org/10.1175/JCLI-D-15-0773.1, 2016. a
Zhang, P., Wu, Y., Simpson, I. R., Smith, K. L., Zhang, X., De, B., and
Callaghan, P.: A stratospheric pathway linking a colder Siberia to
Barents-Kara Sea sea ice loss, Sci. Adv., 4, eaat6025,
https://doi.org/10.1126/sciadv.aat6025, 2018. a, b
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M.,
Stevens, L., Wang, Y.-P., and Srbinovsky, J.: The Australian Earth System
Model: ACCESS-ESM1.5, Journal of Southern Hemisphere Earth Systems Science,
70, 193–214, https://doi.org/10.1071/ES19035, 2020. a
Short summary
The Barents Sea is the region of most intense winter sea ice loss, and future projections show a continued decline towards ice-free conditions by the end of this century but with large fluctuations. Here we use climate model simulations to look at the occurrence and drivers of rapid ice change events in the Barents Sea that are much stronger than the average ice loss. A better understanding of these events will contribute to improved sea ice predictions in the Barents Sea.
The Barents Sea is the region of most intense winter sea ice loss, and future projections show a...