Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1299-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1299-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Brief communication: Glacier mapping and change estimation using very high-resolution declassified Hexagon KH-9 panoramic stereo imagery (1971–1984)
Sajid Ghuffar
CORRESPONDING AUTHOR
School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
Department of Space Science, Institute of Space Technology, Islamabad, Pakistan
Owen King
School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
Grégoire Guillet
School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
LASTIG, Univ Gustave Eiffel, ENSG, IGN, Saint-Mande, France
Ewelina Rupnik
Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
Institute of Geodesy, Graz University of Technology, Graz, Austria
Related authors
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169, https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary
Short summary
We reconstruct the evolution of terminus position, ice thickness and surface flow velocity of the reference Abramov glacier (Kyrgyzstan) from 1968 to present. We describe a front pulsation in the early 2000s and the multi-annual present-day buildup of a new pulsation. Such dynamic instabilities can challenge the representativity of Abramov as reference glacier. For our work we used satellite‑based optical remote sensing from multiple platforms, including recently declassified archives.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-255, https://doi.org/10.5194/essd-2024-255, 2024
Preprint under review for ESSD
Short summary
Short summary
This study compiled a near-complete inventory of glacier mass changes across the eastern Tibetan Plateau using topographical maps. This data enhances our understanding of glacier change variability before 2000. When combined with existing research, our dataset provides a nearly five-decade record of mass balance, aiding hydrological simulations and assessments of mountain glacier contributions to sea-level rise.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Daniel Falaschi, Atanu Bhattacharya, Gregoire Guillet, Lei Huang, Owen King, Kriti Mukherjee, Philipp Rastner, Tandong Yao, and Tobias Bolch
The Cryosphere, 17, 5435–5458, https://doi.org/10.5194/tc-17-5435-2023, https://doi.org/10.5194/tc-17-5435-2023, 2023
Short summary
Short summary
Because glaciers are crucial freshwater sources in the lowlands surrounding High Mountain Asia, constraining short-term glacier mass changes is essential. We investigate the potential of state-of-the-art satellite elevation data to measure glacier mass changes in two selected regions. The results demonstrate the ability of our dataset to characterize glacier changes of different magnitudes, allowing for an increase in the number of inaccessible glaciers that can be readily monitored.
L. Zhang and E. Rupnik
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1-W1-2023, 895–902, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-895-2023, https://doi.org/10.5194/isprs-annals-X-1-W1-2023-895-2023, 2023
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Yu Zhu, Shiyin Liu, Junfeng Wei, Kunpeng Wu, Tobias Bolch, Junli Xu, Wanqin Guo, Zongli Jiang, Fuming Xie, Ying Yi, Donghui Shangguan, Xiaojun Yao, and Zhen Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-473, https://doi.org/10.5194/essd-2022-473, 2023
Preprint withdrawn
Short summary
Short summary
In this study, we presented a nearly complete inventory of glacier mass change dataset across the eastern Tibetan Plateau by using topographical maps, which will enhance the knowledge on the heterogeneity of glacier change before 2000. Our dataset, in combination with the published results, provide a nearly five decades mass balance to support hydrological simulation, and to evaluate the contribution of mountain glacier loss to sea level.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Aldo Bertone, Chloé Barboux, Xavier Bodin, Tobias Bolch, Francesco Brardinoni, Rafael Caduff, Hanne H. Christiansen, Margaret M. Darrow, Reynald Delaloye, Bernd Etzelmüller, Ole Humlum, Christophe Lambiel, Karianne S. Lilleøren, Volkmar Mair, Gabriel Pellegrinon, Line Rouyet, Lucas Ruiz, and Tazio Strozzi
The Cryosphere, 16, 2769–2792, https://doi.org/10.5194/tc-16-2769-2022, https://doi.org/10.5194/tc-16-2769-2022, 2022
Short summary
Short summary
We present the guidelines developed by the IPA Action Group and within the ESA Permafrost CCI project to include InSAR-based kinematic information in rock glacier inventories. Nine operators applied these guidelines to 11 regions worldwide; more than 3600 rock glaciers are classified according to their kinematics. We test and demonstrate the feasibility of applying common rules to produce homogeneous kinematic inventories at global scale, useful for hydrological and climate change purposes.
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2022, 1–5, https://doi.org/10.5194/isprs-archives-XLIII-B5-2022-1-2022, https://doi.org/10.5194/isprs-archives-XLIII-B5-2022-1-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2022, 1–5, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-1-2022, https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-1-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 1–5, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-1-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-1-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1–5, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1–5, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1-2022, 2022
M. Santangelo, L. Zhang, E. Rupnik, M. P. Deseilligny, and M. Cardinali
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1085–1092, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1085-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1085-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2022, 1–5, https://doi.org/10.5194/isprs-annals-V-4-2022-1-2022, https://doi.org/10.5194/isprs-annals-V-4-2022-1-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-5-2022, 1–5, https://doi.org/10.5194/isprs-annals-V-5-2022-1-2022, https://doi.org/10.5194/isprs-annals-V-5-2022-1-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-1-2022, 1–5, https://doi.org/10.5194/isprs-annals-V-1-2022-1-2022, https://doi.org/10.5194/isprs-annals-V-1-2022-1-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 1–5, https://doi.org/10.5194/isprs-annals-V-2-2022-1-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-1-2022, 2022
L. Landrieu, E. Rupnik, S. Oude Elberink, C. Mallet, and N. Paparoditis
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 1–5, https://doi.org/10.5194/isprs-annals-V-3-2022-1-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-1-2022, 2022
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022, https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Short summary
This work uses satellite and aerial data to study glaciers and rock glacier changes in La Laguna catchment within the semi-arid Andes of Chile, where ice melt is an important factor in river flow. The results show the rate of ice loss of Tapado Glacier has been increasing since the 1950s, which possibly relates to a dryer, warmer climate over the previous decades. Several rock glaciers show high surface velocities and elevation changes between 2012 and 2020, indicating they may be ice-rich.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021, https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary
Short summary
About 10 % of Himalayan glaciers flow directly into lakes. This study finds, using satellite imagery, that such glaciers show higher flow velocities than glaciers without ice–lake contact. In particular near the glacier tongue the impact of a lake on the glacier flow can be dramatic. The development of current and new meltwater bodies will influence the flow of an increasing number of Himalayan glaciers in the future, a scenario not currently considered in regional ice loss projections.
E. Maset, E. Rupnik, M. Pierrot-Deseilligny, F. Remondino, and A. Fusiello
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 33–38, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-33-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-33-2021, 2021
T. Wu, B. Vallet, M. Pierrot-Deseilligny, and E. Rupnik
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 405–412, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-405-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-405-2021, 2021
Andreas Kääb, Tazio Strozzi, Tobias Bolch, Rafael Caduff, Håkon Trefall, Markus Stoffel, and Alexander Kokarev
The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, https://doi.org/10.5194/tc-15-927-2021, 2021
Short summary
Short summary
We present a map of rock glacier motion over parts of the northern Tien Shan and time series of surface speed for six of them over almost 70 years.
This is by far the most detailed investigation of this kind available for central Asia.
We detect a 2- to 4-fold increase in rock glacier motion between the 1950s and present, which we attribute to atmospheric warming.
Relative to the shrinking glaciers in the region, this implies increased importance of periglacial sediment transport.
Franz Goerlich, Tobias Bolch, and Frank Paul
Earth Syst. Sci. Data, 12, 3161–3176, https://doi.org/10.5194/essd-12-3161-2020, https://doi.org/10.5194/essd-12-3161-2020, 2020
Short summary
Short summary
This work indicates all glaciers in the Pamir that surged between 1988 and 2018 as revealed by different remote sensing data, mainly Landsat imagery. We found ~ 200 surging glaciers for the entire mountain range and detected the minimum and maximum extents of most of them. The smallest surging glacier is ~ 0.3 km2. This inventory is important for further research on the surging behaviour of glaciers and has to be considered when processing glacier changes (mass, area) of the region.
E. Rupnik and M. Pierrot Deseilligny
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 71–78, https://doi.org/10.5194/isprs-annals-V-2-2020-71-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-71-2020, 2020
L. Zhang, E. Rupnik, and M. Pierrot-Deseilligny
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 127–134, https://doi.org/10.5194/isprs-annals-V-2-2020-127-2020, https://doi.org/10.5194/isprs-annals-V-2-2020-127-2020, 2020
Levan G. Tielidze, Tobias Bolch, Roger D. Wheate, Stanislav S. Kutuzov, Ivan I. Lavrentiev, and Michael Zemp
The Cryosphere, 14, 585–598, https://doi.org/10.5194/tc-14-585-2020, https://doi.org/10.5194/tc-14-585-2020, 2020
Short summary
Short summary
We present data of supra-glacial debris cover for 659 glaciers across the Greater Caucasus based on satellite images from the years 1986, 2000 and 2014. We combined semi-automated methods for mapping the clean ice with manual digitization of debris-covered glacier parts and calculated supra-glacial debris-covered area as the residual between these two maps. The distribution of the supra-glacial debris cover differs between northern and southern and between western, central and eastern Caucasus.
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
Y. Zhou, E. Rupnik, C. Meynard, C. Thom, and M. Pierrot-Deseilligny
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 195–200, https://doi.org/10.5194/isprs-annals-IV-2-W5-195-2019, https://doi.org/10.5194/isprs-annals-IV-2-W5-195-2019, 2019
Nico Mölg, Tobias Bolch, Philipp Rastner, Tazio Strozzi, and Frank Paul
Earth Syst. Sci. Data, 10, 1807–1827, https://doi.org/10.5194/essd-10-1807-2018, https://doi.org/10.5194/essd-10-1807-2018, 2018
Short summary
Short summary
Knowledge about the size and location of glaciers is essential to understand impacts of climatic changes on the natural environment. Therefore, we have produced an inventory of all glaciers in some of the largest glacierized mountain regions worldwide. Many large glaciers are covered by a rock (debris) layer, which also changes their reaction to climatic changes. Thus, we have also mapped this debris layer for all glaciers. We have mapped almost 28000 glaciers covering ~35000 km2.
Martina Barandun, Matthias Huss, Ryskul Usubaliev, Erlan Azisov, Etienne Berthier, Andreas Kääb, Tobias Bolch, and Martin Hoelzle
The Cryosphere, 12, 1899–1919, https://doi.org/10.5194/tc-12-1899-2018, https://doi.org/10.5194/tc-12-1899-2018, 2018
Short summary
Short summary
In this study, we used three independent methods (in situ measurements, comparison of digital elevation models and modelling) to reconstruct the mass change from 2000 to 2016 for three glaciers in the Tien Shan and Pamir. Snow lines observed on remote sensing images were used to improve conventional modelling by constraining a mass balance model. As a result, glacier mass changes for unmeasured years and glaciers can be better assessed. Substantial mass loss was confirmed for the three glaciers.
Tobias Bolch, Tino Pieczonka, Kriti Mukherjee, and Joseph Shea
The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, https://doi.org/10.5194/tc-11-531-2017, 2017
Short summary
Short summary
Previous geodetic estimates of glacier mass changes in the Karakoram have revealed balanced budgets or a possible slight mass gain since the year ∼ 2000. We used old US reconnaissance imagery and could show that glaciers in the Hunza River basin (Central Karakoram) experienced on average no significant mass changes also since the 1970s. Likewise the glaciers had heterogeneous behaviour with frequent surge activities during the last 40 years.
Silvan Ragettli, Tobias Bolch, and Francesca Pellicciotti
The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, https://doi.org/10.5194/tc-10-2075-2016, 2016
Short summary
Short summary
This study presents a multi-temporal dataset of geodetically derived elevation changes on debris-free and debris-covered glaciers in the Langtang valley, Nepalese Himalaya. Overall, we observe accelerated glacier wastage, but highly heterogeneous spatial patterns and temporal trends across glaciers. Accelerations in thinning correlate with the presence of supraglacial cliffs and lakes, whereas thinning rates remained constant or declined on stagnating debris-covered glacier areas.
Michel Wortmann, Tobias Bolch, Valentina Krysanova, and Su Buda
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-272, https://doi.org/10.5194/hess-2016-272, 2016
Revised manuscript not accepted
N. Holzer, S. Vijay, T. Yao, B. Xu, M. Buchroithner, and T. Bolch
The Cryosphere, 9, 2071–2088, https://doi.org/10.5194/tc-9-2071-2015, https://doi.org/10.5194/tc-9-2071-2015, 2015
Short summary
Short summary
Investigations of glacier mass-balance and area changes at Muztagh Ata (eastern Pamir) are based on Hexagon KH-9 (1973), ALOS-PRISM (2009), Pléiades (2013) and Landsat 7 ETM+/SRTM-3 (2000). Surface velocities of Kekesayi Glacier are derived by TerraSAR-X (2011) amplitude tracking. Glacier variations differ spatially and temporally, but on average not significantly for the entire massif. Stagnant Kekesayi and other debris-covered glaciers indicate no visual length changes, but clear down-wasting.
D. H. Shangguan, T. Bolch, Y. J. Ding, M. Kröhnert, T. Pieczonka, H. U. Wetzel, and S. Y. Liu
The Cryosphere, 9, 703–717, https://doi.org/10.5194/tc-9-703-2015, https://doi.org/10.5194/tc-9-703-2015, 2015
Short summary
Short summary
Glacier velocity, glacier area, surface elevation and mass changes of the Southern and Northern Inylchek Glacier were investigated by using multi-temporal space-borne data sets. The mass balance of both SIG and NIG was negative(-0.43 ± 0.10 m w.e. a-1 and -0.25 ± 0.10 m w.e. a-1) from ~1975 to 2007. The thinning at the lake dam was higher, likely caused by calving into Lake Merzbacher. Thus, glacier thinning and glacier flow are significantly influenced by the lake.
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014, https://doi.org/10.5194/hess-18-4077-2014, 2014
S. Thakuri, F. Salerno, C. Smiraglia, T. Bolch, C. D'Agata, G. Viviano, and G. Tartari
The Cryosphere, 8, 1297–1315, https://doi.org/10.5194/tc-8-1297-2014, https://doi.org/10.5194/tc-8-1297-2014, 2014
R. Bhambri, T. Bolch, P. Kawishwar, D. P. Dobhal, D. Srivastava, and B. Pratap
The Cryosphere, 7, 1385–1398, https://doi.org/10.5194/tc-7-1385-2013, https://doi.org/10.5194/tc-7-1385-2013, 2013
P. Rastner, T. Bolch, N. Mölg, H. Machguth, R. Le Bris, and F. Paul
The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012, https://doi.org/10.5194/tc-6-1483-2012, 2012
Related subject area
Discipline: Glaciers | Subject: Glaciers
Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Linking Glacier Retreat with Climate Change on the Tibetan Plateau through Satellite Remote Sensing
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau
Everest South Col Glacier did not thin during the period 1984–2017
Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard
Impact of tides on calving patterns at Kronebreen, Svalbard – insights from three-dimensional ice dynamical modelling
Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach
Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden
Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements
Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia
Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024, https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Short summary
Glaciers are major contributors to sea-level rise and act as key water resources. Here, we model the global evolution of glaciers under the latest generation of climate scenarios. We show that the type of observations used for model calibration can strongly affect the projections at the local scale. Our newly projected 21st century global mass loss is higher than the current community estimate as reported in the latest Intergovernmental Panel on Climate Change (IPCC) report.
Fumeng Zhao, Wenping Gong, Silvia Bianchini, and Zhongkang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1083, https://doi.org/10.5194/egusphere-2024-1083, 2024
Short summary
Short summary
Glacier retreat patterns and climatic drivers on the Tibetan Plateau are uncertain at finer resolutions. This study introduces a new glacier mapping method covering 1988 to 2022, with downscaled air temperature and precipitation data. It quantifies the impacts of annual and seasonal temperature and precipitation on retreat. Results show rapid and varied retreat, with annual temperature influencing retreat in the west and spring precipitation in the northwest.
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
EGUsphere, https://doi.org/10.5194/egusphere-2024-297, https://doi.org/10.5194/egusphere-2024-297, 2024
Short summary
Short summary
Some fjords contain dense packs of icebergs referred to as ice mélange. Ice mélange can affect the stability of marine-terminating glaciers by resisting the calving of new icebergs and by modifying fjord currents and water properties. We have developed the first numerical model of ice mélange that captures its granular nature and that is suitable for long time-scale simulations. The model is capable of explaining why some glaciers are more strongly influenced by ice mélange than others.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner
The Cryosphere, 17, 1853–1872, https://doi.org/10.5194/tc-17-1853-2023, https://doi.org/10.5194/tc-17-1853-2023, 2023
Short summary
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022, https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Short summary
The Müller Ice Cap will soon set the scene for a new drilling project. To obtain an ice core with stratified layers and a good time resolution, thickness estimates are necessary for the planning. Here we present a new and fast method of estimating ice thicknesses from sparse data and compare it to an existing ice flow model. We find that the new semi-empirical method is insensitive to mass balance, is computationally fast, and provides good fits when compared to radar measurements.
Whyjay Zheng
The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022, https://doi.org/10.5194/tc-16-1431-2022, 2022
Short summary
Short summary
A glacier can speed up when surface water reaches the glacier's bottom via crevasses and reduces sliding friction. This paper builds up a physical model and finds that thick and fast-flowing glaciers are sensitive to this friction disruption. The data from Greenland and Austfonna (Svalbard) glaciers over 20 years support the model prediction. To estimate the projected sea-level rise better, these sensitive glaciers should be frequently monitored for potential future instabilities.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021, https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Short summary
Extreme precipitation events in summer 2019 led to catastrophic loss of cave and surface ice in SE Europe at levels unprecedented during the last century. The projected continuous warming and increase in precipitation extremes could pose an additional threat to glaciers in southern Europe, resulting in a potentially ice-free SE Europe by the middle of the next decade (2035 CE).
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.
Andreas Köhler, Michał Pętlicki, Pierre-Marie Lefeuvre, Giuseppa Buscaino, Christopher Nuth, and Christian Weidle
The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, https://doi.org/10.5194/tc-13-3117-2019, 2019
Short summary
Short summary
Ice loss at the front of glaciers can be observed with high temporal resolution using seismometers. We combine seismic and underwater sound measurements of iceberg calving at Kronebreen, a glacier in Svalbard, with laser scanning of the glacier front. We develop a method to determine calving ice loss directly from seismic and underwater calving signals. This allowed us to quantify the contribution of calving to the total ice loss at the glacier front, which also includes underwater melting.
Akiko Sakai
The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019, https://doi.org/10.5194/tc-13-2043-2019, 2019
Short summary
Short summary
The Glacier Area Mapping for Discharge from the Asian Mountains (GAMDAM) glacier inventory was updated to revise the underestimated glacier area in the first version. The total number and area of glaciers are 134 770 and 100 693 ± 11 790 km2 from 453 Landsat images, which were carefully selected for the period from 1990 to 2010, to avoid mountain shadow, cloud cover, and seasonal snow cover.
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Short summary
On debris-covered glaciers, steep ice cliffs experience dramatically enhanced melt compared with the surrounding debris-covered ice. Using field measurements, UAV data and submetre satellite imagery, we estimate the cliff contribution to 2 years of ablation on a debris-covered tongue in Nepal, carefully taking into account ice dynamics. While they occupy only 7 to 8 % of the tongue surface, ice cliffs contributed to 23 to 24 % of the total tongue ablation.
Cited articles
ALOS: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm, last access: 17 March 2023. a
Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa,
V., Neckel, N., Yang, W., and Yao, T.: High Mountain Asian glacier response
to climate revealed by multi-temporal satellite observations since the 1960s,
Nat. Commun., 12, 1–13, https://doi.org/10.1038/s41467-021-24180-y, 2021. a, b, c
Bolch, T., Pieczonka, T., and Benn, D. I.: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery, The Cryosphere, 5, 349–358, https://doi.org/10.5194/tc-5-349-2011, 2011. a, b
Bolch, T., Pieczonka, T., Mukherjee, K., and Shea, J.: Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s, The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, 2017. a, b, c
Burnett, M. G.: Hexagon (KH-9) Mapping Camera Program and Evolution, Center for
the Study of National Reconnaissance, https://www.nro.gov/Portals/65/documents/foia/declass/mapping1.pdf (last access: 17 March 2023), 2012. a
Dehecq, A., Gardner, A. S., Alexandrov, O., McMichael, S., Hugonnet, R., Shean,
D., and Marty, M.: Automated processing of declassified KH-9 Hexagon
satellite images for global elevation change analysis since the 1970s,
Front. Earth Sci., 8, 566802, https://doi.org/10.3389/feart.2020.566802, 2020. a, b, c, d, e, f
Deseilligny, M. P. and Rupnik, E.: Epipolar rectification of a generic
camera, IPOL Journal, in review, https://doi.org/10.5201/ipol, 2020. a
Fischer, M., Huss, M., and Hoelzle, M.: Surface elevation and mass changes of all Swiss glaciers 1980–2010, The Cryosphere, 9, 525–540, https://doi.org/10.5194/tc-9-525-2015, 2015. a
Fowler, M. J.: The archaeological potential of declassified HEXAGON KH-9
panoramic camera satellite photographs, AARG News, 53, 30–36, 2016. a
Geyman, E. C., van Pelt, J. J., W., Maloof, A. C., Aas, H. F., and Kohler, J.:
Historical glacier change on Svalbard predicts doubling of mass loss by 2100,
Nature, 601, 374–379, https://doi.org/10.1038/s41586-021-04314-4, 2022. a
Ghuffar, S., Bolch, T., Rupnik, E., and Bhattacharya, A.: A pipeline for
automated processing of declassified Corona KH-4 (1962–1972) stereo imagery,
IEEE T. Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2022.3200151, 2022. a, b, c
Goerlich, F., Bolch, T., Mukherjee, K., and Pieczonka, T.: Glacier mass loss
during the 1960s and 1970s in the Ak-Shirak range (Kyrgyzstan) from multiple
stereoscopic Corona and Hexagon imagery, Remote Sensing, 9, 275, https://doi.org/10.3390/rs9030275, 2017. a, b
Hirschmuller, H.: Stereo processing by semiglobal matching and mutual
information, IEEE T. Pattern Anal.,
30, 328–341, https://doi.org/10.1109/TPAMI.2007.1166, 2007. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth,
C., Girod, L., Farinotti, D., Huss, M., Dussaillant, I., Brun,
F., and Kääb, A.: Accelerated
global glacier mass loss in the early twenty-first century, Nature, 592,
726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a
Huss, M.: Density assumptions for converting geodetic glacier volume change to mass change, The Cryosphere, 7, 877–887, https://doi.org/10.5194/tc-7-877-2013, 2013. a, b
Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S., Evans,
S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W.-A., Farinotti,
D., Gimbert, F., Guo, W., Huggel, C., Kargel, J. S., Leonard,
G. J., Tian, L., Treichler, D., and Yao, T.: Massive
collapse of two glaciers in western Tibet in 2016 after surge-like
instability, Nat. Geosci., 11, 114–120, https://doi.org/10.1038/s41561-017-0039-7, 2018. a
King, O., Bhattacharya, A., Bhambri, R., and Bolch, T.: Glacial lakes
exacerbate Himalayan glacier mass loss, Sci. Rep.-UK, 9, 1–9, https://doi.org/10.1038/s41598-019-53733-x, 2019. a
Korsgaard, N. J., Nuth, C., Khan, S. A., Kjeldsen, K. K., Bjørk, A. A.,
Schomacker, A., and Kjær, K. H.: Digital elevation model and
orthophotographs of Greenland based on aerial photographs from 1978–1987,
Sci. Data, 3, 1–15, https://doi.org/10.1038/sdata.2016.32, 2016. a
Malz, P., Meier, W., Casassa, G., Jaña, R., Skvarca, P., and Braun, M. H.:
Elevation and mass changes of the Southern Patagonia Icefield derived from
TanDEM-X and SRTM data, Remote Sensing, 10, 188, https://doi.org/10.3390/rs10020188, 2018. a
Maurer, J. and Rupper, S.: Tapping into the Hexagon spy imagery database: A new
automated pipeline for geomorphic change detection,
ISPRS J. Photogramm., 108, 113–127, https://doi.org/10.1016/j.isprsjprs.2015.06.008, 2015. a
Maurer, J. M., Schaefer, J., Rupper, S., and Corley, A.: Acceleration of ice
loss across the Himalayas over the past 40 years, Sci. Adv., 5,
eaav7266, https://doi.org/10.1126/sciadv.aav7266, 2019. a, b
McNabb, R., Nuth, C., Kääb, A., and Girod, L.: Sensitivity of glacier volume change estimation to DEM void interpolation, The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, 2019. a, b
MountCryo: Data, http://mountcryo.org/datasets, last access: 17 March 2023. a
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011. a
Pfeifer, N., Mandlburger, G., Otepka, J., and Karel, W.: OPALS–A framework for
Airborne Laser Scanning data analysis, Computers,
Environment and Urban Systems, 45, 125–136, https://doi.org/10.1016/j.compenvurbsys.2013.11.002, 2014. a
Pieczonka, T. and Bolch, T.: Region-wide glacier mass budgets and area changes
for the Central Tien Shan between 1975 and 1999 using Hexagon KH-9
imagery, Global Planet. Change, 128, 1–13, https://doi.org/10.1016/j.gloplacha.2014.11.014, 2015. a, b, c, d
Pierrot-Deseilligny, M., Jouin, D., Belvaux, J., Maillet, G., Girod, L.,
Rupnik, E., Muller, J., Daakir, M., Choqueux, G., and Deveau, M.: Micmac,
apero, pastis and other beverages in a nutshell, Institut Géographique
National, 2014. a
Rolstad, C., Haug, T., and Denby, B.: Spatially integrated geodetic glacier
mass balance and its uncertainty based on geostatistical analysis:
application to the western Svartisen ice cap, Norway, J. Glaciol.,
55, 666–680, https://doi.org/10.3189/002214309789470950, 2009. a
Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich, A.: Superglue:
Learning feature matching with graph neural networks, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 13–19 June 2020, Los Alamitos, CA, USA,
IEEE Computer Society, 4938–4947, https://doi.org/10.1109/CVPR42600.2020.00499, 2020. a
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.: Precise global DEM generation by ALOS PRISM, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II4, 71–76, https://doi.org/10.5194/isprsannals-II-4-71-2014, 2014. a
USGS: USGS EROS Archive – Declassified Data – Declassified Satellite Imagery – 2, USGS [data set], https://doi.org/10.5066/F74X5684, 2018a. a
USGS: USGS EROS Archive – Declassified Data – Declassified Satellite Imagery – 1, USGS [data set], https://doi.org/10.5066/F78P5XZM, 2018b. a
USGS: USGS EROS Archive – Declassified Data – Declassified Satellite Imagery – 3, USGS [data set], https://doi.org/10.5066/F7WD3Z10, 2018c. a
USGS: USGS EROS Archive – Landsat Archives – Landsat 7 Enhanced Thematic Mapper Plus Collection 2 Level-1 Data, USGS [data set], https://doi.org/10.5066/P9TU80IG, 2020. a
USGS: EarthExplorer, https://earthexplorer.usgs.gov,
last access: 14 March 2023. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J.,
Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L.,
Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global
glacier mass changes and their contributions to sea-level rise from 1961 to
2016, Nature, 568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019. a
Zhou, Y., Li, Z., and Li, J.: Slight glacier mass loss in the Karakoram region
during the 1970s to 2000 revealed by KH-9 images and SRTM DEM, J.
Glaciol., 63, 331–342, https://doi.org/10.1017/jog.2016.142, 2017. a, b, c, d
Zhou, Y., Chen, G., Qiao, X., and Lu, L.: Mining High-Resolution KH-9 Panoramic
Imagery to Determine Earthquake Deformation: Methods and Applications, IEEE
T. Geosci. Remote, 60, 4506012, https://doi.org/10.1109/TGRS.2021.3116441, 2021. a
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured...