Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1299-2023
https://doi.org/10.5194/tc-17-1299-2023
Brief communication
 | 
21 Mar 2023
Brief communication |  | 21 Mar 2023

Brief communication: Glacier mapping and change estimation using very high-resolution declassified Hexagon KH-9 panoramic stereo imagery (1971–1984)

Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch

Related authors

Five decades of Abramov glacier dynamics reconstructed with multi-sensor optical remote sensing
Enrico Mattea, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Atanu Bhattacharya, Sajid Ghuffar, Martina Barandun, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2169,https://doi.org/10.5194/egusphere-2024-2169, 2024
Short summary

Related subject area

Discipline: Glaciers | Subject: Glaciers
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
The Cryosphere, 19, 19–35, https://doi.org/10.5194/tc-19-19-2025,https://doi.org/10.5194/tc-19-19-2025, 2025
Short summary
Linking glacier retreat with climate change on the Tibetan Plateau through satellite remote sensing
Fumeng Zhao, Wenping Gong, Silvia Bianchini, and Zhongkang Yang
The Cryosphere, 18, 5595–5612, https://doi.org/10.5194/tc-18-5595-2024,https://doi.org/10.5194/tc-18-5595-2024, 2024
Short summary
Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024,https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Physics-aware Machine Learning for Glacier Ice Thickness Estimation: A Case Study for Svalbard
Viola Steidl, Jonathan L. Bamber, and Xiao Xiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1732,https://doi.org/10.5194/egusphere-2024-1732, 2024
Short summary
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023,https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary

Cited articles

ALOS: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm, last access: 17 March 2023. a
Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa, V., Neckel, N., Yang, W., and Yao, T.: High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s, Nat. Commun., 12, 1–13, https://doi.org/10.1038/s41467-021-24180-y, 2021. a, b, c
Bolch, T., Pieczonka, T., and Benn, D. I.: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery, The Cryosphere, 5, 349–358, https://doi.org/10.5194/tc-5-349-2011, 2011. a, b
Bolch, T., Pieczonka, T., Mukherjee, K., and Shea, J.: Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s, The Cryosphere, 11, 531–539, https://doi.org/10.5194/tc-11-531-2017, 2017. a, b, c
Burnett, M. G.: Hexagon (KH-9) Mapping Camera Program and Evolution, Center for the Study of National Reconnaissance, https://www.nro.gov/Portals/65/documents/foia/declass/mapping1.pdf (last access: 17 March 2023), 2012. a
Download
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.