Articles | Volume 17, issue 3
https://doi.org/10.5194/tc-17-1107-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1107-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The response of sea ice and high-salinity shelf water in the Ross Ice Shelf Polynya to cyclonic atmosphere circulations
Xiaoqiao Wang
School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, 200136, Shanghai, China
Michael S. Dinniman
Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA 23529, USA
Petteri Uotila
Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland
Xichen Li
International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China
Meng Zhou
School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, 200136, Shanghai, China
Related authors
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-128, https://doi.org/10.5194/gmd-2024-128, 2024
Revised manuscript under review for GMD
Short summary
Short summary
A coupled fine-resolution ocean-ice model is developed for the Ross Sea and adjacent regions in Antarctica, a key area for the formation of global ocean bottom water — the Antarctic Bottom Water (AABW) that affects the world ocean circulation. The model has high skills in simulating sea ice production driving the AABW source water formation and water mass properties when assessed against observations. A model experiment shows significant impact of ice shelf melting on the AABW characteristics.
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-128, https://doi.org/10.5194/gmd-2024-128, 2024
Revised manuscript under review for GMD
Short summary
Short summary
A coupled fine-resolution ocean-ice model is developed for the Ross Sea and adjacent regions in Antarctica, a key area for the formation of global ocean bottom water — the Antarctic Bottom Water (AABW) that affects the world ocean circulation. The model has high skills in simulating sea ice production driving the AABW source water formation and water mass properties when assessed against observations. A model experiment shows significant impact of ice shelf melting on the AABW characteristics.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
EGUsphere, https://doi.org/10.5194/egusphere-2024-1759, https://doi.org/10.5194/egusphere-2024-1759, 2024
Short summary
Short summary
To better understand the local, regional, and global impacts of the recent rapid sea-ice decline in the Arctic, one of the key issues is to quantify the effects of sea-ice concentration on the surface radiative fluxes. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in the sensitivity of the surface radiative fluxes to sea-ice concentration.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 18, 957–976, https://doi.org/10.5194/tc-18-957-2024, https://doi.org/10.5194/tc-18-957-2024, 2024
Short summary
Short summary
A prerequisite for understanding the local, regional, and hemispherical impacts of Arctic sea-ice decline on the atmosphere is to quantify the effects of sea-ice concentration (SIC) on the sensible and latent heat fluxes in the Arctic. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in SIC and in the sensitivity of the latent and sensible heat fluxes to SIC.
Guokun Lyu, Armin Koehl, Xinrong Wu, Meng Zhou, and Detlef Stammer
Ocean Sci., 19, 305–319, https://doi.org/10.5194/os-19-305-2023, https://doi.org/10.5194/os-19-305-2023, 2023
Short summary
Short summary
Data assimilation techniques are important for combining observations with numerical models. Here, we approximate the adjoint of viscous-plastic dynamics (adjoint-VP) to replace the adjoint of free-drift dynamics (adjoint-FD) for developing an advanced Arctic Ocean and sea ice modeling and adjoint-based assimilation system. We find that adjoint-VP provides a better ocean and sea ice estimation than adjoint-FD, considering the residual errors and adjustments of the atmospheric states.
Yafei Nie, Chengkun Li, Martin Vancoppenolle, Bin Cheng, Fabio Boeira Dias, Xianqing Lv, and Petteri Uotila
Geosci. Model Dev., 16, 1395–1425, https://doi.org/10.5194/gmd-16-1395-2023, https://doi.org/10.5194/gmd-16-1395-2023, 2023
Short summary
Short summary
State-of-the-art Earth system models simulate the observed sea ice extent relatively well, but this is often due to errors in the dynamic and other processes in the simulated sea ice changes cancelling each other out. We assessed the sensitivity of these processes simulated by the coupled ocean–sea ice model NEMO4.0-SI3 to 18 parameters. The performance of the model in simulating sea ice change processes was ultimately improved by adjusting the three identified key parameters.
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022, https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary
Short summary
We propose a method to provide sea ice thickness (SIT) estimates over a test area in the Arctic utilizing radar altimeter (RA) measurement lines and C-band SAR imagery. The RA data are from CryoSat-2, and SAR imagery is from Sentinel-1. By combining them we get a SIT grid covering the whole test area instead of only narrow measurement lines from RA. This kind of SIT estimation can be extended to cover the whole Arctic (and Antarctic) for operational SIT monitoring.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Yu Yan, Wei Gu, Andrea M. U. Gierisch, Yingjun Xu, and Petteri Uotila
Geosci. Model Dev., 15, 1269–1288, https://doi.org/10.5194/gmd-15-1269-2022, https://doi.org/10.5194/gmd-15-1269-2022, 2022
Short summary
Short summary
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study presented the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of ocean and sea ice. NEMO-Bohai is intended to be a valuable tool for long-term ocean and ice simulations and climate change studies.
Guokun Lyu, Nuno Serra, Meng Zhou, and Detlef Stammer
Ocean Sci., 18, 51–66, https://doi.org/10.5194/os-18-51-2022, https://doi.org/10.5194/os-18-51-2022, 2022
Short summary
Short summary
This study explores the Arctic sea level variability depending on different timescales and the relation to temperature, salinity and mass changes, identifying key parameters and regions that need to be observed coordinately. The decadal sea level variability reflects salinity changes. But it can only reflect salinity change at periods of greater than 1 year, highlighting the requirement for enhancing in situ hydrographic observations and complicated interpolation methods.
Joula Siponen, Petteri Uotila, Eero Rinne, and Steffen Tietsche
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-272, https://doi.org/10.5194/tc-2019-272, 2019
Manuscript not accepted for further review
Short summary
Short summary
Long sea-ice thickness time series are needed to better understand the Arctic climate and improve its forecasts. In this study 2002–2017 satellite observations are compared with reanalysis output, which is used as initial conditions for long forecasts. The reanalysis agrees well with satellite observations, with differences typically below 1 m when averaged in time, although seasonally and in certain years the differences are large. This is caused by uncertainties in reanalysis and observations.
Kalle Nordling, Hannele Korhonen, Petri Räisänen, Muzaffer Ege Alper, Petteri Uotila, Declan O'Donnell, and Joonas Merikanto
Atmos. Chem. Phys., 19, 9969–9987, https://doi.org/10.5194/acp-19-9969-2019, https://doi.org/10.5194/acp-19-9969-2019, 2019
Short summary
Short summary
We carry out long equilibrium climate simulations with two modern climate models and show that the climate model dynamic response contributes strongly to the anthropogenic aerosol response. We demonstrate that identical aerosol descriptions do not improve climate model skill to estimate regional anthropogenic aerosol impacts. Our experiment utilized two independent climate models (NorESM and ECHAM6) with an identical description for aerosols optical properties and indirect effect.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Luke G. Bennetts, Siobhan O'Farrell, and Petteri Uotila
The Cryosphere, 11, 1035–1040, https://doi.org/10.5194/tc-11-1035-2017, https://doi.org/10.5194/tc-11-1035-2017, 2017
Short summary
Short summary
A numerical model is used to investigate how Antarctic sea ice concentration and volume are affected by increased melting caused by ocean-wave breakup of the ice. When temperatures are high enough to melt the ice, concentration and volume are reduced for ~ 100 km into the ice-covered ocean. When temperatures are low enough for ice growth, the concentration recovers, but the reduced volume persists.
Petteri Uotila, Doroteaciro Iovino, Martin Vancoppenolle, Mikko Lensu, and Clement Rousset
Geosci. Model Dev., 10, 1009–1031, https://doi.org/10.5194/gmd-10-1009-2017, https://doi.org/10.5194/gmd-10-1009-2017, 2017
Short summary
Short summary
We performed ocean model simulations with new and old sea-ice components. Sea ice improved in the new model compared to the earlier one due to better model physics. In the ocean, the largest differences are confined close to the surface within and near the sea-ice zone. The global ocean circulation slowly deviates between the simulations due to dissimilar sea ice in the deep water formation regions, such as the North Atlantic and Antarctic.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
Related subject area
Discipline: Sea ice | Subject: Antarctic
Quantifying the influence of snow over sea ice morphology on L-band passive microwave satellite observations in the Southern Ocean
The role of atmospheric conditions in the Antarctic sea ice extent summer minima
Sources of low-frequency variability in observed Antarctic sea ice
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Brief Communication: Antarctic sea ice loss brings observed trends into agreement with climate models
Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model
Signature of the stratosphere–troposphere coupling on recent record-breaking Antarctic sea-ice anomalies
Southern Ocean polynyas and dense water formation in a high-resolution, coupled Earth system model
A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting
Annual evolution of the ice–ocean interaction beneath landfast ice in Prydz Bay, East Antarctica
Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode
Evolution of the dynamics, area, and ice production of the Amundsen Sea Polynya, Antarctica, 2016–2021
Modulation of the seasonal cycle of the Antarctic sea ice extent by sea ice processes and feedbacks with the ocean and the atmosphere
Ice Sheet and Sea Ice Ultrawideband Microwave radiometric Airborne eXperiment (ISSIUMAX) in Antarctica: first results from Terra Nova Bay
Influence of fast ice on future ice shelf melting in the Totten Glacier area, East Antarctica
A comparison between Envisat and ICESat sea ice thickness in the Southern Ocean
An indicator of sea ice variability for the Antarctic marginal ice zone
Physical and mechanical properties of winter first-year ice in the Antarctic marginal ice zone along the Good Hope Line
Altimetric observation of wave attenuation through the Antarctic marginal ice zone using ICESat-2
Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic
The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
An evaluation of Antarctic sea-ice thickness from the Global Ice-Ocean Modeling and Assimilation System based on in situ and satellite observations
Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product
Weddell Sea polynya analysis using SMOS–SMAP apparent sea ice thickness retrieval
Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
Brief communication: The anomalous winter 2019 sea-ice conditions in McMurdo Sound, Antarctica
Southern Ocean polynyas in CMIP6 models
Airborne mapping of the sub-ice platelet layer under fast ice in McMurdo Sound, Antarctica
Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness
Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica
Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model
Retrieval of snow freeboard of Antarctic sea ice using waveform fitting of CryoSat-2 returns
Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024, https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Short summary
Antarctic sea ice has exhibited variability over satellite records, including a period of gradual expansion and a period of sudden decline. We use a novel statistical method to identify sources of variability in observed Antarctic sea ice changes. We find that the gradual increase in sea ice is likely related to large-scale temperature trends, and periods of abrupt sea ice decline are related to specific flavors of equatorial tropical variability known as the El Niño–Southern Oscillation.
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024, https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. Our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic marginal ice zone were affected by the balance between atmospheric and oceanic forcing and the local ice.
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2881, https://doi.org/10.5194/egusphere-2023-2881, 2023
Short summary
Short summary
Until recently, observed Antarctic sea ice was increasing, while in contrast numerical climate models simulated a decrease over the same period (1979–2014). This apparent mismatch was one reason for low confidence in model projections of large 21st century sea ice loss and related aspects of Southern Hemisphere climate. Here we show that, with the inclusion of several low Antarctic sea ice years (notably 2017, 2022 and 2023), we can no longer conclude that modelled and observed trends differ.
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023, https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary
Short summary
Antarctic sea ice extent shows multidecadal variations with its decrease in the 1980s and increase after the 2000s until 2015. Here we show that our climate model can predict the sea ice decrease by deep convection in the Southern Ocean and the sea ice increase by the surface wind variability. These results suggest that accurate simulation and prediction of subsurface ocean and atmosphere conditions are important for those of Antarctic sea ice variability on a multidecadal timescale.
Raúl R. Cordero, Sarah Feron, Alessandro Damiani, Pedro J. Llanillo, Jorge Carrasco, Alia L. Khan, Richard Bintanja, Zutao Ouyang, and Gino Casassa
The Cryosphere, 17, 4995–5006, https://doi.org/10.5194/tc-17-4995-2023, https://doi.org/10.5194/tc-17-4995-2023, 2023
Short summary
Short summary
We investigate the response of Antarctic sea ice to year-to-year changes in the tropospheric–stratospheric dynamics. Our findings suggest that, by affecting the tropospheric westerlies, the strength of the stratospheric polar vortex has played a major role in recent record-breaking anomalies in Antarctic sea ice.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Steven Fons, Nathan Kurtz, and Marco Bagnardi
The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023, https://doi.org/10.5194/tc-17-2487-2023, 2023
Short summary
Short summary
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and complex snow cover on Antarctic sea ice, estimating the thickness of the ice pack is difficult using traditional methods in radar altimetry. In this work, we use a waveform model to estimate the freeboard and snow depth of Antarctic sea ice from CryoSat-2 and use these values to calculate sea ice thickness and volume between 2010 and 2021 and showcase how the sea ice pack has changed over this time.
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023, https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary
Short summary
The oceanic characteristics beneath sea ice significantly affect ice growth and melting. The high-frequency and long-term observations of oceanic variables allow us to deeply investigate their diurnal and seasonal variation and evaluate their influences on sea ice evolution. The large-scale sea ice distribution and ocean circulation contributed to the seasonal variation of ocean variables, revealing the important relationship between large-scale and local phenomena.
Serena Schroeter, Terence J. O'Kane, and Paul A. Sandery
The Cryosphere, 17, 701–717, https://doi.org/10.5194/tc-17-701-2023, https://doi.org/10.5194/tc-17-701-2023, 2023
Short summary
Short summary
Antarctic sea ice has increased over much of the satellite record, but we show that the early, strongly opposing regional trends diminish and reverse over time, leading to overall negative trends in recent decades. The dominant pattern of atmospheric flow has changed from strongly east–west to more wave-like with enhanced north–south winds. Sea surface temperatures have also changed from circumpolar cooling to regional warming, suggesting recent record low sea ice will not rapidly recover.
Grant J. Macdonald, Stephen F. Ackley, Alberto M. Mestas-Nuñez, and Adrià Blanco-Cabanillas
The Cryosphere, 17, 457–476, https://doi.org/10.5194/tc-17-457-2023, https://doi.org/10.5194/tc-17-457-2023, 2023
Short summary
Short summary
Polynyas are key sites of sea ice production, biological activity, and carbon sequestration. The Amundsen Sea Polynya is of particular interest due to its size and location. By analyzing radar imagery and climate and sea ice data products, we evaluate variations in the dynamics, area, and ice production of the Amundsen Sea Polynya. In particular, we find the local seafloor topography and associated grounded icebergs play an important role in the polynya dynamics, influencing ice production.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere, 16, 4473–4490, https://doi.org/10.5194/tc-16-4473-2022, https://doi.org/10.5194/tc-16-4473-2022, 2022
Short summary
Short summary
The differences between Envisat and ICESat sea ice thickness (SIT) reveal significant temporal and spatial variations. Our findings suggest that both overestimation of Envisat sea ice freeboard, potentially caused by radar backscatter originating from inside the snow layer, and the AMSR-E snow depth biases and sea ice density uncertainties can possibly account for the differences between Envisat and ICESat SIT.
Marcello Vichi
The Cryosphere, 16, 4087–4106, https://doi.org/10.5194/tc-16-4087-2022, https://doi.org/10.5194/tc-16-4087-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ) in the Antarctic is the largest in the world ocean. Antarctic sea ice has large year-to-year changes, and the MIZ represents its most variable component. Processes typical of the MIZ have also been observed in fully ice-covered ocean and are not captured by existing diagnostics. A new statistical method has been shown to address previous limitations in assessing the seasonal cycle of MIZ extent and to provide a probability map of sea ice state in the Southern Ocean.
Sebastian Skatulla, Riesna R. Audh, Andrea Cook, Ehlke Hepworth, Siobhan Johnson, Doru C. Lupascu, Keith MacHutchon, Rutger Marquart, Tommy Mielke, Emmanuel Omatuku, Felix Paul, Tokoloho Rampai, Jörg Schröder, Carina Schwarz, and Marcello Vichi
The Cryosphere, 16, 2899–2925, https://doi.org/10.5194/tc-16-2899-2022, https://doi.org/10.5194/tc-16-2899-2022, 2022
Short summary
Short summary
First-year sea ice has been sampled at the advancing outer edge of the Antarctic marginal ice zone (MIZ) along the Good Hope Line. Ice cores were extracted from five pancake ice floes and subsequently analysed for their physical and mechanical properties. Of particular interest was elucidating the transition of ice composition within the MIZ in terms of differences in mechanical stiffness and strength properties as linked to physical and textural characteristics at early-stage ice formation.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Qingkai Wang, Zhaoquan Li, Peng Lu, Yigang Xu, and Zhijun Li
The Cryosphere, 16, 1941–1961, https://doi.org/10.5194/tc-16-1941-2022, https://doi.org/10.5194/tc-16-1941-2022, 2022
Short summary
Short summary
A large area of landfast sea ice exists in the Prydz Bay, and it is always a safety concern to transport cargos on ice to the research stations. Knowing the mechanical properties of sea ice is helpful to solve the issue; however, these data are rarely reported in this region. We explore the effects of sea ice physical properties on the flexural strength, effective elastic modulus, and uniaxial compressive strength, which gives new insights into assessing the bearing capacity of landfast sea ice.
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022, https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
Short summary
The sea ice thickness was simulated by a single-column model and compared with in situ observations obtained off Zhongshan Station in the Antarctic. It is shown that the unrealistic precipitation in the atmospheric forcing data leads to the largest bias in sea ice thickness and snow depth modeling. In addition, the increasing snow depth gradually inhibits the growth of sea ice associated with thermal blanketing by the snow.
Sutao Liao, Hao Luo, Jinfei Wang, Qian Shi, Jinlun Zhang, and Qinghua Yang
The Cryosphere, 16, 1807–1819, https://doi.org/10.5194/tc-16-1807-2022, https://doi.org/10.5194/tc-16-1807-2022, 2022
Short summary
Short summary
The Global Ice-Ocean Modeling and Assimilation System (GIOMAS) can basically reproduce the observed variability in Antarctic sea-ice volume and its changes in the trend before and after 2013, and it underestimates Antarctic sea-ice thickness (SIT) especially in deformed ice zones. Assimilating additional sea-ice observations with advanced assimilation methods may result in a more accurate estimation of Antarctic SIT.
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022, https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Short summary
This study presents a comprehensive validation of a satellite observational sea ice motion product in Antarctica by using drifting buoys. Two problems existing in this sea ice motion product have been noticed. After rectifying problems, we use it to investigate the impacts of satellite observational configuration and timescale on Antarctic sea ice kinematics and suggest the future improvement of satellite missions specifically designed for retrieval of sea ice motion.
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022, https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Short summary
In this paper we show that the activity leading to the open-ocean polynyas near the Maud Rise seamount that have occurred repeatedly from 1974–1976 as well as 2016–2017 does not simply stop for polynya-free years. Using apparent sea ice thickness retrieval, we have identified anomalies where there is thinning of sea ice on a scale that is comparable to that of the polynya events of 2016–2017. These anomalies took place in 2010, 2013, 2014 and 2018.
Alexander D. Fraser, Robert A. Massom, Mark S. Handcock, Phillip Reid, Kay I. Ohshima, Marilyn N. Raphael, Jessica Cartwright, Andrew R. Klekociuk, Zhaohui Wang, and Richard Porter-Smith
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, https://doi.org/10.5194/tc-15-5061-2021, 2021
Short summary
Short summary
Landfast ice is sea ice that remains stationary by attaching to Antarctica's coastline and grounded icebergs. Although a variable feature, landfast ice exerts influence on key coastal processes involving pack ice, the ice sheet, ocean, and atmosphere and is of ecological importance. We present a first analysis of change in landfast ice over an 18-year period and quantify trends (−0.19 ± 0.18 % yr−1). This analysis forms a reference of landfast-ice extent and variability for use in other studies.
Greg H. Leonard, Kate E. Turner, Maren E. Richter, Maddy S. Whittaker, and Inga J. Smith
The Cryosphere, 15, 4999–5006, https://doi.org/10.5194/tc-15-4999-2021, https://doi.org/10.5194/tc-15-4999-2021, 2021
Short summary
Short summary
McMurdo Sound sea ice can generally be partitioned into two regimes: a stable fast-ice cover forming south of approximately 77.6° S and a more dynamic region north of 77.6° S that is regularly impacted by polynyas. In 2019, a stable fast-ice cover formed unusually late due to repeated break-out events. This subsequently affected sea-ice operations in the 2019/20 field season. We analysed the 2019 sea-ice conditions and found a strong correlation with unusually large southerly wind events.
Martin Mohrmann, Céline Heuzé, and Sebastiaan Swart
The Cryosphere, 15, 4281–4313, https://doi.org/10.5194/tc-15-4281-2021, https://doi.org/10.5194/tc-15-4281-2021, 2021
Short summary
Short summary
Polynyas are large open-water areas within the sea ice. We developed a method to estimate their area, distribution and frequency for the Southern Ocean in climate models and observations. All models have polynyas along the coast but few do so in the open ocean, in contrast to observations. We examine potential atmospheric and oceanic drivers of open-water polynyas and discuss recently implemented schemes that may have improved some models' polynya representation.
Christian Haas, Patricia J. Langhorne, Wolfgang Rack, Greg H. Leonard, Gemma M. Brett, Daniel Price, Justin F. Beckers, and Alex J. Gough
The Cryosphere, 15, 247–264, https://doi.org/10.5194/tc-15-247-2021, https://doi.org/10.5194/tc-15-247-2021, 2021
Short summary
Short summary
We developed a method to remotely detect proxy signals of Antarctic ice shelf melt under adjacent sea ice. It is based on aircraft surveys with electromagnetic induction sounding. We found year-to-year variability of the ice shelf melt proxy in McMurdo Sound and spatial fine structure that support assumptions about the melt of the McMurdo Ice Shelf. With this method it will be possible to map and detect locations of intense ice shelf melt along the coast of Antarctica.
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021, https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Short summary
The ice thickness from four state-of-the-art reanalyses (GECCO2, SOSE, NEMO-EnKF and GIOMAS) are evaluated against that from remote sensing and in situ observations in the Weddell Sea, Antarctica. Most of the reanalyses can reproduce ice thickness in the central and eastern Weddell Sea but failed to capture the thick and deformed ice in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis in Antarctic climate research.
Sahra Kacimi and Ron Kwok
The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020, https://doi.org/10.5194/tc-14-4453-2020, 2020
Short summary
Short summary
Our current understanding of Antarctic ice cover is largely informed by ice extent measurements from passive microwave sensors. These records, while useful, provide a limited picture of how the ice is responding to climate change. In this paper, we combine measurements from ICESat-2 and CryoSat-2 missions to assess snow depth and ice thickness of the Antarctic ice cover over an 8-month period (April through November 2019). The potential impact of salinity in the snow layer is discussed.
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, https://doi.org/10.5194/tc-14-2775-2020, 2020
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020, https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary
Short summary
Using a climate model with unique water source tagging, we found that sea-ice anomalies in the Southern Ocean and accompanying SST changes have a significant influence on Antarctic precipitation and its source attribution through their direct impact on moisture sources and indirect impact on moisture transport. This study also highlights the importance of atmospheric dynamics in affecting the thermodynamic impact of sea-ice anomalies on regional Antarctic precipitation.
Steven W. Fons and Nathan T. Kurtz
The Cryosphere, 13, 861–878, https://doi.org/10.5194/tc-13-861-2019, https://doi.org/10.5194/tc-13-861-2019, 2019
Short summary
Short summary
A method to measure the snow freeboard of Antarctic sea ice from CryoSat-2 data is developed. Through comparisons with data from airborne campaigns and another satellite mission, we find that this method can reasonably retrieve snow freeboard across the Antarctic and shows promise in retrieving snow depth in certain locations. Snow freeboard data from CryoSat-2 are important because they enable the calculation of sea ice thickness and help to better understand snow depth on Antarctic sea ice.
Ron Kwok and Sahra Kacimi
The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, https://doi.org/10.5194/tc-12-2789-2018, 2018
Short summary
Short summary
The variability of snow depth and ice thickness in three years of repeat surveys of an IceBridge (OIB) transect across the Weddell Sea is examined. Retrieved thicknesses suggest a highly variable but broadly thicker ice cover compared to that inferred from drilling and ship-based measurements. The use of lidar and radar altimeters to estimate snow depth for thickness calculations is analyzed, and the need for better characterization of biases due to radar penetration effects is highlighted.
Cited articles
Ackley, S. F., Stammerjohn, S., Maksym, T., Smith, M., Cassano, J., Guest,
P., Tison, J. L., Delille, B., Loose, B., Sedwick, P., Depace, L., Roach,
L., and Parno, J.: Sea-ice production and air/ice/ocean/biogeochemistry
interactions in the Ross Sea during the PIPERS 2017 autumn field campaign,
Ann. Glaciol., 61, 181–195, https://doi.org/10.1017/aog.2020.31, 2020.
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G.,
Goleby, B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R.,
Udintsev, G., Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.:
The International Bathymetric Chart of the Southern Ocean (IBCSO) Version
1.0–A new bathymetric compilation covering circum-Antarctic waters, Geophys. Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013.
Arrigo, K. R. and van Dijken, G. L.: Phytoplankton dynamics within 37
Antarctic coastal polynya systems, J. Geophys. Res. Ocean., 108, 3271,
https://doi.org/10.1029/2002JC001739, 2003.
Arrigo, K. R., van Dijken, G., and Long, M.: Coastal Southern Ocean: A
strong anthropogenic CO2 sink, Geophys. Res. Lett., 35, L21602,
https://doi.org/10.1029/2008GL035624, 2008.
Assmann, K., Hellmer, H. H., and Beckmann, A.: Seasonal variation in
circulation and water mass distribution on the Ross Sea continental shelf, Antarct. Sci., 15, 3–11, https://doi.org/10.1017/S0954102003001007, 2003.
Barthélemy, A., Goosse, H., Mathiot, P., and Fichefet, T.: Inclusion of
a katabatic wind correction in a coarse-resolution global coupled climate
model, Ocean Model., 48, 45–54, https://doi.org/10.1016/j.ocemod.2012.03.002, 2012.
Berliand, M. E.: Determining the net long-wave radiation of the earth with
consideration of the effect of cloudiness, Izv. Akad. Nauk SSSR, Ser.
Geofiz., 1, 64–78, 1952.
Bromwich, D. H.: Mesoscale cyclogenesis over the southwestern Ross Sea
linked to strong katabatic winds, Mon. Weather Rev., 119, 1736–1753, 1991.
Bromwich, D. H., Carrasco, J. F., Liu, Z., and Tzeng, R.-Y.: Hemispheric
atmospheric variations and oceanographic impacts associated with katabatic
surges across the Ross Ice Shelf, Antarctica, J. Geophys. Res., 98, 13045–13062, https://doi.org/10.1029/93jd00562, 1993.
Bromwich, D., Liu, Z., Rogers, A. N., and Van Woert, M. L.: Winter Atmospheric Forcing of the Ross Sea Polynya, in: Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, edited by: Jacobs, S. S. and Weiss, R. F., American Geophysical Union (AGU), 75, 101–133,
https://doi.org/10.1029/AR075p0101, 1998.
Bromwich, D. H., Monaghan, A. J., Manning, K. W., and Powers, J. G.:
Real-time forecasting for the Antarctic: An evaluation of the Antarctic
Mesoscale Prediction System (AMPS), Mon. Weather Rev., 133, 579–603,
https://doi.org/10.1175/MWR-2881.1, 2005.
Budgell, W. P.: Numerical simulation of ice-ocean variability in the Barents
Sea region, Ocean Dynam., 55, 370–387, https://doi.org/10.1007/s10236-005-0008-3, 2005.
Budillon, G., Pacciaroni, M., Cozzi, S., Rivaro, P., Catalano, G., Ianni,
C., and Cantoni, C.: An optimum multiparameter mixing analysis of the shelf
waters in the Ross Sea, Antarct. Sci., 15, 105–118,
https://doi.org/10.1017/S095410200300110X, 2003.
Carrasco, J. F. and Bromwich, D. H.: Mesoscale cyclogenesis dynamics over
the southwestern Ross Sea, Antarctica, J. Geophys. Res., 98, 12973–12995, https://doi.org/10.1029/92jd02821, 1993.
Carrasco, J. F., Bromwich, D. H., and Monaghan, A. J.: Distribution and
characteristics of mesoscale cyclones in the Antarctic: Ross Sea eastward to
the Weddell Sea, Mon. Weather Rev., 131, 289–301,
https://doi.org/10.1175/1520-0493(2003)131<0289:DACOMC>2.0.CO;2, 2003.
Castagno, P., Capozzi, V., DiTullio, G. R., Falco, P., Fusco, G., Rintoul,
S. R., Spezie, G., and Budillon, G.: Rebound of shelf water salinity in the
Ross Sea, Nat. Commun., 10, 5441, https://doi.org/10.1038/s41467-019-13083-8, 2019.
Cheng, Z., Pang, X., Zhao, X., and Stein, A.: Heat flux sources analysis to
the Ross Ice Shelf Polynya ice production time series and the impact of wind
forcing, Remote Sens., 11, 8–11, https://doi.org/10.3390/rs11020188, 2019.
Chenoli, S. N., Turner, J., and Samah, A. A.: A strong wind event on the
ross ice shelf, antarctica: A case study of scale interactions, Mon. Weather
Rev., 143, 4163–4180, https://doi.org/10.1175/MWR-D-15-0002.1, 2015.
Comiso, J. C.: Bootstrap sea ice concentrations from Nimbus-7 SMMR and DMSP
SSM/I-SSMIS, Version 3, NASA National Snow and Ice Data Center [data set], Boulder, https://doi.org/10.5067/7Q8HCCWS4I0R, 2017.
Comiso, J. C. and Gordon, A. L.: Interannual variability in summer sea ice
minimum, coastal polynyas, and bottom water formation in the Weddell Sea, in:
Antarctic Sea Ice: Physical Processes, Interactions, and Variability, edited by: Jeffries, M., American Geophysical Union, Washington, DC, 74, 293–315, 1998.
Condron, A., Bigg, G. R., and Renfrew, I. A.: Polar mesoscale cyclones in
the northeast Atlantic: Comparing climatologies from ERA-40 and satellite
imagery, Mon. Weather Rev., 134, 1518–1533, https://doi.org/10.1175/MWR3136.1, 2006.
Dale, E. R., McDonald, A. J., Coggins, J. H. J., and Rack, W.: Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region, The Cryosphere, 11, 267–280, https://doi.org/10.5194/tc-11-267-2017, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Ding, Y., Cheng, X., Li, X., Shokr, M., Yuan, J., Yang, Q., and Hui, F.:
Specific Relationship between the Surface Air Temperature and the Area of
the Terra Nova Bay Polynya, Antarctica, Adv. Atmos. Sci., 37, 532–544,
https://doi.org/10.1007/s00376-020-9146-2, 2020.
Dinniman, M. S., Klinck, J. M., and Smith, W. O.: A model study of
Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea
continental shelves, Deep-Sea Res. Pt. II, 58, 1508–1523, https://doi.org/10.1016/j.dsr2.2010.11.013, 2011.
Dinniman, M. S., Klinck, J. M., Bai, L. S., Bromwich, D. H., Hines, K. M.,
and Holland, D. M.: The effect of atmospheric forcing resolution on delivery
of ocean heat to the antarctic floating ice shelves, J. Climate, 28,
6067–6085, https://doi.org/10.1175/JCLI-D-14-00374.1, 2015.
Dinniman, M. S., Klinck, J. M., Hofmann, E. E., and Smith, W. O.: Effects
of projected changes in wind, atmospheric temperature, and freshwater inflow
on the Ross Sea, J. Climate, 31, 1619–1635, https://doi.org/10.1175/JCLI-D-17-0351.1, 2018.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J.
B.: Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for
the COARE Algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
Gordon, A. L. and Comiso, J. C.: Polynyas in the southern ocean, Sci. Am., 258, 90–97, 1988.
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser,
E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L.,
Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M.,
Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and
Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation
and skill assessment of the Regional Ocean Modeling System, J. Comput.
Phys., 227, 3595–3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008.
Häkkinen, S. and Mellor, G. L.: Modeling the seasonal variability of a
coupled Arctic ice-ocean system, J. Geophys. Res.-Oceans, 97, 20285–20304,
https://doi.org/10.1029/92JC02037, 1992.
Heinemann, G.: Mesoscale Vortices in the Weddell Sea Region (Antarctica),
Mon. Weather Rev., 118, 779–793,
https://doi.org/10.1175/1520-0493(1990)118<0779:MVITWS>2.0.CO;2, 1990.
Herraiz-Borreguero, L., Church, J. A., Allison, I., Peña-Molino, B., Coleman, R., Tomczak, M., and Craven, M.: Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica, J. Geophys. Res.-Oceans, 121, 4946–4965, https://doi.org/10.1002/2016JC011858, 2016.
Holland, D. M. and Jenkins, A.: Modeling thermodynamic ice-ocean interactions at the base of an ice shelf, 29, 1787–1800, J. Phys. Oceanogr., 29, 1787–1800, https://doi.org/10.1175/1520-0485(1999)029<1787:mtioia>2.0.co;2, 1999.
Hoppema, M. and Anderson, L. G.: Chapter 6: Biogeochemistry of Polynyas and Their Role in Sequestration of Anthropogenic Constituents, in: Polynyas: Windows to the World, Elsevier Oceanography Series 74, edited by:
Smith Jr., W. and Barber, D., Elsevier, 193–221, https://doi.org/10.1016/S0422-9894(06)74006-5, 2007.
Hunke, E. C.: Viscous–Plastic Sea Ice Dynamics with the EVP Model:
Linearization Issues, J. Comput. Phys., 170, 18–38,
https://doi.org/10.1006/jcph.2001.6710, 2001.
Hunke, E. C. and Dukowicz, J. K.: An Elastic–Viscous–Plastic Model for
Sea Ice Dynamics, J. Phys. Oceanogr., 27, 1849–1867,
https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2, 1997.
Jacobs, S. S., Amos, A. F., and Bruchhausen, P. M.: Ross sea oceanography
and antarctic bottom water formation, Deep Sea Research and Oceanographic Abstracts, 17, 935–962, https://doi.org/10.1016/0011-7471(70)90046-X, 1970.
Jacobs, S. S., Fairbanks, R. G., and Horibe, Y.: Origin and Evolution of
Water Masses Near the Antarctic continental Margin: Evidence from
Ratios in Seawater, in: Oceanology of the Antarctic Continental Shelf, edited by: Jacob, S. S., American Geophysical Union (AGU), 59–85, 1985.
Jendersie, S., Williams, M. J. M., Langhorne, P. J., and Robertson, R.: The
Density-Driven Winter Intensification of the Ross Sea Circulation, J.
Geophys. Res.-Oceans, 123, 7702–7724, https://doi.org/10.1029/2018JC013965, 2018.
Kern, S.: Wintertime Antarctic coastal polynya area: 1992–2008, Geophys.
Res. Lett., 36, L14501, https://doi.org/10.1029/2009GL038062, 2009.
Knuth, S. L. and Cassano, J. J.: An analysis of near-surface winds, air
temperature, and cyclone activity in Terra Nova Bay, Antarctica, from 1993
to 2009, J. Appl. Meteorol. Clim., 50, 662–680, https://doi.org/10.1175/2010JAMC2507.1, 2011.
Kusahara, K., Williams, G. D., Tamura, T., Massom, R., and Hasumi, H.: Dense
shelf water spreading from Antarctic coastal polynyas to the deep Southern
Ocean: A regional circumpolar model study, J. Geophys. Res.-Oceans, 122, 6238–6253,
https://doi.org/10.1002/2017JC012911, 2017.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A
review and a model with nonlocal boundary layer parameterization, Rev.
Geophys., 32, 363–403, https://doi.org/10.1029/94RG01872, 1994.
Lutgens, F. K. and Tarbuck, E. J.: The atmosphere, 8th edn., Prentice Hall,
New York, ISBN-10: 0130879576, ISBN-13: 978-0130879578, 2001.
Markus, T. and Cavalieri, D. J.: An enhancement of the NASA Team sea ice
algorithm, IEEE T. Geosci. Remote, 38, 1387–1398, https://doi.org/10.1109/36.843033, 2000.
Massom, R. A., Harris, P. T., Michael, K. J., and Potter, M. J.: The
distribution and formative processes of latent-heat polynyas in East
Antarctica, Ann. Glaciol., 27, 420–426,
https://doi.org/10.3189/1998AoG27-1-420-426, 1998.
Mathiot, P., Barnier, B., Gallée, H., Molines, J. M., Le Sommer, J.,
Juza, M., and Penduff, T.: Introducing katabatic winds in global ERA40
fields to simulate their impacts on the Southern Ocean and sea-ice, Ocean
Model., 35, 146–160, https://doi.org/10.1016/j.ocemod.2010.07.001, 2010.
Mathiot, P., Jourdain, N. C., Barnier, B., Gallée, H., Molines, J. M.,
Le Sommer, J., and Penduff, T.: Sensitivity of coastal polynyas and
high-salinity shelf water production in the Ross Sea, Antarctica, to the
atmospheric forcing, Ocean Dynam., 62, 701–723, https://doi.org/10.1007/s10236-012-0531-y, 2012.
Mellor, G. L. and Kantha, L.: An ice-ocean coupled model, J. Geophys. Res.-Oceans, 94, 10937–10954, https://doi.org/10.1029/JC094iC08p10937, 1989.
Morales Maqueda, M. A., Willmott, A. J., and Biggs, N. R. T.: Polynya
dynamics: A review of observations and modeling, Rev. Geophys., 42, RG1004,
https://doi.org/10.1029/2002RG000116, 2004.
Murray, R. J. and Simmonds, I.: A numerical scheme for tracking cyclone
centres from digital data. Part I: development and operation of the scheme,
Aust. Meteorol. Mag., 39, 155–166, 1991.
Nakata, K., Ohshima, K. I., and Nihashi, S.: Mapping of Active Frazil for
Antarctic Coastal Polynyas, With an Estimation of Sea-Ice Production, Geophys. Res. Lett., 48, e2020GL091353, https://doi.org/10.1029/2020GL091353, 2021.
Nihashi, S. and Ohshima, K. I.: Circumpolar Mapping of Antarctic Coastal
Polynyas and Landfast Sea Ice: Relationship and Variability, J. Climate, 28,
3650–3670, https://doi.org/10.1175/JCLI-D-14-00369.1, 2015.
Nihashi, S., Ohshima, K. I., and Tamura, T.: Sea-Ice Production in Antarctic
Coastal Polynyas Estimated From AMSR2 Data and Its Validation Using AMSR-E
and SSM/I-SSMIS Data, IEEE J. Sel. Top. Appl., 10, 3912–3922, https://doi.org/10.1109/JSTARS.2017.2731995, 2017.
Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F.,
Kitade, Y., Tamura, T., Hirano, D., Herraiz-Borreguero, L., Field, I.,
Hindell, M., Aoki, S., and Wakatsuchi, M.: Antarctic Bottom Water production
by intense sea-ice formation in the Cape Darnley polynya, Nat. Geosci., 6,
235–240, https://doi.org/10.1038/ngeo1738, 2013.
Orsi, A. H. and Wiederwohl, C. L.: A recount of Ross Sea waters, Deep-Sea Res. Pt. II, 56, 778–795, https://doi.org/10.1016/j.dsr2.2008.10.033, 2009.
Padman, L., Howard, S. L., Orsi, A. H., and Muench, R. D.: Tides of the
northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom
Water, Deep-Sea Res. Pt. II, 56, 818–834, https://doi.org/10.1016/j.dsr2.2008.10.026, 2009.
Parish, T. R. and Cassano, J. J.: The Role of Katabatic Winds on the
Antarctic Surface Wind Regime, Mon. Weather Rev., 131, 317–333,
https://doi.org/10.1175/1520-0493(2003)131<0317:TROKWO>2.0.CO;2, 2003.
Powers, J. G., Monaghan, A. J., Cayette, A. M., Bromwich, D. H., Kuo,
Y.-H., and Manning, K. W.: Real-Time Mesoscale Modeling Over Antarctica: The
Antarctic Mesoscale Prediction System: The Antarctic Mesoscale Prediction
System, B. Am. Meteorol. Soc., 84, 1533–1546,
https://doi.org/10.1175/BAMS-84-11-1533, 2003.
Rossow, W. B., Walker, A. W., Beuschel, D. E., and Roiter, M. D.:
International Satellite Cloud Climatology Project (ISCCP) documentation of
new cloud datasets, World Meteorological Organization, WMO/TD-737, 115 pp.,
https://isccp.giss.nasa.gov/pub/documents/d-doc.pdf (last access: 7 June 2022), 1996.
Saunders, P. M., Coward, A. C., and de Cuevas, B. A.: Circulation of the
Pacific Ocean seen in a global ocean model: Ocean Circulation and Climate
Advanced Modelling project (OCCAM), J. Geophys. Res.-Ocean., 104, 18281–18299, https://doi.org/10.1029/1999JC900091, 1999.
Seefeldt, M. W. and Cassano, J. J.: An analysis of low-level jets in the
greater ross ice shelf region based on numerical simulations, Mon. Weather Rev., 136, 4188–4205, https://doi.org/10.1175/2008MWR2455.1, 2008.
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for
“Ocean forecasting in terrain-following coordinates: Formulation and skill
assessment of the regional ocean modeling system” by Haidvogel et al., J.
Comp. Phys. 227, 3595–3624, J. Comput. Phys., 228, 8985–9000,
https://doi.org/10.1016/j.jcp.2009.09.002, 2009.
Simmonds, I., Keay, K., and Lim, E. P.: Synoptic activity in the seas around
Antarctica, Mon. Weather Rev., 131, 272–288,
https://doi.org/10.1175/1520-0493(2003)131<0272:SAITSA>2.0.CO;2, 2003.
Stern, A. A., Dinniman, M. S., Zagorodnov, V., Tyler, S. W., and Holland,
D. M.: Intrusion of warm surface water beneath the McMurdo Ice Shelf,
Antarctica, J. Geophys. Res.-Oceans, 118, 7036–7048,
https://doi.org/10.1002/2013JC008842, 2013.
Stössel, A., Zhang, Z., and Vihma, T.: The effect of alternative
real-time wind forcing on Southern Ocean sea ice simulations, J. Geophys.
Res.-Oceans, 116, C11021, https://doi.org/10.1029/2011JC007328, 2011.
Tamura, T., Ohshima, K. I., and Nihashi, S.: Mapping of sea ice production
for Antarctic coastal polynyas, Geophys. Res. Lett., 35, L07606,
https://doi.org/10.1029/2007GL032903, 2008.
Thompson, L., Smith, M., Thomson, J., Stammerjohn, S., Ackley, S., and Loose, B.: Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica, The Cryosphere, 14, 3329–3347, https://doi.org/10.5194/tc-14-3329-2020, 2020.
Tortell, P. D., Long, M. C., Payne, C. D., Alderkamp, A.-C., Dutrieux, P.,
and Arrigo, K. R.: Spatial distribution of pCO2, ΔO Ar and
dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen
Sea, Antarctica, Deep-Sea Res. Pt. II, 71–76, 77–93, https://doi.org/10.1016/j.dsr2.2012.03.010, 2012.
Tremblay, J. E. and Smith Jr., W. O.: Chapter 8 Primary Production and Nutrient Dynamics in Polynyas, in: Polynyas: Windows to the World, Elsevier
Oceanography Series, 74, 239–269, 2007.
Turner, J., Chenoli, S. N., Abu Samah, A., Marshall, G., Phillips, T., and
Orr, A.: Strong wind events in the Antarctic, J. Geophys. Res., 114, D18103,
https://doi.org/10.1029/2008JD011642, 2009.
Uotila, P., Pezza, A. B., Cassano, J. J., Keay, K., and Lynch, A. H.: A
comparison of low pressure system statistics derived from a high-resolution
NWP output and three reanalysis products over the Southern Ocean, J.
Geophys. Res., 114, D17105, https://doi.org/10.1029/2008JD011583, 2009.
Uotila, P., Vihma, T., Pezza, A. B., Simmonds, I., Keay, K., and Lynch, A.
H.: Relationships between Antarctic cyclones and surface conditions as
derived from high-resolution numerical weather prediction data, J. Geophys.
Res.-Atmos., 116, D07109, https://doi.org/10.1029/2010JD015358, 2011.
Uotila, P., Vihma, T., and Tsukernik, M.: Close interactions between the
Antarctic cyclone budget and large-scale atmospheric circulation, Geophys.
Res. Lett., 40, 3237–3241, https://doi.org/10.1002/grl.50560, 2013.
van Lipzig, N. P. M., King, J. C., Lachlan-Cope, T. A., and van den Broeke,
M. R.: Precipitation, sublimation, and snow drift in the Antarctic Peninsula
region from a regional atmospheric model, J. Geophys. Res., 109, D24106,
https://doi.org/10.1029/2004JD004701, 2004.
Wang, Q., Danilov, S., Hellmer, H., Sidorenko, D., Schröter, J., and
Jung, T.: Enhanced cross-shelf exchange by tides in the western Ross Sea,
Geophys. Res. Lett., 40, 5735–5739, https://doi.org/10.1002/2013GL058207, 2013.
Wang, X.: X. Wang/model outputs for TC-2022-160, Version 1, Zenodo, https://sandbox.zenodo.org/record/1153950 (last access: 3 February 2023), 2022.
Wang, X., Zhang, Z., Wang, X., Vihma, T., Zhou, M., Yu, L., Uotila, P., and
Sein, D. V.: Impacts of strong wind events on sea ice and water mass
properties in Antarctic coastal polynyas, Clim. Dynam., 57, 3505–3528, https://doi.org/10.1007/s00382-021-05878-7, 2021.
Wenta, M. and Cassano, J. J.: The atmospheric boundary layer and surface
conditions during katabatic wind events over the Terra Nova bay Polynya,
Remote Sens., 12, 4160, https://doi.org/10.3390/rs12244160, 2020.
Weber, N. J., Lazzara, M. A., Keller, L. M., and Cassano, J. J.: The
extreme wind events in the Ross Island region of Antarctica, Weather
Forecast., 31, 985–1000, https://doi.org/10.1175/WAF-D-15-0125.1, 2016.
Whitworth III, T. and Orsi, A. H.: Antarctic Bottom Water production and
export by tides in the Ross Sea, Geophys. Res. Lett., 33, L12609,
https://doi.org/10.1029/2006GL026357, 2006.
Whitworth III, T., Orsi, A. H., Kim, S. J., Nowlin Jr., W. D., and Locarnini, R. A.: Water masses and mixing near the antarctic slope front, in: Ocean, ice, and atmosphere: interactions at the Antarctic Continental Margin, edited by: Jacobs, S. S. and Weiss, R. F., American Geophysical Union, 75, 1–27,
https://doi.org/10.1029/AR075p0001, 2013.
Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, K.
I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R.,
Harcourt, R., and Hindell, M.: The suppression of Antarctic bottom water
formation by melting ice shelves in Prydz Bay, Nat. Commun., 7, 12577,
https://doi.org/10.1038/ncomms12577, 2016.
Wu, Y., Wang, Z., Liu, C., and Lin, X.: Impacts of High-Frequency
Atmospheric Forcing on Southern Ocean Circulation and Antarctic Sea Ice, Adv. Atmos. Sci., 37, 515–531, https://doi.org/10.1007/s00376-020-9203-x, 2020.
Yu, L. and Zhong, S.: Strong wind speed events over Antarctica and its
surrounding oceans, J. Climate, 32, 3451–3470, https://doi.org/10.1175/JCLI-D-18-0831.1, 2019.
Zhang, Z., Vihma, T., Stössel, A., and Uotila, P.: The role of wind
forcing from operational analyses for the model representation of Antarctic
coastal sea ice, Ocean Model., 94, 95–111,
https://doi.org/10.1016/j.ocemod.2015.07.019, 2015.
Short summary
The bottom water of the global ocean originates from high-salinity water formed in polynyas in the Southern Ocean where sea ice coverage is low. This study reveals the impacts of cyclones on sea ice and water mass formation in the Ross Ice Shelf Polynya using numerical simulations. Sea ice production is rapidly increased caused by enhancement in offshore wind, promoting high-salinity water formation in the polynya. Cyclones also modulate the transport of this water mass by wind-driven currents.
The bottom water of the global ocean originates from high-salinity water formed in polynyas in...