Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-105-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-105-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First results of Antarctic sea ice type retrieval from active and passive microwave remote sensing data
Christian Melsheimer
CORRESPONDING AUTHOR
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
Gunnar Spreen
Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany
Yufang Ye
School of Geospatial Engineering and Science, Sun Yat-Sen University, Zhuhai, China
Mohammed Shokr
Environment and Climate Change Canada, Toronto, Canada
Related authors
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022, https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Short summary
In this paper we show that the activity leading to the open-ocean polynyas near the Maud Rise seamount that have occurred repeatedly from 1974–1976 as well as 2016–2017 does not simply stop for polynya-free years. Using apparent sea ice thickness retrieval, we have identified anomalies where there is thinning of sea ice on a scale that is comparable to that of the polynya events of 2016–2017. These anomalies took place in 2010, 2013, 2014 and 2018.
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025, https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Short summary
Melt water puddles, or melt ponds on top of the Arctic sea ice, are a good measure of the Arctic climate state. In the context of recent climate warming, the Arctic has warmed about 4 times faster than the rest of the world, and a long-term dataset of the melt pond fraction is needed to be able to model the future development of the Arctic climate. We present such a dataset, produce 2002–2023 trends and highlight a potential melt regime shift with drastic regional trends of + 20 % per decade.
Yan Sun, Shaoyin Wang, Xiao Cheng, Teng Li, Chong Liu, Yufang Ye, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2760, https://doi.org/10.5194/egusphere-2024-2760, 2025
Short summary
Short summary
This manuscript proposes to combine semantic segmentation of ice region using a U-Net model and multi-stage detection of ice pixels using the Multi-textRG algorithm to achieve fine ice-water classification. Novel proccessings for the HV/HH polarization ratio and the GLCM textures, as well as the usage of regional growing, largely improve the method accuracy and robustness. The proposed algorithm framework achieved automated sea-ice labelling.
Karl Kortum, Suman Singha, and Gunnar Spreen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3351, https://doi.org/10.5194/egusphere-2024-3351, 2024
Short summary
Short summary
Improved sea ice observations are essential to understanding the processes that lead to the strong warming effect currently being observed in the Arctic. In this work, we combine complementary satellite measurement techniques and find remarkable correlations between the two observations. This allows us to expand the coverage of ice topography measurements to a scope and resolution that could not previously be observed.
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024, https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Short summary
Elongated open-water areas in sea ice, called leads, can release marine aerosols into the atmosphere. In the Arctic, this source of atmospheric particles could play an important role for climate. However, the amount, seasonality and spatial distribution of such emissions are all mostly unknown. Here, we propose a first parameterization for sea spray aerosols emitted through leads in sea ice and quantify their impact on aerosol populations in the high Arctic.
Hannah Niehaus, Gunnar Spreen, Larysa Istomina, and Marcel Nicolaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-3127, https://doi.org/10.5194/egusphere-2024-3127, 2024
Short summary
Short summary
Melt ponds on Arctic sea ice affect how much solar energy is absorbed, influencing ice melt and climate change. This study used satellite data from 2017–2023 to examine how these ponds vary across regions and seasons. The results show that the surface fraction of melt ponds is more stable in the Central Arctic, with air temperature and ice surface roughness playing key roles in their formation. Understanding these patterns can help to improve climate models and predictions for Arctic warming.
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024, https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
Short summary
Passive microwave observations from satellites are crucial for monitoring Arctic sea ice and atmosphere. To do this effectively, it is important to understand how sea ice emits microwaves. Through unique Arctic sea ice observations, we improved our understanding, identified four distinct emission types, and expanded current knowledge to include higher frequencies. These findings will enhance our ability to monitor the Arctic climate and provide valuable information for new satellite missions.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas
The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, https://doi.org/10.5194/tc-18-2207-2024, 2024
Short summary
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.
Yan Sun, Shaoyin Wang, Xiao Cheng, Teng Li, Chong Liu, Yufang Ye, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1177, https://doi.org/10.5194/egusphere-2024-1177, 2024
Preprint archived
Short summary
Short summary
Arctic sea ice has rapidly declined due to global warming, leading to extreme weather events. Accurate ice monitoring is vital for understanding and forecasting these impacts. Combining SAR and AMSR2 data with machine learning is efficient but requires sufficient labels. We propose a framework integrating the U-Net model with the Multi-textRG algorithm to achieve ice-water classification at SAR-level resolution and to generate accurate labels for improved U-Net model training.
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere, 18, 1259–1285, https://doi.org/10.5194/tc-18-1259-2024, https://doi.org/10.5194/tc-18-1259-2024, 2024
Short summary
Short summary
Leads (openings in sea ice cover) are created by sea ice dynamics. Because they are important for many processes in the Arctic winter climate, we aim to detect them with satellites. We present two new techniques to detect lead widths of a few hundred meters at high spatial resolution (700 m) and independent of clouds or sun illumination. We use the MOSAiC drift 2019–2020 in the Arctic for our case study and compare our new products to other existing lead products.
Evelyn Jäkel, Sebastian Becker, Tim R. Sperzel, Hannah Niehaus, Gunnar Spreen, Ran Tao, Marcel Nicolaus, Wolfgang Dorn, Annette Rinke, Jörg Brauchle, and Manfred Wendisch
The Cryosphere, 18, 1185–1205, https://doi.org/10.5194/tc-18-1185-2024, https://doi.org/10.5194/tc-18-1185-2024, 2024
Short summary
Short summary
The results of the surface albedo scheme of a coupled regional climate model were evaluated against airborne and ground-based measurements conducted in the European Arctic in different seasons between 2017 and 2022. We found a seasonally dependent bias between measured and modeled surface albedo for cloudless and cloudy situations. The strongest effects of the albedo model bias on the net irradiance were most apparent in the presence of optically thin clouds.
Hannah Niehaus, Larysa Istomina, Marcel Nicolaus, Ran Tao, Aleksey Malinka, Eleonora Zege, and Gunnar Spreen
The Cryosphere, 18, 933–956, https://doi.org/10.5194/tc-18-933-2024, https://doi.org/10.5194/tc-18-933-2024, 2024
Short summary
Short summary
Melt ponds are puddles of meltwater which form on Arctic sea ice in the summer period. They are darker than the ice cover and lead to increased absorption of solar energy. Global climate models need information about the Earth's energy budget. Thus satellite observations are used to monitor the surface fractions of melt ponds, ocean, and sea ice in the entire Arctic. We present a new physically based algorithm that can separate these three surface types with uncertainty below 10 %.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen
The Cryosphere, 17, 4103–4131, https://doi.org/10.5194/tc-17-4103-2023, https://doi.org/10.5194/tc-17-4103-2023, 2023
Short summary
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881, https://doi.org/10.5194/tc-17-3867-2023, https://doi.org/10.5194/tc-17-3867-2023, 2023
Short summary
Short summary
During winter, storms entering the Arctic region can bring warm air into the cold environment. Strong increases in air temperature modify the characteristics of the Arctic snow and ice cover. The Arctic sea ice cover can be monitored by satellites observing the natural emission of the Earth's surface. In this study, we show that during warm air intrusions the change in the snow characteristics influences the satellite-derived sea ice cover, leading to a false reduction of the estimated ice area.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Wenkai Guo, Polona Itkin, Suman Singha, Anthony P. Doulgeris, Malin Johansson, and Gunnar Spreen
The Cryosphere, 17, 1279–1297, https://doi.org/10.5194/tc-17-1279-2023, https://doi.org/10.5194/tc-17-1279-2023, 2023
Short summary
Short summary
Sea ice maps are produced to cover the MOSAiC Arctic expedition (2019–2020) and divide sea ice into scientifically meaningful classes. We use a high-resolution X-band synthetic aperture radar dataset and show how image brightness and texture systematically vary across the images. We use an algorithm that reliably corrects this effect and achieve good results, as evaluated by comparisons to ground observations and other studies. The sea ice maps are useful as a basis for future MOSAiC studies.
Yufang Ye, Yanbing Luo, Yan Sun, Mohammed Shokr, Signe Aaboe, Fanny Girard-Ardhuin, Fengming Hui, Xiao Cheng, and Zhuoqi Chen
The Cryosphere, 17, 279–308, https://doi.org/10.5194/tc-17-279-2023, https://doi.org/10.5194/tc-17-279-2023, 2023
Short summary
Short summary
Arctic sea ice type (SITY) variation is a sensitive indicator of climate change. This study gives a systematic inter-comparison and evaluation of eight SITY products. Main results include differences in SITY products being significant, with average Arctic multiyear ice extent up to 1.8×106 km2; Ku-band scatterometer SITY products generally performing better; and factors such as satellite inputs, classification methods, training datasets and post-processing highly impacting their performance.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022, https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Short summary
In this paper we show that the activity leading to the open-ocean polynyas near the Maud Rise seamount that have occurred repeatedly from 1974–1976 as well as 2016–2017 does not simply stop for polynya-free years. Using apparent sea ice thickness retrieval, we have identified anomalies where there is thinning of sea ice on a scale that is comparable to that of the polynya events of 2016–2017. These anomalies took place in 2010, 2013, 2014 and 2018.
Thomas Krumpen, Luisa von Albedyll, Helge F. Goessling, Stefan Hendricks, Bennet Juhls, Gunnar Spreen, Sascha Willmes, H. Jakob Belter, Klaus Dethloff, Christian Haas, Lars Kaleschke, Christian Katlein, Xiangshan Tian-Kunze, Robert Ricker, Philip Rostosky, Janna Rückert, Suman Singha, and Julia Sokolova
The Cryosphere, 15, 3897–3920, https://doi.org/10.5194/tc-15-3897-2021, https://doi.org/10.5194/tc-15-3897-2021, 2021
Short summary
Short summary
We use satellite data records collected along the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) drift to categorize ice conditions that shaped and characterized the floe and surroundings during the expedition. A comparison with previous years is made whenever possible. The aim of this analysis is to provide a basis and reference for subsequent research in the six main research areas of atmosphere, ocean, sea ice, biogeochemistry, remote sensing and ecology.
Susanne Crewell, Kerstin Ebell, Patrick Konjari, Mario Mech, Tatiana Nomokonova, Ana Radovan, David Strack, Arantxa M. Triana-Gómez, Stefan Noël, Raul Scarlat, Gunnar Spreen, Marion Maturilli, Annette Rinke, Irina Gorodetskaya, Carolina Viceto, Thomas August, and Marc Schröder
Atmos. Meas. Tech., 14, 4829–4856, https://doi.org/10.5194/amt-14-4829-2021, https://doi.org/10.5194/amt-14-4829-2021, 2021
Short summary
Short summary
Water vapor (WV) is an important variable in the climate system. Satellite measurements are thus crucial to characterize the spatial and temporal variability in WV and how it changed over time. In particular with respect to the observed strong Arctic warming, the role of WV still needs to be better understood. However, as shown in this paper, a detailed understanding is still hampered by large uncertainties in the various satellite WV products, showing the need for improved methods to derive WV.
Anja Rösel, Sinead Louise Farrell, Vishnu Nandan, Jaqueline Richter-Menge, Gunnar Spreen, Dmitry V. Divine, Adam Steer, Jean-Charles Gallet, and Sebastian Gerland
The Cryosphere, 15, 2819–2833, https://doi.org/10.5194/tc-15-2819-2021, https://doi.org/10.5194/tc-15-2819-2021, 2021
Short summary
Short summary
Recent observations in the Arctic suggest a significant shift towards a snow–ice regime caused by deep snow on thin sea ice which may result in a flooding of the snowpack. These conditions cause the brine wicking and saturation of the basal snow layers which lead to a subsequent underestimation of snow depth from snow radar mesurements. As a consequence the calculated sea ice thickness will be biased towards higher values.
Yu Zhang, Tingting Zhu, Gunnar Spreen, Christian Melsheimer, Marcus Huntemann, Nick Hughes, Shengkai Zhang, and Fei Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-85, https://doi.org/10.5194/tc-2021-85, 2021
Revised manuscript not accepted
Short summary
Short summary
We developed an algorithm for ice-water classification using Sentinel-1 data during melting seasons in the Fram Strait. The proposed algorithm has the OA of nearly 90 % with STD less than 10 %. The comparison of sea ice concentration demonstrate that it can provide detailed information of sea ice with the spatial resolution of 1km. The time series shows the average June to September sea ice area does not change so much in 2015–2017 and 2019–2020, but it has a significant decrease in 2018.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Rasmus Tonboe, Stefan Hendricks, Robert Ricker, James Mead, Robbie Mallett, Marcus Huntemann, Polona Itkin, Martin Schneebeli, Daniela Krampe, Gunnar Spreen, Jeremy Wilkinson, Ilkka Matero, Mario Hoppmann, and Michel Tsamados
The Cryosphere, 14, 4405–4426, https://doi.org/10.5194/tc-14-4405-2020, https://doi.org/10.5194/tc-14-4405-2020, 2020
Short summary
Short summary
This study provides a first look at the data collected by a new dual-frequency Ka- and Ku-band in situ radar over winter sea ice in the Arctic Ocean. The instrument shows potential for using both bands to retrieve snow depth over sea ice, as well as sensitivity of the measurements to changing snow and atmospheric conditions.
Larysa Istomina, Henrik Marks, Marcus Huntemann, Georg Heygster, and Gunnar Spreen
Atmos. Meas. Tech., 13, 6459–6472, https://doi.org/10.5194/amt-13-6459-2020, https://doi.org/10.5194/amt-13-6459-2020, 2020
Mohammed E. Shokr, Zihan Wang, and Tingting Liu
The Cryosphere, 14, 3611–3627, https://doi.org/10.5194/tc-14-3611-2020, https://doi.org/10.5194/tc-14-3611-2020, 2020
Short summary
Short summary
This paper uses sequential daily SAR images covering the Robeson Channel to quantitatively study kinematics of individual ice floes with exploration of wind influence and the evolution of the ice arch at the entry of the channel. Results show that drift of ice floes within the Robeson Channel and the arch are both significantly influenced by wind. The study highlights the advantage of using the high-resolution daily SAR coverage in monitoring sea ice cover in narrow water passages.
Cited articles
Aaboe, S., Down, E. J., and Eastwood, S.: Algorithm Theoretical Basis Document for the Global Sea-Ice Edge and Type Product, Version 3.3, Tech. rep. SAF/OSI/CDOP3/MET-Norway/SCI/MA/379, EUMETSAT Ocean and Sea Ice SAF,
https://osisaf-hl.met.no/sites/osisaf-hl.met.no/files/baseline_document/osisaf_cdop3_ss2_atbd_sea-ice-edge-type_v3p3.pdf
(last access: 6 January 2023), 2021a. a, b
Aaboe, S., Down, E. J., and Eastwood, S.: Validation Report for the Global
Sea-Ice Edge and Type Product, Version 3.1, Tech. rep., EUMETSAT Ocean and
Sea Ice SAF,
https://osisaf-hl.met.no/sites/osisaf-hl.met.no/files/validation_reports/osisaf_cdop3_ss2_svr_sea-ice-edge-type_v3p1.pdf (last access: 6 January 2023), 2021b. a
Arndt, S. and Haas, C.: Spatiotemporal variability and decadal trends of
snowmelt processes on Antarctic sea ice observed by satellite scatterometers, The Cryosphere, 13, 1943–1958, https://doi.org/10.5194/tc-13-1943-2019, 2019. a, b
Arndt, S., Willmes, S., Dierking, W., and Nicolaus, M.: Timing and regional
patterns of snowmelt on Antarctic sea ice from passive microwave satellite
observations, J. Geophys. Res.-Oceans, 121, 5916–5930,
https://doi.org/10.1002/2015JC011504, 2016. a
Comiso, J. C.: Large Decadal Decline of the Arctic Multiyear Ice Cover, J. Climate, 25, 1176–1193, https://doi.org/10.1175/jcli-d-11-00113.1, 2012. a
Dee, D. P.: The ERA-Interim reanalysis: Configuration and performance of the
data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Drobot, S. D. and Anderson, M. R.: An improved method for determining snowmelt onset dates over Arctic sea ice using scanning multichannel microwave radiometer and Special Sensor Microwave/Imager data, J. Geophys.
Res., 106, 24033–24049, https://doi.org/10.1029/2000JD000171, 2001. a
Fraser, A. D., Massom, R. A., Handcock, M. S., Reid, P., Ohshima, K. I.,
Raphael, M. N., Cartwright, J., Klekociuk, A. R., Wang, Z., and Porter-Smith,
R.: Eighteen-year record of circum-Antarctic landfast-sea-ice distribution
allows detailed baseline characterisation and reveals trends and variability,
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, 2021. a
Gohin, F. and Cavanié, A.: A first try at identification of sea ice using the three beam scatterometer of ERS-1, Int. J. Remote Sens., 15, 1221–1228,
https://doi.org/10.1080/01431169408954156, 1994. a
Gow, A., Ackley, S., Buck, K., and Golden, K.: 1987 Physical and structural
characteristics of Weddell Sea pack ice, CRREL Rep. 87-14, CRREL – Cold
Regions Research and Engineering Laboratory, https://collections.lib.utah.edu/ark:/87278/s65m6q3k (last access: 6 January 2023), 1987. a
Haas, C., Thomas, D. N., and Bareiss, J.: Surface properties and processes of
perennial Antarctic sea ice in summer, J. Glaciol., 47, 613–625,
https://doi.org/10.3189/172756501781831864, 2001. a
Hauser, D., Xiaolong, D., Aouf, L., Tison, C., and Castillan, P.: Overview of the CFOSAT mission, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 10–15 July 2016, Beijing, China, 5789–5792, https://doi.org/10.1109/IGARSS.2016.7730512, 2016. a
Hobbs, W. R., Bindoff, N. L., and Raphael, M. N.: New Perspectives on Observed and Simulated Antarctic Sea Ice Extent Trends Using Optimal Fingerprinting Techniques, J. Climate, 28, 1543–1560, https://doi.org/10.1175/JCLI-D-14-00367.1, 2015. a
Ivanova, N., Johannessen, O. M., Pedersen, L. T., and Tonboe, R. T.: Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison between Eleven Sea Ice Concentration Algorithms, IEEE T. Geosci. Remote, 52, 7233–7246, https://doi.org/10.1109/TGRS.2014.2310136, 2014. a
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sörensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M.: Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797–1817, https://doi.org/10.5194/tc-9-1797-2015, 2015. a, b
JCOMM – Joint WMO-IOC Technical Commission for Oceanography and Marine Meteorology: Ice Chart Colour Code Standard Version 1.0, 2014, Tech. Rep. JCOMM-TR-024, WMO/TD-NO. 1215, World Meteorological Organization and Intergovernmental Oceanographic Commission, https://doi.org/10.25607/OBP-1077, 2014. a, b
Johannessen, O. M., Shalina, E. V., and Miles, M. W.: Satellite Evidence for an Arctic Sea Ice Cover in Transformation, Science, 286, 1937–1939,
https://doi.org/10.1126/science.286.5446.1937, 1999. a
Kern, S., Spreen, G., Kaleschke, L., De La Rosa, S., and Heygster, G.:
Polynya Signature Simulation Method polynya area in comparison to AMSR-E 89 GHz sea-ice concentrations in the Ross Sea and off the Adélie Coast, Antarctica, for 2002: first results, Ann. Glaciol., 46,
409–418, https://doi.org/10.3189/172756407782871585, 2007. a
Kilic, L., Prigent, C., Aires, F., Boutin, J., Heygster, G., Tonboe, R. T.,
Roquet, H., Jimenez, C., and Donlon, C.: Expected Performances of the
Copernicus Imaging Microwave Radiometer (CIMR) for an All-Weather and High
Spatial Resolution Estimation of Ocean and Sea Ice Parameters, J. Geophys.
Res.-Oceans, 123, 7564–7580, https://doi.org/10.1029/2018JC014408, 2018. a
Kwok, R.: Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018), Environ. Res. Lett., 13, 105005, https://doi.org/10.1088/1748-9326/aae3ec, 2018. a
Lange, M., Ackley, S., Wadhams, P., Dieckmann, G., and Eicken, H.: Development of Sea Ice in the Weddell Sea, Ann. Glaciol., 12, 92–96,
https://doi.org/10.3189/S0260305500007023, 1989. a
Lange, M. A. and Eicken, H.: Textural characteristics of sea ice and the major mechanisms of ice growth in the Weddell Sea, Ann. Glaciol., 15, 210–215, https://doi.org/10.3189/1991AoG15-1-210-215, 1991. a
Lavergne, T., Eastwood, S., Teffah, Z., Schyberg, H., and Breivik, L.-A.: Sea
ice motion from low resolution satellite sensors: an alternative method and
its validation in the Arctic, J. Geophys. Res., 115, C10032,
https://doi.org/10.1029/2009JC005958, 2010. a
Lavergne, T., Piñol Solé, M., Down, E., and Donlon, C.: Towards a
swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission, The Cryosphere, 15, 3681–3698,
https://doi.org/10.5194/tc-15-3681-2021, 2021. a
Lindell, D. B. and Long, D. G.: Multiyear Arctic Ice Classification Using
ASCAT and SSMIS, Remote Sens., 8, 294, https://doi.org/10.3390/rs8040294, 2016. a
Ludescher, J., Yuan, N., and Bunde, A.: Detecting the statistical significance of the trends in the Antarctic sea ice extent: an indication for a turning point, Clim. Dynam., 53, 237–244, https://doi.org/10.1007/s00382-018-4579-3, 2019. a
Lythe, M., Hauser, A., and Wendler, G.: Classification of sea ice types in the Ross Sea, Antarctica from SAR and AVHRR imagery, Int. J. Remote Sens., 20, 3073–3085, https://doi.org/10.1080/014311699211624, 1999. a
Maeda, T., Tomii, N., Seki, M., Sekiya, K., Taniguchi, Y., and Shibata, A.:
Validation of Hi-Resolution Sea Surface Temperature Algorithm Toward the
Satellite-Borne Microwave Radiometer AMSR3 Mission, IEEE Geosci Remote Sens. Lett., 19, 1–5, https://doi.org/10.1109/LGRS.2021.3066534, 2022. a
Mahlstein, I., Gent, P. R., and Solomon, S.: Historical Antarctic mean sea
ice area, sea ice trends, and winds in CMIP5 simulations, J. Geophys. Res.,
118, 5105–5110, https://doi.org/10.1002/jgrd.50443, 2013. a
Markus, T. and Burns, B. A.: A method to estimate subpixel-scale coastal
polynyas with satellite passive microwave data, J. Geophys. Res.-Oceans, 100,
4473–4487, https://doi.org/10.1029/94JC02278, 1995. a
Massom, R., Giles, A., Fricker, H., Legresy, B., Warner, R., Hyland, G., Young, N., and Fraser, A.: Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: Another factor in ice sheet stability?, J. Geophys. Res.-Oceans, 115, C12027,
https://doi.org/10.1029/2009JC006083, 2010. a
Melsheimer, C. and Spreen, G.: IUP Multiyear Ice Concentration and other sea
ice types, Version 1.1 (Arctic)/Version AQ2 (Antarctic) – User Guide, Tech. rep., Institute of Environmental Physics, University of Bremen,
https://seaice.uni-bremen.de/data/MultiYearIce/MYIuserguide.pdf (last
access: 7 April 2020), 2019a. a
Melsheimer, C. and Spreen, G.: AMSR2 ASI sea ice concentration data, Antarctic, version 5.4 (NetCDF) (July 2012–December 2019), PANGEA [data set], https://doi.org/10.1594/PANGAEA.898400, 2019b. a
Melsheimer, C. and Spreen, G.: Uncorrected Ice Type Concentrations (young ice, first-year ice, multiyear ice), Antarctic, 12.5 km grid, 2013–2012 (from satellite), University of Bremen [data set], https://seaice.uni-bremen.de/data/MultiYearIce/ascat-amsr2/raw/ (last access: 6 January 2023), 2022. a
Melsheimer, C., Spreen, G., Ye, Y., and Shokr, M.: Multiyear Ice Concentration, Antarctic, 12.5 km grid, cold seasons 2013–2018 (from satellite), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.909054, 2019. a
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M., Ottersen, G., Pritchard, H., and Schuur, E.: Polar Regions, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N., Cambridge University Press, Cambridge, UK and New York, NY, USA, 203–320, https://doi.org/10.1017/9781009157964.005, 2022. a
Nihashi, S. and Ohshima, K. I.: Circumpolar Mapping of Antarctic Coastal
Polynyas and Landfast Sea Ice: Relationship and Variability, J. Climate, 28,
3650–3670, https://doi.org/10.1175/JCLI-D-14-00369.1, 2015. a
Ozsoy-Cicek, B., Kern, S., Ackley, S. F., Xie, H., and Tekeli, A. E.:
Intercomparisons of Antarctic sea ice types from visual ship, RADARSAT-1
SAR, Envisat ASAR, QuikSCAT, and AMSR-E satellite observations in the Bellingshausen Sea, Deep-Sea Res. Pt. IIy, 58, 1092–1111, https://doi.org/10.1016/j.dsr2.2010.10.031, 2011. a
Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases
followed by decreases at rates far exceeding the rates seen in the Arctic,
P. Natl. Acad. Sci. USA, 116, 14414–14423, https://doi.org/10.1073/pnas.1906556116, 2019. a
Parkinson, C. L. and Cavalieri, D. J.: Antarctic sea ice variability and
trends, 1979–2010, The Cryosphere, 6, 871–880, https://doi.org/10.5194/tc-6-871-2012,
2012a. a, b
Parkinson, C. L. and Cavalieri, D. J.: Arctic sea ice variability and trends,
1979–2010, The Cryosphere, 6, 881–889, https://doi.org/10.5194/tc-6-881-2012,
2012b. a
Parkinson, C. L. and DiGirolamo, N. E.: Sea ice extents continue to set new
records: Arctic, Antarctic, and global results, Remote Sens. Environ., 267,
281–292, https://doi.org/10.1016/j.rse.2021.112753, 2021. a, b
Polvani, L. M. and Smith, K. L.: Can natural variability explain observed
Antarctic sea ice trends? New modeling evidence from CMIP5, Geophys. Res.
Lett., 40, 3195–3199, https://doi.org/10.1002/grl.50578, 2013. a
Scarlat, R. C., Spreen, G., Heygster, G., Huntemann, M., Paţilea, C.,
Pedersen, L. T., and Saldo, R.: Sea Ice and Atmospheric Parameter Retrieval
From Satellite Microwave Radiometers: Synergy of AMSR2 and SMOS Compared With
the CIMR Candidate Mission, J. Geophys. Res.-Oceans, 125, e2019JC015749,
https://doi.org/10.1029/2019JC015749, 2020. a
Shokr, M. and Agnew, T. A.: Validation and potential applications of
Environment Canada Ice Concentration Extractor (ECICE) algorithm to Arctic ice by combining AMSR-E and QuikSCAT observations, Remote Sens. Environ., 128, 315–332, https://doi.org/10.1016/j.rse.2012.10.016, 2013. a, b
Spreen, G., Kaleschke, L., and Heygster, G.: Sea Ice Remote Sensing Using
AMSR-E 89 GHz Channels, J. Geophys. Res., 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008. a
Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P. (Eds.): Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, UK and New York, NY, USA,
https://doi.org/10.1017/CBO9781107415324, 2013. a
Tschudi, M., Fowler, C., Maslanik, J., Stewart, J. S., and Meier, W.: Polar
Pathfinder Daily 25 km EASE-Grid Sea Ice Motion Vectors, Version 3
(Arctic, Antarctic), NASA National Snow and Ice Data Center Distributed
Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/O57VAIT2AYYY, 2016. a
Tschudi, M. A., Meier, W. N., and Stewart, J. S.: An enhancement to sea ice
motion and age products at the National Snow and Ice Data Center (NSIDC), The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, 2020. a
Turner, J., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., and Phillips, T.: Recent changes in Antarctic Sea Ice, Phil. T. Roy. Soc. A, 373,
20140163, https://doi.org/10.1098/rsta.2014.0163, 2015. a
Wadhams, P., Squire, V. A., Ewing, J. A., and Pascal, R. W.: The Effect of the Marginal Ice Zone on the Directional Wave Spectrum of the Ocean, J. Phys.
Oceanogr., 16, 358–376, https://doi.org/10.1175/1520-0485(1986)016<0358:TEOTMI>2.0.CO;2, 1986. a
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic
Mapping Tools: Improved Version Released, Eos Trans. Am. Geophys. Union, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
a
Willmes, S., Haas, C., and Nicolaus, M.: High radar-backscatter regions on
Antarctic sea-ice and their relation to sea-ice and snow properties and
meteorological conditions, Int. J. Remote Sens., 32, 3967–3984,
https://doi.org/10.1080/01431161003801344, 2011. a
Ye, Y., Shokr, M., Aaboe, S., Aldenhoff, W., Eriksson, L. E. B., Heygster, G., Melsheimer, C., and Girard-Ardhuin, F.: Inter-comparison and evaluation of sea ice type concentration algorithms, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2019-200, 2019. a
Zunz, V., Goosse, H., and Massonnet, F.: How does internal variability
influence the ability of CMIP5 models to reproduce the recent trend in
Southern Ocean sea ice extent?, The Cryosphere, 7, 451–468,
https://doi.org/10.5194/tc-7-451-2013, 2013. a
Short summary
It is necessary to know the type of Antarctic sea ice present – first-year ice (grown in one season) or multiyear ice (survived one summer melt) – to understand and model its evolution, as the ice types behave and react differently. We have adapted and extended an existing method (originally for the Arctic), and now, for the first time, daily maps of Antarctic sea ice types can be derived from microwave satellite data. This will allow a new data set from 2002 well into the future to be built.
It is necessary to know the type of Antarctic sea ice present – first-year ice (grown in one...