Articles | Volume 16, issue 11
https://doi.org/10.5194/tc-16-4745-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4745-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of fast ice on future ice shelf melting in the Totten Glacier area, East Antarctica
Guillian Van Achter
CORRESPONDING AUTHOR
Georges Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Thierry Fichefet
Georges Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Hugues Goosse
Georges Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
Eduardo Moreno-Chamarro
Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
Related authors
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Guillian Van Achter, Leandro Ponsoni, François Massonnet, Thierry Fichefet, and Vincent Legat
The Cryosphere, 14, 3479–3486, https://doi.org/10.5194/tc-14-3479-2020, https://doi.org/10.5194/tc-14-3479-2020, 2020
Short summary
Short summary
We document the spatio-temporal internal variability of Arctic sea ice thickness and its changes under anthropogenic forcing, which is key to understanding, and eventually predicting, the evolution of sea ice in response to climate change.
The patterns of sea ice thickness variability remain more or less stable during pre-industrial, historical and future periods, despite non-stationarity on short timescales. These patterns start to change once Arctic summer ice-free events occur, after 2050.
Annelies Sticker, François Massonnet, Thierry Fichefet, Patricia DeRepentigny, Alexandra Jahn, David Docquier, Christopher Wyburn-Powell, Daphne Quint, Erica Shivers, and Makayla Ortiz
The Cryosphere, 19, 3259–3277, https://doi.org/10.5194/tc-19-3259-2025, https://doi.org/10.5194/tc-19-3259-2025, 2025
Short summary
Short summary
Our study analyzes rapid ice loss events (RILEs) in the Arctic, which are significant reductions in sea ice extent. RILEs are expected throughout the year, varying in frequency and duration with the seasons. Our research gives a year-round analysis of their characteristics in climate models and suggests that summer RILEs could begin before the middle of the century. Understanding these events is crucial as they can have profound impacts on the Arctic environment.
Eneko Martin-Martinez, Amanda Frigola, Eduardo Moreno-Chamarro, Daria Kuznetsova, Saskia Loosveldt-Tomas, Margarida Samsó Cabré, Pierre-Antoine Bretonnière, and Pablo Ortega
Earth Syst. Dynam., 16, 1343–1364, https://doi.org/10.5194/esd-16-1343-2025, https://doi.org/10.5194/esd-16-1343-2025, 2025
Short summary
Short summary
We investigate the impact of model resolution on different processes in the North Atlantic using three different resolutions of the same climate model. The higher resolutions allow for the explicit simulation of smaller-scale processes. We found differences across resolutions in how denser waters are formed and transported southward, impacting the large-scale circulation of the Atlantic Ocean.
Florian Sauerland, Pierre-Vincent Huot, Sylvain Marchi, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, François Klein, François Massonnet, Bianca Mezzina, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Charles Pelletier, Deborah Verfaillie, Lars Zipf, and Nicole van Lipzig
EGUsphere, https://doi.org/10.5194/egusphere-2025-2889, https://doi.org/10.5194/egusphere-2025-2889, 2025
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
We simulated the Antarctic climate from 1985 to 2014. Our model is driven using the ERA-5 reanalysis for one simulation and the EC-Earth global climate model for three others. Most of the simulated trends, such as sea ice extent and precipitation over land, have opposite signs for the two drivers, but agree between the three EC-Earth driven simulations. We conclude that these opposing trends must be due to the different drivers, and that the climate over land is less predictable than over sea.
Hugues Goosse, Stephy Libera, Alberto C. Naveira Garabato, Benjamin Richaud, Alessandro Silvano, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-1837, https://doi.org/10.5194/egusphere-2025-1837, 2025
Short summary
Short summary
The position of the winter sea ice edge in the Southern Ocean is strongly linked to the one of the Antarctic Circumpolar Current and thus to ocean bathymetry. This is due to the influence of the Antarctic Circumpolar Current on the southward heat flux that limits sea ice expansion, directly through oceanic processes and indirectly through its influence on atmospheric heat transport.
Benjamin Richaud, François Massonnet, Thierry Fichefet, Dániel Topál, Antoine Barthélemy, and David Docquier
EGUsphere, https://doi.org/10.5194/egusphere-2025-886, https://doi.org/10.5194/egusphere-2025-886, 2025
Short summary
Short summary
Sea ice covers in the Arctic and Antarctic experienced intense reduction during specific recent years. Using an ocean-sea ice model, we found similarities between hemispheres and years to explain the ice reduction, such as ice melt (or lack of growth) at the ice-ocean interface. Differences between years and regions are also evident, such as increased ice transport or snow precipitation. This highlights the importance of heat stored by the ocean to explain ice melt in a warming climate.
Amanda Frigola, Eneko Martin-Martinez, Eduardo Moreno-Chamarro, Margarida Samsó, Saskia Loosvelt-Tomas, Pierre-Antoine Bretonnière, Daria Kuznetsova, Xia Lin, and Pablo Ortega
EGUsphere, https://doi.org/10.5194/egusphere-2025-547, https://doi.org/10.5194/egusphere-2025-547, 2025
Short summary
Short summary
We examine the performance of coupled climate models at unprecedented resolutions, capable of resolving ocean eddies in extensive areas of the North Atlantic. Eddy-resolving models present more realistic density profiles and stronger deep water convection in the subpolar North Atlantic. The strength and structure of the Gulf Stream, North Atlantic Current, and subpolar gyre are also improved at high resolution, and so is the Atlantic Meridional Overturning Circulation.
Ting-Chen Chen, Hugues Goosse, Matthias Aengenheyster, Kristian Strommen, Christopher Roberts, Malcolm Roberts, Rohit Ghosh, Jin-Song von Storch, and Stephy Libera
EGUsphere, https://doi.org/10.5194/egusphere-2025-666, https://doi.org/10.5194/egusphere-2025-666, 2025
Short summary
Short summary
The Southern Annular Mode (SAM) is a key driver of Southern Hemisphere climate variability, but global models often overestimate its persistence in summer. Using high-resolution models, we show this bias can be reduced, along with some improvements in jet latitude and likely a better-resolved eddy-mean flow feedback. Controlled experiments reveal the potential roles of sea surface temperature biases and ocean mesoscales, underscoring the complex mechanisms shaping SAM persistence.
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Marie Genevieve Paule Cavitte, Hugues Goosse, Quentin Dalaiden, and Nicolas Ghilain
EGUsphere, https://doi.org/10.5194/egusphere-2024-3140, https://doi.org/10.5194/egusphere-2024-3140, 2024
Short summary
Short summary
Ice cores in East Antarctica show contrasting records of past snowfall. We tested if large-scale weather patterns could explain this by combining ice core data with an atmospheric model and radar-derived errors. However, the reconstruction produced unrealistic wind patterns to fit the ice core records. We suggest that uncertainties are not fully captured and that small-scale local wind effects, not represented in the model, could significantly influence snowfall records in the ice cores.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Steve Delhaye, Rym Msadek, Thierry Fichefet, François Massonnet, and Laurent Terray
EGUsphere, https://doi.org/10.5194/egusphere-2023-1748, https://doi.org/10.5194/egusphere-2023-1748, 2023
Preprint archived
Short summary
Short summary
The climate impact of Arctic sea ice loss may depend on the region of sea ice loss and the methodology used to study this impact. This study uses two approaches across seven climate models to investigate the winter atmospheric circulation response to regional sea ice loss. Our findings indicate a consistent atmospheric circulation response to pan-Arctic sea ice loss in most models and across both approaches. In contrast, more uncertainty emerges in the responses linked to regional sea ice loss.
Mukesh Gupta, Leandro Ponsoni, Jean Sterlin, François Massonnet, and Thierry Fichefet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1560, https://doi.org/10.5194/egusphere-2023-1560, 2023
Preprint archived
Short summary
Short summary
We explored the relationship of Arctic September minimum sea ice extent with mid-summer melt pond area fraction, under the present-day climate. We confirm through the advanced numerical modelling, with an explicit melt pond scheme in the global climate model, EC-EARTH3, that melt pond fraction in mid-summer (June–July, not May) shows a strong relationship with the Arctic September sea ice extent. Satellite-based inferences validated our findings of this association.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Koffi Worou, Thierry Fichefet, and Hugues Goosse
Weather Clim. Dynam., 4, 511–530, https://doi.org/10.5194/wcd-4-511-2023, https://doi.org/10.5194/wcd-4-511-2023, 2023
Short summary
Short summary
The Atlantic equatorial mode (AEM) of variability is partly responsible for the year-to-year rainfall variability over the Guinea coast. We used the current climate models to explore the present-day and future links between the AEM and the extreme rainfall indices over the Guinea coast. Under future global warming, the total variability of the extreme rainfall indices increases over the Guinea coast. However, the future impact of the AEM on extreme rainfall events decreases over the region.
Nathaelle Bouttes, Fanny Lhardy, Aurélien Quiquet, Didier Paillard, Hugues Goosse, and Didier M. Roche
Clim. Past, 19, 1027–1042, https://doi.org/10.5194/cp-19-1027-2023, https://doi.org/10.5194/cp-19-1027-2023, 2023
Short summary
Short summary
The last deglaciation is a period of large warming from 21 000 to 9000 years ago, concomitant with ice sheet melting. Here, we evaluate the impact of different ice sheet reconstructions and different processes linked to their changes. Changes in bathymetry and coastlines, although not often accounted for, cannot be neglected. Ice sheet melt results in freshwater into the ocean with large effects on ocean circulation, but the timing cannot explain the observed abrupt climate changes.
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
The Cryosphere, 17, 1935–1965, https://doi.org/10.5194/tc-17-1935-2023, https://doi.org/10.5194/tc-17-1935-2023, 2023
Short summary
Short summary
This study provides clues on how improved atmospheric reanalysis products influence sea ice simulations in ocean–sea ice models. The summer ice concentration simulation in both hemispheres can be improved with changed surface heat fluxes. The winter Antarctic ice concentration and the Arctic drift speed near the ice edge and the ice velocity direction simulations are improved with changed wind stress. The radiation fluxes and winds in atmospheric reanalyses are crucial for sea ice simulations.
Andrew P. Schurer, Gabriele C. Hegerl, Hugues Goosse, Massimo A. Bollasina, Matthew H. England, Michael J. Mineter, Doug M. Smith, and Simon F. B. Tett
Clim. Past, 19, 943–957, https://doi.org/10.5194/cp-19-943-2023, https://doi.org/10.5194/cp-19-943-2023, 2023
Short summary
Short summary
We adopt an existing data assimilation technique to constrain a model simulation to follow three important modes of variability, the North Atlantic Oscillation, El Niño–Southern Oscillation and the Southern Annular Mode. How it compares to the observed climate is evaluated, with improvements over simulations without data assimilation found over many regions, particularly the tropics, the North Atlantic and Europe, and discrepancies with global cooling following volcanic eruptions are reconciled.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Pepijn Bakker, Hugues Goosse, and Didier M. Roche
Clim. Past, 18, 2523–2544, https://doi.org/10.5194/cp-18-2523-2022, https://doi.org/10.5194/cp-18-2523-2022, 2022
Short summary
Short summary
Natural climate variability plays an important role in the discussion of past and future climate change. Here we study centennial temperature variability and the role of large-scale ocean circulation variability using different climate models, geological reconstructions and temperature observations. Unfortunately, uncertainties in models and geological reconstructions are such that more research is needed before we can describe the characteristics of natural centennial temperature variability.
Nidheesh Gangadharan, Hugues Goosse, David Parkes, Heiko Goelzer, Fabien Maussion, and Ben Marzeion
Earth Syst. Dynam., 13, 1417–1435, https://doi.org/10.5194/esd-13-1417-2022, https://doi.org/10.5194/esd-13-1417-2022, 2022
Short summary
Short summary
We describe the contributions of ocean thermal expansion and land-ice melting (ice sheets and glaciers) to global-mean sea-level (GMSL) changes in the Common Era. The mass contributions are the major sources of GMSL changes in the pre-industrial Common Era and glaciers are the largest contributor. The paper also describes the current state of climate modelling, uncertainties and knowledge gaps along with the potential implications of the past variabilities in the contemporary sea-level rise.
Jeanne Rezsöhazy, Quentin Dalaiden, François Klein, Hugues Goosse, and Joël Guiot
Clim. Past, 18, 2093–2115, https://doi.org/10.5194/cp-18-2093-2022, https://doi.org/10.5194/cp-18-2093-2022, 2022
Short summary
Short summary
Using statistical tree-growth proxy system models in the data assimilation framework may have limitations. In this study, we successfully incorporate the process-based dendroclimatic model MAIDEN into a data assimilation procedure to robustly compare the outputs of an Earth system model with tree-ring width observations. Important steps are made to demonstrate that using MAIDEN as a proxy system model is a promising way to improve large-scale climate reconstructions with data assimilation.
Steve Delhaye, Thierry Fichefet, François Massonnet, David Docquier, Rym Msadek, Svenya Chripko, Christopher Roberts, Sarah Keeley, and Retish Senan
Weather Clim. Dynam., 3, 555–573, https://doi.org/10.5194/wcd-3-555-2022, https://doi.org/10.5194/wcd-3-555-2022, 2022
Short summary
Short summary
It is unclear how the atmosphere will respond to a retreat of summer Arctic sea ice. Much attention has been paid so far to weather extremes at mid-latitude and in winter. Here we focus on the changes in extremes in surface air temperature and precipitation over the Arctic regions in summer during and following abrupt sea ice retreats. We find that Arctic sea ice loss clearly shifts the extremes in surface air temperature and precipitation over terrestrial regions surrounding the Arctic Ocean.
Nicolas Ghilain, Stéphane Vannitsem, Quentin Dalaiden, Hugues Goosse, Lesley De Cruz, and Wenguang Wei
Earth Syst. Sci. Data, 14, 1901–1916, https://doi.org/10.5194/essd-14-1901-2022, https://doi.org/10.5194/essd-14-1901-2022, 2022
Short summary
Short summary
Modeling the climate at high resolution is crucial to represent the snowfall accumulation over the complex orography of the Antarctic coast. While ice cores provide a view constrained spatially but over centuries, climate models can give insight into its spatial distribution, either at high resolution over a short period or vice versa. We downscaled snowfall accumulation from climate model historical simulations (1850–present day) over Dronning Maud Land at 5.5 km using a statistical method.
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Koffi Worou, Hugues Goosse, Thierry Fichefet, and Fred Kucharski
Earth Syst. Dynam., 13, 231–249, https://doi.org/10.5194/esd-13-231-2022, https://doi.org/10.5194/esd-13-231-2022, 2022
Short summary
Short summary
Over the Guinea Coast, the increased rainfall associated with warm phases of the Atlantic Niño is reasonably well simulated by 24 climate models out of 31, for the present-day conditions. In a warmer climate, general circulation models project a gradual decrease with time of the rainfall magnitude associated with the Atlantic Niño for the 2015–2039, 2040–2069 and 2070–2099 periods. There is a higher confidence in these changes over the equatorial Atlantic than over the Guinea Coast.
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Short summary
We present PARASO, a circumpolar model for simulating the Antarctic climate. PARASO features five distinct models, each covering different Earth system subcomponents (ice sheet, atmosphere, land, sea ice, ocean). In this technical article, we describe how this tool has been developed, with a focus on the
coupling interfacesrepresenting the feedbacks between the distinct models used for contribution. PARASO is stable and ready to use but is still characterized by significant biases.
Eduardo Moreno-Chamarro, Louis-Philippe Caron, Saskia Loosveldt Tomas, Javier Vegas-Regidor, Oliver Gutjahr, Marie-Pierre Moine, Dian Putrasahan, Christopher D. Roberts, Malcolm J. Roberts, Retish Senan, Laurent Terray, Etienne Tourigny, and Pier Luigi Vidale
Geosci. Model Dev., 15, 269–289, https://doi.org/10.5194/gmd-15-269-2022, https://doi.org/10.5194/gmd-15-269-2022, 2022
Short summary
Short summary
Climate models do not fully reproduce observations: they show differences (biases) in regional temperature, precipitation, or cloud cover. Reducing model biases is important to increase our confidence in their ability to reproduce present and future climate changes. Model realism is set by its resolution: the finer it is, the more physical processes and interactions it can resolve. We here show that increasing resolution of up to ~ 25 km can help reduce model biases but not remove them entirely.
Xia Lin, François Massonnet, Thierry Fichefet, and Martin Vancoppenolle
Geosci. Model Dev., 14, 6331–6354, https://doi.org/10.5194/gmd-14-6331-2021, https://doi.org/10.5194/gmd-14-6331-2021, 2021
Short summary
Short summary
This study introduces a new Sea Ice Evaluation Tool (SITool) to evaluate the model skills on the bipolar sea ice simulations by providing performance metrics and diagnostics. SITool is applied to evaluate the CMIP6 OMIP simulations. By changing the atmospheric forcing from CORE-II to JRA55-do data, many aspects of sea ice simulations are improved. SITool will be useful for helping teams managing various versions of a sea ice model or tracking the time evolution of model performance.
Christoph Kittel, Charles Amory, Cécile Agosta, Nicolas C. Jourdain, Stefan Hofer, Alison Delhasse, Sébastien Doutreloup, Pierre-Vincent Huot, Charlotte Lang, Thierry Fichefet, and Xavier Fettweis
The Cryosphere, 15, 1215–1236, https://doi.org/10.5194/tc-15-1215-2021, https://doi.org/10.5194/tc-15-1215-2021, 2021
Short summary
Short summary
The future surface mass balance (SMB) of the Antarctic ice sheet (AIS) will influence the ice dynamics and the contribution of the ice sheet to the sea level rise. We investigate the AIS sensitivity to different warmings using physical and statistical downscaling of CMIP5 and CMIP6 models. Our results highlight a contrasting effect between the grounded ice sheet (where the SMB is projected to increase) and ice shelves (where the future SMB depends on the emission scenario).
Roberto Bilbao, Simon Wild, Pablo Ortega, Juan Acosta-Navarro, Thomas Arsouze, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Rubén Cruz-García, Ivana Cvijanovic, Francisco Javier Doblas-Reyes, Markus Donat, Emanuel Dutra, Pablo Echevarría, An-Chi Ho, Saskia Loosveldt-Tomas, Eduardo Moreno-Chamarro, Núria Pérez-Zanon, Arthur Ramos, Yohan Ruprich-Robert, Valentina Sicardi, Etienne Tourigny, and Javier Vegas-Regidor
Earth Syst. Dynam., 12, 173–196, https://doi.org/10.5194/esd-12-173-2021, https://doi.org/10.5194/esd-12-173-2021, 2021
Short summary
Short summary
This paper presents and evaluates a set of retrospective decadal predictions with the EC-Earth3 climate model. These experiments successfully predict past changes in surface air temperature but show poor predictive capacity in the subpolar North Atlantic, a well-known source region of decadal climate variability. The poor predictive capacity is linked to an initial shock affecting the Atlantic Ocean circulation, ultimately due to a suboptimal representation of the Labrador Sea density.
Hugues Goosse, Quentin Dalaiden, Marie G. P. Cavitte, and Liping Zhang
Clim. Past, 17, 111–131, https://doi.org/10.5194/cp-17-111-2021, https://doi.org/10.5194/cp-17-111-2021, 2021
Short summary
Short summary
Polynyas are ice-free oceanic areas within the sea ice pack. Small polynyas are regularly observed in the Southern Ocean, but large open-ocean polynyas have been rare over the past decades. Using records from available ice cores in Antarctica, we reconstruct past polynya activity and confirm that those events have also been rare over the past centuries, but the information provided by existing data is not sufficient to precisely characterize the timing of past polynya opening.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Guillian Van Achter, Leandro Ponsoni, François Massonnet, Thierry Fichefet, and Vincent Legat
The Cryosphere, 14, 3479–3486, https://doi.org/10.5194/tc-14-3479-2020, https://doi.org/10.5194/tc-14-3479-2020, 2020
Short summary
Short summary
We document the spatio-temporal internal variability of Arctic sea ice thickness and its changes under anthropogenic forcing, which is key to understanding, and eventually predicting, the evolution of sea ice in response to climate change.
The patterns of sea ice thickness variability remain more or less stable during pre-industrial, historical and future periods, despite non-stationarity on short timescales. These patterns start to change once Arctic summer ice-free events occur, after 2050.
Eduardo Moreno-Chamarro, Pablo Ortega, and François Massonnet
Geosci. Model Dev., 13, 4773–4787, https://doi.org/10.5194/gmd-13-4773-2020, https://doi.org/10.5194/gmd-13-4773-2020, 2020
Short summary
Short summary
Climate models need to capture sea ice complexity to represent it realistically. Here we assess how distributing sea ice in discrete thickness categories impacts how sea ice variability is simulated in the NEMO3.6–LIM3 model. Simulations and satellite observations are compared by using k-means clustering of sea ice concentration in winter and summer between 1979 and 2014 at both poles. Little improvements in the modeled sea ice lead us to recommend using the standard number of five categories.
David Parkes and Hugues Goosse
The Cryosphere, 14, 3135–3153, https://doi.org/10.5194/tc-14-3135-2020, https://doi.org/10.5194/tc-14-3135-2020, 2020
Short summary
Short summary
Direct records of glacier changes rarely go back more than the last 100 years and are few and far between. We used a sophisticated glacier model to simulate glacier length changes over the last 1000 years for those glaciers that we do have long-term records of, to determine whether the model can run in a stable, realistic way over a long timescale, reproducing recent observed trends. We find that post-industrial changes are larger than other changes in this time period driven by recent warming.
Cited articles
Adcroft, A., Hill, C., and Marshall, J.: Representation of Topography by Shaved
Cells in a Height Coordinate Ocean Model, Mon. Weather Rev., 125, 2293–2315, https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2, 1997. a
Aitken, A. R. A., Roberts, J. L., Ommen, T. D. V., Young, D. A., Golledge,
N. R., Greenbaum, J. S., Blankenship, D. D., and Siegert, M. J.: Repeated
large-scale retreat and advance of Totten Glacier indicated by inland bed
erosion, Nature, 533, 385–389, https://doi.org/10.1038/nature17447, 2016. a
Bitz, C. M., Holland, M. M., Weaver, A. J., and Eby, M.: Simulating the
ice-thickness distribution in a coupled climate model, J. Geophys. Res.-Oceans, 106, 2441–2463, https://doi.org/10.1029/1999JC000113, 2001. a
Bougeault, P. and Lacarrere, P.: Parameterization of Orography-Induced
Turbulence in a Mesobeta–Scale Model, Mon. Weather Rev., 117,
1872–1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989. a
Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Roblou, L.: A new global
tidal model taking taking advantage of nearly 20 years of altimetry,
Proceedings of meeting “20 Years of Altimerty”,
https://ui.adsabs.harvard.edu/abs/2013ESASP.710E..13C/abstract (last access: December 2018),
2012. a
Dansereau, V., Heimbach, P., and Losch, M.: Simulation of subice shelf melt
rates in a general circulation model: Velocity-dependent transfer and the
role of friction, J. Geophys. Res.-Oceans, 119, 1765–1790,
https://doi.org/10.1002/2013JC008846, 2014. a
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022. a, b
Engedahl, H.: Use of the flow relaxation scheme in a three-dimensional
baroclinic ocean model with realistic topography, Tellus A, 47, 365–382,
https://doi.org/10.3402/tellusa.v47i3.11523, 1995. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Flather, R. A.: A Storm Surge Prediction Model for the Northern Bay of Bengal
with Application to the Cyclone Disaster in April 1991, J. Phys. Oceanogr.,
24, 172–190, https://doi.org/10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2, 1994. a
Fraser, A. D., Massom, R. A., Michael, K. J., Galton-Fenzi, B. K., and Lieser,
J. L.: East Antarctic Landfast Sea Ice Distribution and Variability,
2000–08, J. Climate, 25, 1137–1156, https://doi.org/10.1175/JCLI-D-10-05032.1, 2012. a, b
Fraser, A. D., Massom, R. A., Ohshima, K. I., Willmes, S., Kappes, P. J., Cartwright, J., and Porter-Smith, R.: High-resolution mapping of circum-Antarctic landfast sea ice distribution, 2000–2018, Earth Syst. Sci. Data, 12, 2987–2999, https://doi.org/10.5194/essd-12-2987-2020, 2020. a, b
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy
model for simulations of the oceanic vertical mixing: Tests at station Papa
and long-term upper ocean study site, J. Geophys. Res.-Oceans, 95,
16179–16193, https://doi.org/10.1029/JC095iC09p16179, 1990. a
Greenbaum, J. S., Blankenship, D. D., Young, D. A., Richter, T. G., Roberts,
J. L., Aitken, A. R. A., Legresy, B., Schroeder, D. M., Warner, R. C., van
Ommen, T. D., and Siegert, M. J.: Ocean access to a cavity beneath Totten
Glacier in East Antarctica, Nat. Geosci., 8, 294–298,
https://doi.org/10.1038/ngeo2388, 2015. a
Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K., and Blankenship, D. D.: Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing, The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, 2018. a
Gurvan, M., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé, C., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Rousset, C., Storkey, D., Vancoppenolle, M., Müeller, S., Nurser, G., Bell, M., and Samson, G.: NEMO ocean engine. In Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL) (v4.0, Number 27), Zenodo [code], https://doi.org/10.5281/zenodo.3878122, 2019. a
Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.:
Twenty-first-century warming of a large Antarctic ice-shelf cavity by a
redirected coastal current, Nature, 485, 225–228, https://doi.org/10.1038/nature11064,
2012. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803,
2020. a
Huot, P.-V., Fichefet, T., Jourdain, N. C., Mathiot, P., Rousset, C., Kittel,
C., and Fettweis, X.: Influence of ocean tides and ice shelves on ocean–ice
interactions and dense shelf water formation in the D’Urville Sea,
Antarctica, Ocean Model., 162, 101794,
https://doi.org/10.1016/j.ocemod.2021.101794, 2021. a
IOC: The International thermodynamic equation of seawater: calculation and
use of thermodynamic properties, Tech. rep., UNESCO,
intergovernmental Oceanographic Commission,
https://unesdoc.unesco.org/ark:/48223/pf0000188170 (last access: October 2018), 2010. a
Jacobs, S. S.: On the nature and significance of the Antarctic Slope Front,
Marine Chem., 35, 9–24,
https://doi.org/10.1016/S0304-4203(09)90005-6, 1991. a, b
Jenkins, A.: A one-dimensional model of ice shelf-ocean interaction, J.
Geophys. Res., 96, 20671–20677, https://doi.org/10.1029/91JC01842, 1991. a
Jezek, K. C., Curlander, J. C., Carsey, F., Wales, C., and Barry, R. G.: RAMP
AMM-1 SAR Image Mosaic of Antarctica, Version 2,
Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed
Active Archive Center, https://doi.org/10.5067/8AF4ZRPULS4H, 2013. a
Jourdain, N. C., Mathiot, P., Merino, N., Durand, G., Le Sommer, J., Spence,
P., Dutrieux, P., and Madec, G.: Ocean circulation and sea-ice thinning
induced by melting ice shelves in the Amundsen Sea, J. Geophys. Res.-Oceans,
122, 2550–2573, https://doi.org/10.1002/2016JC012509, 2017. a
Jourdain, N. C., Molines, J.-M., Le Sommer, J., Mathiot, P., Chanut, J., de
Lavergne, C., and Madec, G.: Simulating or prescribing the influence of
tides on the Amundsen Sea ice shelves, Ocean Model., 133, 44–55,
https://doi.org/10.1016/j.ocemod.2018.11.001, 2019. a
Khazendar, A., Schodlok, M., Fenty, I., Ligtenberg, S., Rignot, E., and van den
Broeke, M.: Observed thinning of Totten Glacier is linked to coastal polynya
variability, Nat. Commun., 4, 2857, https://doi.org/10.1038/ncomms3857, 2013. a
Large, W. and Yeager, S.: Diurnal to decadal global forcing for ocean and
sea-ice models: the data sets and flux climatologie, UCAR,
https://doi.org/10.5065/D6KK98Q6, 2004. a
Lemieux, J.-F., Dupont, F., Blain, P., Roy, F., Smith, G. C., and Flato, G. M.:
Improving the simulation of landfast ice by combining tensile strength and a
parameterization for grounded ridges, J. Geophys. Res.-Oceans, 121,
7354–7368, https://doi.org/10.1002/2016JC012006, 2016. a
Lockwood, J. W., Dufour, C. O., Griffies, S. M., and Winton, M.: On the Role of
the Antarctic Slope Front on the Occurrence of the Weddell Sea Polynya under
Climate Change, J. Climate, 34, 2529–2548,
https://doi.org/10.1175/JCLI-D-20-0069.1, 2021. a, b
Losch, M.: Modeling ice shelf cavities in a z coordinate ocean general
circulation model, J. Geophys. Res.-Oceans, 113, C08043, https://doi.org/10.1029/2007JC004368,
2008. a
Madec, G.: NEMO ocean engine, Note du Pole de modelisation, Institut
Pierre-Simon Laplace (IPSL), France, no. 27, ISSN 1288-1619, 2008. a
Madec, G., Delecluse, P., Imbard, M., and Levy, C.: 1 Ocean General Circulation
Model reference manual, Tech. rep., LODYC/IPSL Note 11, 1998. a
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013. a
Massom, R. A., Hill, K. L., Lytle, V. I., Worby, A. P., Paget, M., and Allison,
I.: Effects of regional fast-ice and iceberg distributions on the behaviour
of the Mertz Glacier polynya, East Antarctica, Ann. Glaciol., 33, 391–398,
https://doi.org/10.3189/172756401781818518, 2001. a
Massonnet, F., Goosse, H., Fichefet, T., and Counillon, F.: Calibration of sea
ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman
filter, J. Geophys. Res.-Oceans, 119, 4168–4184,
https://doi.org/10.1002/2013JC009705, 2014. a
Mathiot, P., Goosse, H., Fichefet, T., Barnier, B., and Gallée, H.: Modelling the seasonal variability of the Antarctic Slope Current, Ocean Sci., 7, 455–470, https://doi.org/10.5194/os-7-455-2011, 2011. a, b
Mathiot, P., Jenkins, A., Harris, C., and Madec, G.: Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6, Geosci. Model Dev., 10, 2849–2874, https://doi.org/10.5194/gmd-10-2849-2017, 2017. a
Moorman, R., Morrison, A. K., and Hogg, A. M.: Thermal Responses to Antarctic
Ice Shelf Melt in an Eddy-Rich Global Ocean–Sea Ice Model, J.
Climate, 33, 6599–6620, https://doi.org/10.1175/JCLI-D-19-0846.1, 2020. a, b
Morlighem, M., Williams, C., Rignot, E., An, L., Arndt, J. E., Bamber, J., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B., O'Cofaigh, C., Palmer, S. J., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K.: BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation, Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954, 2017. a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G.,
Eisen, O., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J., Gudmundsson,
G., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., and
Young, D.: Deep glacial troughs and stabilizing ridges unveiled beneath the
margins of the Antarctic ice sheet, Nat. Geosci., 13, 1–6,
https://doi.org/10.1038/s41561-019-0510-8, 2020. a
Morlighem, M., Williams, C., Rignot, E., An, L., Arndt, J. E., Bamber, J., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B., O'Cofaigh, C., Palmer, S. J., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K.: IceBridge BedMachine Greenland, Version 5, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/GMEVBWFLWA7X, 2022. a
Nakayama, Y., Greene, C. A., Paolo, F. S., Mensah, V., Zhang, H., Kashiwase,
H., Simizu, D., Greenbaum, J. S., Blankenship, D. D., Abe-Ouchi, A., and
Aoki, S.: Antarctic Slope Current Modulates Ocean Heat Intrusions Towards
Totten Glacier, Geophys. Res. Lett., 48, e2021GL094149,
https://doi.org/10.1029/2021GL094149, 2021. a, b, c
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H.,
Timmermann, R., and Hellmer, H. H.: Future Projections of Antarctic Ice Shelf
Melting Based on CMIP5 Scenarios, J. Climate, 31, 5243–5261,
https://doi.org/10.1175/JCLI-D-17-0854.1, 2018. a
Neme, J., England, M. H., and McC. Hogg, A.: Projected Changes of Surface Winds
Over the Antarctic Continental Margin, Geophys. Res. Lett., 49,
e2022GL098820, https://doi.org/10.1029/2022GL098820, 2022. a
Nihashi, S. and Ohshima, K. I.: Circumpolar Mapping of Antarctic Coastal
Polynyas and Landfast Sea Ice: Relationship and Variability, J. Climate, 28,
3650–3670, https://doi.org/10.1175/JCLI-D-14-00369.1, 2015. a
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015. a
Pelle, T., Morlighem, M., Nakayama, Y., and Seroussi, H.: Widespread Grounding
Line Retreat of Totten Glacier, East Antarctica, Over the 21st Century,
Geophys. Res. Lett., 48, e2021GL093213, https://doi.org/10.1029/2021GL093213, 2021. a, b
Pelletier, C., Fichefet, T., Goosse, H., Haubner, K., Helsen, S., Huot, P.-V., Kittel, C., Klein, F., Le clec'h, S., van Lipzig, N. P. M., Marchi, S., Massonnet, F., Mathiot, P., Moravveji, E., Moreno-Chamarro, E., Ortega, P., Pattyn, F., Souverijns, N., Van Achter, G., Vanden Broucke, S., Vanhulle, A., Verfaillie, D., and Zipf, L.: PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5, Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022, 2022. a
Pellichero, V., Sallée, J.-B., Chapman, C. C., and Downes, S. M.: The southern
ocean meridional overturning in the sea-ice sector is driven by freshwater
fluxes, Nat. Commun., 9, 1789, https://doi.org/10.1038/s41467-018-04101-2, 2018. a
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.: Ice-Shelf Melting
Around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798,
2013. a, b
Rintoul, S. R., Silvano, A., Pena-Molino, B., van Wijk, E., Rosenberg, M.,
Greenbaum, J. S., and Blankenship, D. D.: Ocean heat drives rapid basal melt
of the Totten Ice Shelf, Sci. Adv., 2, 12, https://doi.org/10.1126/sciadv.1601610, 2016. a
Roberts, J. L., Warner, R. C., Young, D., Wright, A., van Ommen, T. D., Blankenship, D. D., Siegert, M., Young, N. W., Tabacco, I. E., Forieri, A., Passerini, A., Zirizzotti, A., and Frezzotti, M.: Refined broad-scale sub-glacial morphology of Aurora Subglacial Basin, East Antarctica derived by an ice-dynamics-based interpolation scheme, The Cryosphere, 5, 551–560, https://doi.org/10.5194/tc-5-551-2011, 2011.
a
Roquet, F., Williams, G., Hindell, M. A., Harcourt, R., McMahon, C., Guinet,
C., Charrassin, J.-B., Reverdin, G., Boehme, L., Lovell, P., and Fedak, M.: A
Southern Indian Ocean database of hydrographic profiles obtained with
instrumented elephant seals, Sci. Data, 1, 1, https://doi.org/10.1038/sdata.2014.28,
2014. a
Rousset, C., Vancoppenolle, M., Madec, G., Fichefet, T., Flavoni, S., Barthélemy, A., Benshila, R., Chanut, J., Levy, C., Masson, S., and Vivier, F.: The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities, Geosci. Model Dev., 8, 2991–3005, https://doi.org/10.5194/gmd-8-2991-2015, 2015. a
Smith, R. P.: Iceberg Distribution around the Antarctic continent – derived from 1997 satellite imagery, Australian Antarctic Data Centre [data set],
https://doi.org/10.4225/15/574BD37A1C6B4, 2020. a
Stewart, A. L., Klocker, A., and Menemenlis, D.: Circum-Antarctic Shoreward
Heat Transport Derived From an Eddy- and Tide-Resolving Simulation,
Geophys. Res. Lett., 45, 834–845, https://doi.org/10.1002/2017GL075677, 2018. a
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The Antarctic
Slope Current in a Changing Climate, Rev. Geophys., 56, 741–770,
https://doi.org/10.1029/2018RG000624, 2018. a, b, c
Timmermann, R. and Goeller, S.: Response to Filchner–Ronne Ice Shelf cavity warming in a coupled ocean–ice sheet model – Part 1: The ocean perspective, Ocean Sci., 13, 765–776, https://doi.org/10.5194/os-13-765-2017, 2017. a
Van Achter, G., Fichefet, T., Goosse, H., Pelletier, C., Sterlin, J., Huot,
P.-V., Lemieux, J.-F., Fraser, A. D., Haubner, K., and Porter-Smith, R.:
Modelling landfast sea ice and its influence on ocean–ice interactions in
the area of the Totten Glacier, East Antarctica, Ocean Model., 169, 101920,
https://doi.org/10.1016/j.ocemod.2021.101920, 2022. a, b, c, d, e, f, g, h, i, j, k, l
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., and
Maqueda, M.: Simulating the mass balance and salinity of Arctic and Antarctic
sea ice. 1. Model description and validation, Ocean Model., 27, 33–53,
https://doi.org/10.1016/j.ocemod.2008.10.005, 2009. a
Whitworth, T., Orsi, A. H., Kim, S.-J., Nowlin Jr., W. D., and Locarnini,
R. A.: Water Masses and Mixing Near the Antarctic Slope Front,
American Geophysical Union (AGU), 1–27, https://doi.org/10.1029/AR075p0001, 1985. a
WMO: WMO sea-ice nomenclature. Terminology, codes and illustrated glossary,
Tech. Rep., WMO, 259, 1970. a
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last...