Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4513-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4513-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal regime of the Grigoriev ice cap and the Sary-Tor glacier in the inner Tien Shan, Kyrgyzstan
Lander Van Tricht
CORRESPONDING AUTHOR
Earth System Science, Departement Geografie, Vrije Universiteit
Brussel, Brussels, Belgium
Philippe Huybrechts
Earth System Science, Departement Geografie, Vrije Universiteit
Brussel, Brussels, Belgium
Related authors
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Lander Van Tricht, Chloë Marie Paice, Oleg Rybak, and Philippe Huybrechts
The Cryosphere, 17, 4315–4323, https://doi.org/10.5194/tc-17-4315-2023, https://doi.org/10.5194/tc-17-4315-2023, 2023
Short summary
Short summary
We performed a field campaign to measure the ice thickness of the Grigoriev ice cap (Central Asia). We interpolated the ice thickness data to obtain an ice thickness distribution representing the state of the ice cap in 2021, with a total volume of ca. 0.4 km3. We then compared our results with global ice thickness datasets composed without our local measurements. The main takeaway is that these datasets do not perform well enough yet for ice caps such as the Grigoriev ice cap.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098, https://doi.org/10.5194/egusphere-2025-3098, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present an ensemble of ice sheet model projections for the Greenland ice sheet. The focus is on providing projections that improve our understanding of the range future sea-level rise and the inherent uncertainties over the next 100 to 300 years. Compared to earlier work we more fully account for some of the uncertainties in sea-level projections. We include a wider range of climate model output, more climate change scenarios and we extend projections schematically up to year 2300.
Chloë Marie Paice, Xavier Fettweis, and Philippe Huybrechts
EGUsphere, https://doi.org/10.5194/egusphere-2025-2465, https://doi.org/10.5194/egusphere-2025-2465, 2025
Short summary
Short summary
To study the interactions between the Greenland ice sheet and the atmosphere, we coupled an ice sheet model to a regional climate model and performed simulations of differing coupling complexity over 1000 years. They reveal that at first melt at the ice sheet margin is reduced by changing wind patterns. But over time, as the ice sheet surface lowers, precipitation patterns and cloudiness also change and amplify ice mass loss over the entire ice sheet.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023, https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
Short summary
We investigated the different boundary conditions to allow ice sheet growth and ice sheet decline of the Antarctic ice sheet when it appeared ∼38–34 Myr ago. The thresholds for ice sheet growth and decline differ because of the different climatological conditions above an ice sheet (higher elevation and higher albedo) compared to a bare topography. We found that the ice–albedo feedback and the isostasy feedback respectively ease and delay the transition from a deglacial to glacial state.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Lander Van Tricht, Chloë Marie Paice, Oleg Rybak, and Philippe Huybrechts
The Cryosphere, 17, 4315–4323, https://doi.org/10.5194/tc-17-4315-2023, https://doi.org/10.5194/tc-17-4315-2023, 2023
Short summary
Short summary
We performed a field campaign to measure the ice thickness of the Grigoriev ice cap (Central Asia). We interpolated the ice thickness data to obtain an ice thickness distribution representing the state of the ice cap in 2021, with a total volume of ca. 0.4 km3. We then compared our results with global ice thickness datasets composed without our local measurements. The main takeaway is that these datasets do not perform well enough yet for ice caps such as the Grigoriev ice cap.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021, https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
Short summary
Ice sheets are an important component of the climate system and interact with the atmosphere through albedo variations and changes in the surface height. On very long timescales, it is impossible to directly couple ice sheet models with climate models and other techniques have to be used. Here we present a novel coupling method between ice sheets and the atmosphere by making use of an emulator to simulate ice sheet–climate interactions for several million years.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Yoni Verhaegen, Philippe Huybrechts, Oleg Rybak, and Victor V. Popovnin
The Cryosphere, 14, 4039–4061, https://doi.org/10.5194/tc-14-4039-2020, https://doi.org/10.5194/tc-14-4039-2020, 2020
Short summary
Short summary
We use a numerical flow model to simulate the behaviour of the Djankuat Glacier, a WGMS reference glacier situated in the North Caucasus (Republic of Kabardino-Balkaria, Russian Federation), in response to past, present and future climate conditions (1752–2100 CE). In particular, we adapt a more sophisticated and physically based debris model, which has not been previously applied in time-dependent numerical flow line models, to look at the impact of a debris cover on the glacier’s evolution.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Jonas Van Breedam, Heiko Goelzer, and Philippe Huybrechts
Earth Syst. Dynam., 11, 953–976, https://doi.org/10.5194/esd-11-953-2020, https://doi.org/10.5194/esd-11-953-2020, 2020
Short summary
Short summary
We made projections of global mean sea-level change during the next 10 000 years for a range in climate forcing scenarios ranging from a peak in carbon dioxide concentrations in the next decades to burning most of the available carbon reserves over the next 2 centuries. We find that global mean sea level will rise between 9 and 37 m, depending on the emission of greenhouse gases. In this study, we investigated the long-term consequence of climate change for sea-level rise.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Cited articles
Aizen, V. B., Aizen, E. M., and Melack, J. M.: Climate, Snow Cover, Glaciers,
and Runoff in the Tien Shan, Central Asia, J. Am. Water
Resour. As., 31, 1113–1129, https://doi.org/10.1111/j.1752-1688.1995.tb03426.x, 1995.
Aizen, V. B., Kuzmichenok, V., Surazakov, A., and Aizen, E. M.: Glacier changes
in the central and northern Tien Shan during the last 140 years based on
surface and remote-sensing data, Ann. Glaciol., 43, 202–213,
https://doi.org/10.3189/172756406781812465, 2006.
Arkhipov, S. M., Mikhalenko, V. N., Kunakhovich, M. G., Dikikh, A. N., and Nagornov, O. V.: Termich eskii rezhim, usloviia l'doobrazovaniia i akkumulyatsiia na ladnike
Grigor'eva (Tyan'-Shan') v 1962–2001 gg. [Thermal regime, ice types and
accumulation in Grigoriev Glacier, Tien Shan, 1962–2001], Mater. Glyatsiol.
Issled., 96, 77–83, 2004 (in Russian with English summary).
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy
formulation for glaciers and ice sheets, J. Glaciol., 58,
441–457, https://doi.org/10.3189/2012JoG11J088, 2012.
Bagdassarov, N., Batalev, V., and Egorova, V.: State of lithosphere beneath
Tien Shan from petrology and electrical conductivity of xenoliths, J. Geophys. Res.-Sol.
Ea., 116, B01202, https://doi.org/10.1029/2009JB007125, 2011.
Barandun, M., Huss, M., Sold, L., Farinotti, D., Azisov, E., Salzmann, N.,
Usubaliev, R., Merkushkin, A., and Hoelzle, M.: Re-analysis of seasonal mass balance at Abramov glacier
1968–2014, J. Glaciol., 61, 1103–1117, https://doi.org/10.3189/2015JoG14J239,
2015.
Bhattacharya, A., Bolch, T., Mukherjee, K., King O., Menounos B., Kapitsa
V., Neckel, N., Yang W., and Yao T.: High Mountain Asian glacier response to
climate revealed by multi-temporal satellite observations since the
1960s, Nat. Commun., 12, 4133, https://doi.org/10.1038/s41467-021-24180-y, 2021.
Blatter, H.: On the Thermal Regime of an Arctic Valley Glacier: A Study of
White Glacier, Axel Heiberg Island, N.W.T., Canada, J.
Glaciol., 33, 200–211, https://doi.org/10.3189/S0022143000008704, 1987.
Blatter, H. and Hutter K.: Polythermal conditions in Arctic glaciers,
J. Glaciol., 37, 261–269, https://doi.org/10.3189/S0022143000007279, 1991.
Bondarev, L. G.: Evolution of some Tien Shan glaciers during the last quarter
of the century, IAHS Publication, 54, 412–419, 1961.
Boon, S. and Sharp, M.: The role of hydrologically-driven ice fracture in
drainage system evolution on an arctic glacier, Geophys. Res.
Lett., 30, 1916, https://doi.org/10.1029/2003GL018034, 2003.
Cai, B., Huang, M., and Zichu, X.: A preliminary research on the temperature in
deep boreholes of Glacier No. 1, Ürümqi headwaters, Kexue Tongbao, Sci. Bull., 33, 2054–2056, 1988 (in Chinese).
Colgan, W., Sommers, A., Rajaram, H., Abdalati, W., and Frahm, J.:
Considering thermal-viscous collapse of the Greenland ice sheet, Earth's
Future, 3, 252–267, https://doi.org/10.1002/2015EF000301, 2015.
Colgan, W., MacGregor, J. A., Mankoff, K. D., Haagenson, R., Rajaram, H., Martos, Y. M., Morlighem, M., Fahnestock, M. A., and Kjeldsen K. K.:
Topographic correction of geothermal heat flux in Greenland and Antarctica,
J. Geophys. Res.-Earth, 126, e2020JF005598,
https://doi.org/10.1029/2020JF005598, 2021.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, 4th edn., Butterworth-Heinemann, Oxford, ISBN 978-0-12-369461-4, 2010.
Delvaux, D., Cloetingh, S., Beekman, F., Sokoutis, D., Burov, E., Buslov,
M. M., and Abdrakhmatov, K. E.: Basin evolution in a folding lithosphere: Altai-Sayan and Tien Shan belts in
Central Asia, Tectonophysics, 602, 194–222, https://doi.org/10.1016/j.tecto.2013.01.010, 2013.
Dikikh, A. N.: Temperature regime of flat-top glaciers (using Grigoriev as an
Example) – Glyatsiol. Issledovaniya na Tyan-Shane, Frunze, N. 11, 32–35,
1965 (in Russian).
Duchkov, A. D., Shvartsman, Y. G., and Sokolova, L. S.: Deep heat flow in the Tien Shan: advances and drawbacks, Geologiya i Geofizika (Russian Geology and Geophysics), 42, 1516–1532 (1436–1452), 2001 (in Russian).
Dyurgerov, M. B.: Glacier mass balance and regime: data of measurements and analysis, University of Colorado Institute of Arctic and Alpine Research Occasional Paper 55, Boulder, http://instaar.colorado.edu/other/occ_papers.html (last access: 17 October 2022), 2002
Dyurgerov M. B. and Mikhalenko V. N.: Oledeneniye Tien Shanya [Glaciation of Tien Shan], Vsesoyuznyy Institut Nauchnoy iTekhnicheskoy Informatsii (VINITI), Moscow, 1995 (in Russian).
Echelmeyer, K. and Zhongxiang, W.: Direct Observation of Basal Sliding and
Deformation of Basal Drift at Sub-Freezing Temperatures, J. Glaciol., 33, 83–98, https://doi.org/10.3189/S0022143000005396, 1987.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
Flowers, G. E., Björnsson, H., Geirsdóttir, Á., Miller, G. H., and
Clarke, G. K. C.: Glacier fluctuation and inferred climatology of
Langjökull ice cap through the Little Ice Age, Quaternary Sci.
Rev., 26, 2337–2353,
https://doi.org/10.1016/j.quascirev.2007.07.016, 2007.
Fujita, K., Takeuchi, N., Nikitin, S. A., Surazakov, A. B., Okamoto, S., Aizen, V. B., and Kubota, J.: Favorable climatic regime for maintaining the present-day geometry of the Gregoriev Glacier, Inner Tien Shan, The Cryosphere, 5, 539–549, https://doi.org/10.5194/tc-5-539-2011, 2011.
Fürst, J. J., Rybak, O., Goelzer, H., De Smedt, B., de Groen, P., and Huybrechts, P.: Improved convergence and stability properties in a three-dimensional higher-order ice sheet model, Geosci. Model Dev., 4, 1133–1149, https://doi.org/10.5194/gmd-4-1133-2011, 2011.
Fürst, J. J., Goelzer, H., and Huybrechts, P.: Effect of higher-order stress gradients on the centennial mass evolution of the Greenland ice sheet, The Cryosphere, 7, 183–199, https://doi.org/10.5194/tc-7-183-2013, 2013.
Fürst, J. J., Goelzer, H., and Huybrechts, P.: Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming, The Cryosphere, 9, 1039–1062, https://doi.org/10.5194/tc-9-1039-2015, 2015.
Gilbert, A., Flowers, G. E., Miller, G. H., Refsnider, K., Young, N. E., and
Radic, V.: The projected demise of Barnes Ice Cap: Evidence of an unusually
warm 21st century Arctic, Geophys. Res. Lett., 44, 2810–2816,
https://doi.org/10.1002/2016GL072394, 2017.
Gilbert, A., Sinisalo, A., Gurung, T. R., Fujita, K., Maharjan, S. B., Sherpa, T. C., and Fukuda, T.: The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier, The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, 2020.
Gusmeroli, A., Jansson P., Pettersson R., and Murray T.: Twenty years of cold
surface layer thinning at Storglaciaren, sub-Arctic Sweden,
1989–2009, J. Glaciol., 58, 3–10, https://doi.org/10.3189/2012JoG11J018, 2012.
Hambrey, M. J. and Glasser, N. F.: Discriminating glacier thermal and dynamic
regimes in the sedimentary record, Sediment. Geol., 251–252, 1–33, https://doi.org/10.1016/j.sedgeo.2012.01.008,
2012.
Hoelzle, M., Darms, G., Lüthi, M. P., and Suter, S.: Evidence of accelerated englacial warming in the Monte Rosa area, Switzerland/Italy, The Cryosphere, 5, 231–243, https://doi.org/10.5194/tc-5-231-2011, 2011.
Hooke, R. L.: Pleistocene ice at the base of the Barnes Ice Cap, Baffin
Island, N.W.T., Canada, J. Glaciol., 17, 49–59,
https://doi.org/10.3189/S0022143000030719, 1976.
Hooke, R. L., Gould, J. E., and Brzozowski, J.: Near-surface temperatures
near and below the equilibrium line on polar and subpolar
glaciers, Zeitschrift für Gletscherkunde und
Glazialgeologie, 19, 1–25, 1983.
Huybrechts, P. and Oerlemans, J.: Evolution of the East Antarctic Ice Sheet:
A Numerical Study of Thermo-Mechanical Response Patterns With Changing
Climate, Ann. Glaciol., 11, 52–59, https://doi.org/10.3189/S0260305500006327, 1988.
Huybrechts, P., Letreguilly, A., and Reeh, N.: The Greenland ice sheet and
greenhouse warming, Global Planet. Change, 3, 399–412, https://doi.org/10.1016/0921-8181(91)90119-H, 1991.
Huybrechts, P.: Basal temperature conditions of the Greenland ice sheet
during the glacial cycles, Ann. Glaciol., 23, 226–236, https://doi.org/10.3189/S0260305500013483, 1996.
Jouvet, G., Huss, M., Funk, M., and Blatter, H.: Modelling the retreat of
Grosser Aletschgletscher, Switzerland, in a changing climate, J. Glaciol., 57,
1033–1045, https://doi.org/10.3189/002214311798843359, 2011.
Kislov, B. V., Nozdrukhin, V. K., and Pertziger, F. I.: Temperature regime of the
active layer of Abramov Glacier, Materialy Glatsiologicheskih Issledovanii
(Data of Glaciological Studies), 30, 199–204, 1977 (in Russian).
Kronenberg, M., Barandun, M., Hoelzle, M., Huss, M., Farinotti, D., Azisov,
E., Usubaliev, R., Gafurov, A., Petrakov, D., and Kääb, A.:
Mass-balance reconstruction for Glacier No. 354, Tien Shan, from 2003 to
2014, Ann. Glaciol., 57, 92–102, https://doi.org/10.3189/2016AoG71A032, 2016.
Kronenberg, M., Machguth, H., Eichler, A., Schwikowski, M., and Hoelzle, M.:
Comparison of historical and recent accumulation rates on Abramov Glacier, Pamir Alay, J.
Glaciol., 67, 253–268, https://doi.org/10.1017/jog.2020.103, 2021.
Kutuzov, S. and Shahgedanova, M.: Glacier retreat and climatic variability
in the eastern Terskey–Alatoo, inner Tien Shan between the middle of the
19th century and beginning of the 21st century, Global Planet. Change,
69, 59–70, https://doi.org/10.1016/j.gloplacha.2009.07.001,
2009.
Li, Y., Tian, L., Yi, Y., Moore, J. C., Sun, S., and Zhao, L.: Simulating the
evolution of Qiangtang No. 1 glacier in the central Tibetan Plateau to 2050,
Arct. Antarct. Alp. Res., 49, 1–12, https://doi.org/10.1657/aaar0016-008, 2017.
Lliboutry, L.: Temperate ice permeability, stability of water veins and
percolation of internal meltwater, J. Glaciol., 42, 201–211,
https://doi.org/10.3189/S0022143000004068, 1996.
Loewe, F.: Screen Temperatures and 10 m Temperatures, J.
Glaciol., 9, 263–268, https://doi.org/10.3189/S0022143000023571, 1970.
Lüthi, M. P., Ryser, C., Andrews, L. C., Catania, G. A., Funk, M., Hawley, R. L., Hoffman, M. J., and Neumann, T. A.: Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming, The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015, 2015.
Maohuan, H.: On the Temperature Distribution of Glaciers in China, J. Glaciol., 36, 210–216, https://doi.org/10.3189/S002214300000945X, 1990.
Maohuan, H.: The movement mechanisms of Ürümqi Glacier No. 1, Tien
Shan mountains, China, Ann. Glaciol., 16, 39–44, https://doi.org/10.3189/1992AoG16-1-39-44, 1992.
Maohuan, H., Zhongxiang, W., and Jiawen, R.: On the Temperature Regime of
Continental-Type Glaciers in China, J. Glaciol., 28, 117–128, https://doi.org/10.3189/S0022143000011837, 1982.
Maohuan, H., Zhongxiang, W., Baolin, C., and Jiankang, H.: Some Dynamics
Studies on Urumqi Glacier No. 1, Tianshan Glaciological Station, China,
Ann. Glaciol., 12, 70–73, https://doi.org/10.3189/S0260305500006972, 1989.
Marshall, S. J.: Regime Shifts in Glacier and Ice Sheet Response to Climate
Change: Examples From the Northern Hemisphere, Frontiers in Climate, 3,
https://doi.org/10.3389/fclim.2021.702585, 2021.
Mattea, E., Machguth, H., Kronenberg, M., van Pelt, W., Bassi, M., and Hoelzle, M.: Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach, The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, 2021.
Meierbachtol, T. W., Harper J. T., Johnson J. V., Humphrey N. F., and
Brinkerhoff D. J.: Thermal boundary conditions on western Greenland: Observational constraints and impacts on
the modeled thermomechanical state, J. Geophys. Res.-Earth, 120, 623–636, https://doi.org/10.1002/2014JF003375, 2015.
Mikhalenko, V. N.: Osobennosti massoobmena lednikov ploskikh vershin
vnutrennego Tyan'-Shanya [Peculiarities of the mass exchange of flat summit glaciers of
interior Tyan'-Shan'], Materialy Glyatsiologicheskikh
Issledovaniy, 65, 86–92, 1989 (in Russian).
Mikhalenko, V. N.: Calculation and modeling of the mass balance of the
Aj-Shyirak massif changes in the Tien Shan, Materialy Glyatsiologicheskikh
Issledovaniy, 76, 102–107, 1993 (in Russian).
Mukherjee, K., Bolch, T., Goerlich, G., Kutuzov, S., Osmonov, A., Pieczonka, T.,
and Shesterova, I.: Surge-Type Glaciers in the Tien Shan (Central
Asia), Arct. Antarct. Alp. Res., 49, 147–171, https://doi.org/10.1657/AAAR0016-021, 2017.
Nagornov, O., Konovalov, Y., and Mikhalenko, V.: Prediction of thermodynamic
state of the Grigoriev ice cap, Tien Shan, central Asia, in the future, Ann.
Glaciol., 43, 307–312, https://doi.org/10.3189/172756406781812221, 2006.
Nosenko, G. A., Lavrentiev, I. I., Glazovskii, A. F., Kazatkin, N. E., and
Kokarev, A. L.: The polythermal structure of Central Tuyuksu glacier, Kriosf. Zemli (Earth's Cryosphere),
20, 105–115, 2016.
Nye, J. F. and Frank, F. C.: Hydrology of the intergranular veins in a
temperate glacier, in Symposium on the Hydrology of Glaciers, IAHS Publ.
95, 157–161, 1973.
Osmonov, A., Bolch, T., Xi, C., Kurban, A., and Guo, W.: Glacier
characteristics and changes in 610 the Sary-Jaz River Basin (Central Tien
Shan, Kyrgyzstan) – 1990–2010, Remote Sens. Lett., 4, 725–734,
https://doi.org/10.1080/2150704X.2013.789146, 2013.
Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet
model: Basic sensitivity, ice stream development, and iceflow across
subglacial lakes, J. Geophys. Res., 108, B82382,
https://doi.org/10.1029/2002JB002329, 2003.
Petrakov, D. A., Lavrientiev, I. I., Kovalenko, N. V., and Usubaliev, R. A.: Ice
thickness, volume and modern change of the Sary-Tor Glacier area (Ak-Shyirak
Massif, Inner Tian Shan), Earth's Cryosphere, 18, 91–100, 2014.
Phillips, T., Rajaram, H., and Steffen, K.: Cryo-hydrologic warming: A
potential mechanism for rapid thermal response of ice sheets, Geophys.
Res. Lett., 37, L20503, https://doi.org/10.1029/2010GL044397, 2010.
Reeh, N.: Parameterization of Melt Rate and Surface Temperature in the
Greenland Ice Sheet, Polarforschung, Bremerhaven, Alfred Wegener Institute
for Polar and Marine Research & German Society of Polar Research, 59,
113–128, 1991.
Reijmer, C. H., van den Broeke, M. R., Fettweis, X., Ettema, J., and Stap, L. B.: Refreezing on the Greenland ice sheet: a comparison of parameterizations, The Cryosphere, 6, 743–762, https://doi.org/10.5194/tc-6-743-2012, 2012.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Digital Media, Colorado, USA [data set],
https://doi.org/10.7265/N5-RGI-60, 2017.
Riesen, P., Sugiyama, S., and Funk, M.: The influence of the presence and
drainage of an ice-marginal lake on the ice flow of Gornergletscher,
Switzerland, J. Glaciol., 56, 278–286, https://doi.org/10.3189/002214310791968575, 2010.
Rowan, A. V., Egholm, D. L., Quincey, D. J., and Glasser, N. F.: Modelling the
feedbacks between mass balance, ice flow and debris transport to predict the
response to climate change of debris-covered glaciers in the Himalaya, Earth
Planet. Sc. Lett., 430, 427–438,
https://doi.org/10.1016/j.epsl.2015.09.004, 2015.
Ryser, C., Lüthi, M., Blindow, N., Suckro, S., Funk, M., and Bauder, A.:
Cold ice in the ablation zone: its relation to glacier hydrology and ice
water content, J. Geophys. Res., 118, 693–705, https://doi.org/10.1029/2012JF002526, 2013.
Schäfer, M., Möller, M., Zwinger, T., and Moore, J. C.: Dynamic
modelling of future glacier changes: Mass-balance/elevation feedback in
projections for the Vestfonna ice cap, Nordaustlandet, Svalbard, J.
Glaciol., 61, 1121–1136, https://doi.org/10.3189/2015JoG14J184,
2015.
Shahgedanova, M., Afzal, M., Hagg, W., Kapitsa, V., Kasatkin, N., Mayr, E.,
Rybak, O., Saidaliyeva, Z., Severskiy, I., Usmanova, Z., Wade, A.,
Yaitskaya, N., and Zhumabayev, D.: Emptying Water Towers? Impacts of Future
Climate and Glacier Change on River Discharge in the Northern Tien Shan,
Central Asia, Water, 12, 627, https://doi.org/10.3390/w12030627, 2020.
Shumskiy, P. A.: Osnovy stukturnogo ledvedeniya: petrografiya presnogo l'da kak metod glyatsiologisheskogo issledovaniya [Principles of structural studies of ice: petrography of fresh water ice as a method of glaciological investigation], Moscow, Izdatel'stvo Akademii Nauk SSSR [Publishing House of the Academy of Sciences of the U.S.S.R.], 492 pp., 1955.
Sorg, A., Bolch, T., Stoffel, M., Solomina, O., and Beniston, M.: Climate
change impacts on glaciers and runoff in Tien Shan (Central Asia), Nat.
Clim. Change, 2, 725–731, https://doi.org/10.1038/nclimate1592, 2012.
Takeuchi, N., Fujita, K., Aizen, V. B., Narama, C., Yokoyama, Y., Okamoto,
S., Naoki, K., and Kubota, J.: The disappearance of glaciers in the Tien Shan Mountains in Central Asia at
the end of Pleistocene, Quaternary Science Revision, 103, 26–33, https://doi.org/10.1016/j.quascirev.2014.09.006, 2014.
Takeuchi, N., Sera, S., Fujita, K., Aizen, V. B., and Kubota, J.: Annual
layer counting using pollen grains of the Grigoriev ice core from the Tien
Shan Mountains, central Asia, Arct. Antarct. Alp. Res., 51,
299–312, https://doi.org/10.1080/15230430.2019.1638202,
2019.
Thompson, L. G., Mosley-Thompson, E., Davis, M., Lin, P. N., Yao, T.,
Dyurgerov, M., and Dai, J.: Recent warming: ice core evidence from tropical ice cores with emphasis on Central
Asia, Global Planet. Change, 7, 145–156, https://doi.org/10.1016/0921-8181(93)90046-Q, 1993.
Thompson, L. G., Mikhalenko, V., Mosley-Thompson, E., Dyurgerov, M., Lin, P. N., Moskalevsky, M., Davis, M. E., Arkhipov, S., and Dai, J.: Ice core records of recent climatic variability: Grigoriev and It-Tish Ice Caps in Central Tien Shan, Central Asia, Mater. Glyatsiol. Issled. (Data of Glaciological Studies), 81, 100–109, 1997.
van Pelt, W. J., Pohjola, V. A., and Reijmer, C. H.: The changing impact of
snow conditions and refreezing on the mass balance of an idealized Svalbard
glacier, Front. Earth Sci., 4, https://doi.org/10.3389/feart.2016.00102, 2016.
Van Tricht, L.: LanderVT/Thermal_regime: v1.0.0-thermalregime (v1.0.0.thermalregime), Zenodo [data set], https://doi.org/10.5281/zenodo.6556313, 2022.
Van Tricht, L., Huybrechts, P., Van Breedam, J., Fürst, J., Rybak, O.,
Satylkanov, R., Ermenbaiev B., Popovnin V., Neyns, R., Paice C. M., and Malz,
P.: Measuring and inferring the ice thickness distribution of four glaciers
in the Tien Shan, Kyrgyzstan, J. Glaciol., 67, 269–286,
https://doi.org/10.1017/jog.2020.104, 2021a.
Van Tricht, L., Paice, C. M., Rybak, O., Satylkanov, R., Popovnin, V., Solomina, O.,
and Huybrechts, P.: Reconstruction of the Historical (1750–2020) Mass
Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan,
Kyrgyzstan, Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.734802, 2021b.
Van Tricht, L., Huybrechts, P., Van Breedam, J., Vanhulle, A., Van Oost, K., and Zekollari, H.: Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland), The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, 2021c.
Vasilenko, E. V., Gromyko, A. N., Dmitriev, D. N., and Macheret, Y. Y.:
Stroenie lednika Davydova po dannym radiozondirovaniya i termobureniya
[Structure of the Davydov Glacier according with radio sounding and thermal
drilling data], Akademiya nauk SSSR, Institut geografii, Materialy
gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR,
Institute of Geography, Data of Glaciological Studies], Vol. 62,
208–215, 1988 (in Russian with English summary).
Vermeesch, P., Poort, J., Duchkov, A., Klerkx, J., and De Batist, M.: Lake
Issyk-Kul (Tien Shan): Unusually low heat flow in an active intermontane
basin, Geol. Geofiz., 45, 616–625, 2004.
Vilesov, E.: Temperature of ice in the lower parts of the Tuyuksu
glaciers, Union Géodésique et Géophysique Internationale,
Association Internationale d'Hydrologie Scientifique, Assemblée
générale de Helsinki, 25-7-6-8 1960, Commission des Neiges et
Glaces, Publication No. 54 de l'Association
Internationaled'Hydrologie Scientifique, 313–24, 1961.
Vincent, C., Le Meur, E., Six, D., Possenti, P., Lefebvre, E., and Funk, M.:
Climate warming revealed by englacial temperatures at Col du Dôme (4250 m, Mont-Blanc area), Geophys. Res. Lett., 34, L16502,
https://doi.org/10.1029/2007GL029933, 2007.
Vincent, C., Gilbert, A., Jourdain, B., Piard, L., Ginot, P., Mikhalenko, V., Possenti, P., Le Meur, E., Laarman, O., and Six, D.: Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area), The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, 2020.
Wohlleben, T., Sharp, M., and Bush, A.: Factors influencing the basal
temperatures of a High Arctic polythermal glacier, Ann. Glaciol.,
50, 9–16, https://doi.org/10.3189/172756409789624210,
2009.
Wright, A. P., Wadham, J. L., Siegert, M. J., Luckman, A., Kohler, J., and
Nuttall, A. M.: Modeling the refreezing of meltwater as superimposed ice on a
high Arctic glacier: A comparison of approaches, J. Geophys.
Res., 112, F04016, https://doi.org/10.1029/2007JF000818, 2007.
Wu, Z., Zhang, H., Liu, S., Ren, D., Bai, X., Xun, Z., and Ma, Z.:
Fluctuation analysis in the dynamic characteristics of continental glacier based on Full-Stokes model,
Scientific Reports, 9, 20245, https://doi.org/10.1038/s41598-019-56864-3, 2019.
Yershov, E. D.: General Geocryology, Stud. Polar Res., edited by: Williams, P. J., Cambridge
Univ. Press, New York, 580 pp., ISBN 0-521-47334-9, 1998.
Zekollari, H., Huybrechts, P., Fürst, J. J., Rybak, O., and Eisen, O.:
Calibration of a higher-order 3-D ice-flow model of the Morteratsch glacier complex, Engadin, Switzerland,
Ann. Glaciol., 54, 343–351, https://doi.org/10.3189/2013AoG63A434, 2013.
Zekollari, H., Fürst, J., and Huybrechts, P.: Modelling the evolution of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the future, J. Glaciol., 60, 1155–1168, https://doi.org/10.3189/2014JoG14J053, 2014.
Zekollari, H. and Huybrechts, P.: On the climate–geometry imbalance,
response time and volume–area scaling of an alpine glacier: insights from a
3-D flow model applied to Vadret da Morteratsch, Switzerland, Ann.
Glaciol., 56, 51–62, https://doi.org/10.3189/2015AoG70A921, 2015.
Zekollari, H., Huybrechts, P., Noël, B., van de Berg, W. J., and van den Broeke, M. R.: Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland), The Cryosphere, 11, 805–825, https://doi.org/10.5194/tc-11-805-2017, 2017.
Zemp, M., Huss, M., Thibert, E., McNabb R., Huber, J., Barandun, M., Machguth,
H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F.,
Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and their
contributions to sea-level rise from 1961 to 2016, Nature, 568, 382–386,
https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime:
An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005.
Zhao, L., Tian, L., Zwinger, T., Ding, R., Zong, J., Ye, Q., and Moore, J.
C.: Numerical simulations of Gurenhekou Glacier on the Tibetan Plateau,
J. Glaciol., 60, 71–82, https://doi.org/10.3189/2014JoG13J126, 2014.
Zwinger, T., Greve, R., Gagliardini, O., Shiraiwa, T., and Lyly, M.: A full
Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov
crater glacier, Kamchatka, Ann. Glaciol., 45, 29–37,
https://doi.org/10.3189/172756407782282543, 2007.
Zwinger, T. and Moore, J. C.: Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard, The Cryosphere, 3, 217–229, https://doi.org/10.5194/tc-3-217-2009, 2009.
Short summary
We examine the thermal regime of the Grigoriev ice cap and the Sary-Tor glacier, both located in the inner Tien Shan in Kyrgyzstan. Our findings are important as the ice dynamics can only be understood and modelled precisely if ice temperature is considered correctly in ice flow models. The calibrated parameters of this study can be used in applications with ice flow models for individual ice masses as well as to optimise more general models for large-scale regional simulations.
We examine the thermal regime of the Grigoriev ice cap and the Sary-Tor glacier, both located in...