Articles | Volume 16, issue 10
https://doi.org/10.5194/tc-16-4513-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-4513-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal regime of the Grigoriev ice cap and the Sary-Tor glacier in the inner Tien Shan, Kyrgyzstan
Lander Van Tricht
CORRESPONDING AUTHOR
Earth System Science, Departement Geografie, Vrije Universiteit
Brussel, Brussels, Belgium
Philippe Huybrechts
Earth System Science, Departement Geografie, Vrije Universiteit
Brussel, Brussels, Belgium
Related authors
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Lander Van Tricht, Chloë Marie Paice, Oleg Rybak, and Philippe Huybrechts
The Cryosphere, 17, 4315–4323, https://doi.org/10.5194/tc-17-4315-2023, https://doi.org/10.5194/tc-17-4315-2023, 2023
Short summary
Short summary
We performed a field campaign to measure the ice thickness of the Grigoriev ice cap (Central Asia). We interpolated the ice thickness data to obtain an ice thickness distribution representing the state of the ice cap in 2021, with a total volume of ca. 0.4 km3. We then compared our results with global ice thickness datasets composed without our local measurements. The main takeaway is that these datasets do not perform well enough yet for ice caps such as the Grigoriev ice cap.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Clim. Past, 19, 2551–2568, https://doi.org/10.5194/cp-19-2551-2023, https://doi.org/10.5194/cp-19-2551-2023, 2023
Short summary
Short summary
We investigated the different boundary conditions to allow ice sheet growth and ice sheet decline of the Antarctic ice sheet when it appeared ∼38–34 Myr ago. The thresholds for ice sheet growth and decline differ because of the different climatological conditions above an ice sheet (higher elevation and higher albedo) compared to a bare topography. We found that the ice–albedo feedback and the isostasy feedback respectively ease and delay the transition from a deglacial to glacial state.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Lander Van Tricht, Chloë Marie Paice, Oleg Rybak, and Philippe Huybrechts
The Cryosphere, 17, 4315–4323, https://doi.org/10.5194/tc-17-4315-2023, https://doi.org/10.5194/tc-17-4315-2023, 2023
Short summary
Short summary
We performed a field campaign to measure the ice thickness of the Grigoriev ice cap (Central Asia). We interpolated the ice thickness data to obtain an ice thickness distribution representing the state of the ice cap in 2021, with a total volume of ca. 0.4 km3. We then compared our results with global ice thickness datasets composed without our local measurements. The main takeaway is that these datasets do not perform well enough yet for ice caps such as the Grigoriev ice cap.
Lander Van Tricht, Harry Zekollari, Matthias Huss, Daniel Farinotti, and Philippe Huybrechts
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-87, https://doi.org/10.5194/tc-2023-87, 2023
Manuscript not accepted for further review
Short summary
Short summary
Detailed 3D models can be applied for well-studied glaciers, whereas simplified approaches are used for regional/global assessments. We conducted a comparison of six Tien Shan glaciers employing different models and investigated the impact of in-situ measurements. Our results reveal that the choice of mass balance and ice flow model as well as calibration have minimal impact on the projected volume. The initial ice thickness exerts the greatest influence on the future remaining ice volume.
Jonas Van Breedam, Philippe Huybrechts, and Michel Crucifix
Geosci. Model Dev., 14, 6373–6401, https://doi.org/10.5194/gmd-14-6373-2021, https://doi.org/10.5194/gmd-14-6373-2021, 2021
Short summary
Short summary
Ice sheets are an important component of the climate system and interact with the atmosphere through albedo variations and changes in the surface height. On very long timescales, it is impossible to directly couple ice sheet models with climate models and other techniques have to be used. Here we present a novel coupling method between ice sheets and the atmosphere by making use of an emulator to simulate ice sheet–climate interactions for several million years.
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
Short summary
We conducted innovative research on the use of drones to determine the surface mass balance (SMB) of two glaciers. Considering appropriate spatial scales, we succeeded in determining the SMB in the ablation area with large accuracy. Consequently, we are convinced that our method and the use of drones to monitor the mass balance of a glacier’s ablation area can be an add-on to stake measurements in order to obtain a broader picture of the heterogeneity of the SMB of glaciers.
Yoni Verhaegen, Philippe Huybrechts, Oleg Rybak, and Victor V. Popovnin
The Cryosphere, 14, 4039–4061, https://doi.org/10.5194/tc-14-4039-2020, https://doi.org/10.5194/tc-14-4039-2020, 2020
Short summary
Short summary
We use a numerical flow model to simulate the behaviour of the Djankuat Glacier, a WGMS reference glacier situated in the North Caucasus (Republic of Kabardino-Balkaria, Russian Federation), in response to past, present and future climate conditions (1752–2100 CE). In particular, we adapt a more sophisticated and physically based debris model, which has not been previously applied in time-dependent numerical flow line models, to look at the impact of a debris cover on the glacier’s evolution.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Jonas Van Breedam, Heiko Goelzer, and Philippe Huybrechts
Earth Syst. Dynam., 11, 953–976, https://doi.org/10.5194/esd-11-953-2020, https://doi.org/10.5194/esd-11-953-2020, 2020
Short summary
Short summary
We made projections of global mean sea-level change during the next 10 000 years for a range in climate forcing scenarios ranging from a peak in carbon dioxide concentrations in the next decades to burning most of the available carbon reserves over the next 2 centuries. We find that global mean sea level will rise between 9 and 37 m, depending on the emission of greenhouse gases. In this study, we investigated the long-term consequence of climate change for sea-level rise.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Thomas M. Jordan, Christopher N. Williams, Dustin M. Schroeder, Yasmina M. Martos, Michael A. Cooper, Martin J. Siegert, John D. Paden, Philippe Huybrechts, and Jonathan L. Bamber
The Cryosphere, 12, 2831–2854, https://doi.org/10.5194/tc-12-2831-2018, https://doi.org/10.5194/tc-12-2831-2018, 2018
Short summary
Short summary
Here, via analysis of radio-echo sounding data, we place a new observational constraint upon the basal water distribution beneath the Greenland Ice Sheet. In addition to the outlet glaciers, we demonstrate widespread water storage in the northern and eastern ice-sheet interior, a notable feature being a "corridor" of basal water extending from NorthGRIP to Petermann Glacier. The basal water distribution and its relationship with basal temperature provides a new constraint for numerical models.
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Harry Zekollari, Philippe Huybrechts, Brice Noël, Willem Jan van de Berg, and Michiel R. van den Broeke
The Cryosphere, 11, 805–825, https://doi.org/10.5194/tc-11-805-2017, https://doi.org/10.5194/tc-11-805-2017, 2017
Short summary
Short summary
In this study the dynamics of the world’s northernmost ice cap are investigated with a 3-D ice flow model. Under 1961–1990 climatic conditions
an ice cap similar to the observed one is obtained, with comparable geometry and surface velocities. The southern part of the ice cap is very unstable,
and under early-21st-century climatic conditions this part of the ice cap fully disappears. In a projected warmer and wetter climate the ice cap will at
first steepen, before eventually disappearing.
Heiko Goelzer, Philippe Huybrechts, Marie-France Loutre, and Thierry Fichefet
Clim. Past, 12, 2195–2213, https://doi.org/10.5194/cp-12-2195-2016, https://doi.org/10.5194/cp-12-2195-2016, 2016
Short summary
Short summary
We simulate the climate, ice sheet, and sea-level evolution during the Last Interglacial (~ 130 to 115 kyr BP), the most recent warm period in Earth’s history. Our Earth system model includes components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. Our simulation is in good agreement with available data reconstructions and gives important insights into the dominant mechanisms that caused ice sheet changes in the past.
Heiko Goelzer, Philippe Huybrechts, Marie-France Loutre, and Thierry Fichefet
Clim. Past, 12, 1721–1737, https://doi.org/10.5194/cp-12-1721-2016, https://doi.org/10.5194/cp-12-1721-2016, 2016
Short summary
Short summary
We have modelled the climate evolution from 135 to 120 kyr BP with an Earth system model to study the onset of the Last Interglacial warm period. Ice sheet changes and associated freshwater fluxes in both hemispheres constitute an important forcing in the simulations. Freshwater fluxes from the melting Antarctic ice sheet are found to lead to an oceanic cold event in the Southern Ocean as evidenced in some ocean sediment cores, which may be used to constrain the timing of ice sheet retreat.
T. M. Jordan, J. L. Bamber, C. N. Williams, J. D. Paden, M. J. Siegert, P. Huybrechts, O. Gagliardini, and F. Gillet-Chaulet
The Cryosphere, 10, 1547–1570, https://doi.org/10.5194/tc-10-1547-2016, https://doi.org/10.5194/tc-10-1547-2016, 2016
Short summary
Short summary
Ice penetrating radar enables determination of the basal properties of ice sheets. Existing algorithms assume stationarity in the attenuation rate, which is not justifiable at an ice sheet scale. We introduce the first ice-sheet-wide algorithm for radar attenuation that incorporates spatial variability, using the temperature field from a numerical model as an initial guess. The study is a step toward ice-sheet-wide data products for basal properties and evaluation of model temperature fields.
A. E. Jowett, E. Hanna, F. Ng, P. Huybrechts, and I. Janssens
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5327-2015, https://doi.org/10.5194/tcd-9-5327-2015, 2015
Revised manuscript has not been submitted
J. J. Fürst, H. Goelzer, and P. Huybrechts
The Cryosphere, 9, 1039–1062, https://doi.org/10.5194/tc-9-1039-2015, https://doi.org/10.5194/tc-9-1039-2015, 2015
B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal
The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, https://doi.org/10.5194/tc-9-881-2015, 2015
Short summary
Short summary
We present results from simulations of the Antarctic ice sheet by means of an intercomparison project with six ice-sheet models. Our results demonstrate the difficulty of all models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line. Improved grounding-line physics could be essential for a correct representation of the migration of the grounding line of the Antarctic ice sheet during the Pliocene.
M. F. Loutre, T. Fichefet, H. Goosse, P. Huybrechts, H. Goelzer, and E. Capron
Clim. Past, 10, 1541–1565, https://doi.org/10.5194/cp-10-1541-2014, https://doi.org/10.5194/cp-10-1541-2014, 2014
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 181–194, https://doi.org/10.5194/tc-8-181-2014, https://doi.org/10.5194/tc-8-181-2014, 2014
T. L. Edwards, X. Fettweis, O. Gagliardini, F. Gillet-Chaulet, H. Goelzer, J. M. Gregory, M. Hoffman, P. Huybrechts, A. J. Payne, M. Perego, S. Price, A. Quiquet, and C. Ritz
The Cryosphere, 8, 195–208, https://doi.org/10.5194/tc-8-195-2014, https://doi.org/10.5194/tc-8-195-2014, 2014
C. L. Vernon, J. L. Bamber, J. E. Box, M. R. van den Broeke, X. Fettweis, E. Hanna, and P. Huybrechts
The Cryosphere, 7, 599–614, https://doi.org/10.5194/tc-7-599-2013, https://doi.org/10.5194/tc-7-599-2013, 2013
J. J. Fürst, H. Goelzer, and P. Huybrechts
The Cryosphere, 7, 183–199, https://doi.org/10.5194/tc-7-183-2013, https://doi.org/10.5194/tc-7-183-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Numerical Modelling
Application of a regularised Coulomb sliding law to Jakobshavn Isbræ, western Greenland
Increasing numerical stability of mountain valley glacier simulations: implementation and testing of free-surface stabilization in Elmer/Ice
Quantifying the Buttressing Contribution of Sea Ice to Crane Glacier
A new glacier thickness and bed map for Svalbard
A 3D glacier dynamics–line plume model to estimate the frontal ablation of Hansbreen, Svalbard
Impact of the Nares Strait sea ice arches on the long-term stability of the Petermann Glacier ice shelf
Reconciling ice dynamics and bed topography with a versatile and fast ice thickness inversion
Exploring the ability of the variable-resolution Community Earth System Model to simulate cryospheric–hydrological variables in High Mountain Asia
Modelling the development and decay of cryoconite holes in northwestern Greenland
Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: an application to High Mountain Asia
The 21st-century fate of the Mocho-Choshuenco ice cap in southern Chile
Modelling steady states and the transient response of debris-covered glaciers
Twentieth century global glacier mass change: an ensemble-based model reconstruction
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE
Brief communication: Time step dependence (and fixes) in Stokes simulations of calving ice shelves
Modelling regional glacier length changes over the last millennium using the Open Global Glacier Model
The contrasting response of outlet glaciers to interior and ocean forcing
Deep learning applied to glacier evolution modelling
Initialization of a global glacier model based on present-day glacier geometry and past climate information: an ensemble approach
Contrasting thinning patterns between lake- and land-terminating glaciers in the Bhutanese Himalaya
Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska
Modeling the response of Greenland outlet glaciers to global warming using a coupled flow line–plume model
Buoyant forces promote tidewater glacier iceberg calving through large basal stress concentrations
Global glacier volume projections under high-end climate change scenarios
Matt Trevers, Antony J. Payne, and Stephen L. Cornford
The Cryosphere, 18, 5101–5115, https://doi.org/10.5194/tc-18-5101-2024, https://doi.org/10.5194/tc-18-5101-2024, 2024
Short summary
Short summary
The form of the friction law which determines the speed of ice sliding over the bedrock remains a major source of uncertainty in ice sheet model projections of future sea level rise. Jakobshavn Isbræ, the fastest-flowing glacier in Greenland, which has undergone significant changes in the last few decades, is an ideal case for testing sliding laws. We find that a regularised Coulomb friction law reproduces the large seasonal and inter-annual flow speed variations most accurately.
André Löfgren, Thomas Zwinger, Peter Råback, Christian Helanow, and Josefin Ahlkrona
The Cryosphere, 18, 3453–3470, https://doi.org/10.5194/tc-18-3453-2024, https://doi.org/10.5194/tc-18-3453-2024, 2024
Short summary
Short summary
This paper investigates a stabilization method for free-surface flows in the context of glacier simulations. Previous applications of the stabilization on ice flows have only considered simple ice-sheet benchmark problems; in particular the method had not been tested on real-world glacier domains. This work addresses this shortcoming by demonstrating that the stabilization works well also in this case and increases stability and robustness without negatively impacting computation times.
Richard Parsons, Sainan Sun, G. Hilmar Gudmundsson, Jan Wuite, and Thomas Nagler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1499, https://doi.org/10.5194/egusphere-2024-1499, 2024
Short summary
Short summary
In 2022, sea ice in Antarctica's Larsen B embayment disintegrated, after which time an increase in the rate at which Crane Glacier discharged ice into the ocean was observed. As the sea ice was attached to the terminus of the glacier, it could provide a resistive stress against the glacier’s ice-flow, slowing down the rate of ice discharge. We used numerical modelling to quantify this resistive stress and found that the sea ice provided significant support to Crane prior to its disintegration.
Ward van Pelt and Thomas Frank
EGUsphere, https://doi.org/10.5194/egusphere-2024-1525, https://doi.org/10.5194/egusphere-2024-1525, 2024
Short summary
Short summary
Accurate information on the ice thickness of Svalbard’s glaciers is important for assessing the contribution to sea level rise in a present and future climate. However, direct observations of the glacier bed are scarce. Here, we use an inverse approach and high-resolution surface observations, to infer basal conditions. We present and analyze the new bed and thickness maps, quantify the ice volume (6,800 km3), and compare against radar data and previous studies.
José M. Muñoz-Hermosilla, Jaime Otero, Eva De Andrés, Kaian Shahateet, Francisco Navarro, and Iván Pérez-Doña
The Cryosphere, 18, 1911–1924, https://doi.org/10.5194/tc-18-1911-2024, https://doi.org/10.5194/tc-18-1911-2024, 2024
Short summary
Short summary
A large fraction of the mass loss from marine-terminating glaciers is attributed to frontal ablation. In this study, we used a 3D ice flow model of a real glacier that includes the effects of calving and submarine melting. Over a 30-month simulation, we found that the model reproduced the seasonal cycle for this glacier. Besides, the front positions were in good agreement with observations in the central part of the front, with longitudinal differences, on average, below 15 m.
Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner
The Cryosphere, 17, 5255–5281, https://doi.org/10.5194/tc-17-5255-2023, https://doi.org/10.5194/tc-17-5255-2023, 2023
Short summary
Short summary
Sea ice arch formation in the Nares Strait has shielded the Petermann Glacier ice shelf from enhanced basal melting. However, with the sustained decline of the Arctic sea ice predicted to continue, the ice shelf is likely to be exposed to a year-round mobile and thin sea ice cover. In such a scenario, our modelled results show that elevated temperatures, and more importantly, a stronger ocean circulation in the ice shelf cavity, could result in up to two-thirds increase in basal melt.
Thomas Frank, Ward J. J. van Pelt, and Jack Kohler
The Cryosphere, 17, 4021–4045, https://doi.org/10.5194/tc-17-4021-2023, https://doi.org/10.5194/tc-17-4021-2023, 2023
Short summary
Short summary
Since the ice thickness of most glaciers worldwide is unknown, and since it is not feasible to visit every glacier and observe their thickness directly, inverse modelling techniques are needed that can calculate ice thickness from abundant surface observations. Here, we present a new method for doing that. Our methodology relies on modelling the rate of surface elevation change for a given glacier, compare this with observations of the same quantity and change the bed until the two are in line.
René R. Wijngaard, Adam R. Herrington, William H. Lipscomb, Gunter R. Leguy, and Soon-Il An
The Cryosphere, 17, 3803–3828, https://doi.org/10.5194/tc-17-3803-2023, https://doi.org/10.5194/tc-17-3803-2023, 2023
Short summary
Short summary
We evaluate the ability of the Community Earth System Model (CESM2) to simulate cryospheric–hydrological variables, such as glacier surface mass balance (SMB), over High Mountain Asia (HMA) by using a global grid (~111 km) with regional refinement (~7 km) over HMA. Evaluations of two different simulations show that climatological biases are reduced, and glacier SMB is improved (but still too negative) by modifying the snow and glacier model and using an updated glacier cover dataset.
Yukihiko Onuma, Koji Fujita, Nozomu Takeuchi, Masashi Niwano, and Teruo Aoki
The Cryosphere, 17, 3309–3328, https://doi.org/10.5194/tc-17-3309-2023, https://doi.org/10.5194/tc-17-3309-2023, 2023
Short summary
Short summary
We established a novel model that simulates the temporal changes in cryoconite hole (CH) depth using heat budgets calculated independently at the ice surface and CH bottom based on hole shape geometry. The simulations suggest that CH depth is governed by the balance between the intensity of the diffuse component of downward shortwave radiation and the wind speed. The meteorological conditions may be important factors contributing to the recent ice surface darkening via the redistribution of CHs.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Matthias Scheiter, Marius Schaefer, Eduardo Flández, Deniz Bozkurt, and Ralf Greve
The Cryosphere, 15, 3637–3654, https://doi.org/10.5194/tc-15-3637-2021, https://doi.org/10.5194/tc-15-3637-2021, 2021
Short summary
Short summary
We simulate the current state and future evolution of the Mocho-Choshuenco ice cap in southern Chile (40°S, 72°W) with the ice-sheet model SICOPOLIS. Under different global warming scenarios, we project ice mass losses between 56 % and 97 % by the end of the 21st century. We quantify the uncertainties based on an ensemble of climate models and on the temperature dependence of the equilibrium line altitude. Our results suggest a considerable deglaciation in southern Chile in the next 80 years.
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021, https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Short summary
Debris-covered glaciers have a greater extent than their debris-free counterparts due to insulation from the debris cover. However, the transient response to climate change remains poorly understood. We use a numerical model that couples ice dynamics and debris transport and varies the climate signal. We find that debris cover delays the transient response, especially for the extent. However, adding cryokarst features near the terminus greatly enhances the response.
Jan-Hendrik Malles and Ben Marzeion
The Cryosphere, 15, 3135–3157, https://doi.org/10.5194/tc-15-3135-2021, https://doi.org/10.5194/tc-15-3135-2021, 2021
Short summary
Short summary
To better estimate the uncertainty in glacier mass change modeling during the 20th century we ran an established model with an ensemble of meteorological data sets. We find that the total ensemble uncertainty, especially in the early 20th century, when glaciological and meteorological observations at glacier locations were sparse, increases considerably compared to individual ensemble runs. This stems from regions with a lot of ice mass but few observations (e.g., Greenland periphery).
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Yoni Verhaegen, Philippe Huybrechts, Oleg Rybak, and Victor V. Popovnin
The Cryosphere, 14, 4039–4061, https://doi.org/10.5194/tc-14-4039-2020, https://doi.org/10.5194/tc-14-4039-2020, 2020
Short summary
Short summary
We use a numerical flow model to simulate the behaviour of the Djankuat Glacier, a WGMS reference glacier situated in the North Caucasus (Republic of Kabardino-Balkaria, Russian Federation), in response to past, present and future climate conditions (1752–2100 CE). In particular, we adapt a more sophisticated and physically based debris model, which has not been previously applied in time-dependent numerical flow line models, to look at the impact of a debris cover on the glacier’s evolution.
Brandon Berg and Jeremy Bassis
The Cryosphere, 14, 3209–3213, https://doi.org/10.5194/tc-14-3209-2020, https://doi.org/10.5194/tc-14-3209-2020, 2020
Short summary
Short summary
Computer models of ice sheets and glaciers are an important component of projecting sea level rise due to climate change. For models that seek to simulate the full balance of forces within the ice, if portions of the glacier are allowed to quickly break off in a process called iceberg calving, a numerical issue arises that can cause inaccurate results. We examine the issue and propose a solution so that future models can more accurately predict the future behavior of ice sheets and glaciers.
David Parkes and Hugues Goosse
The Cryosphere, 14, 3135–3153, https://doi.org/10.5194/tc-14-3135-2020, https://doi.org/10.5194/tc-14-3135-2020, 2020
Short summary
Short summary
Direct records of glacier changes rarely go back more than the last 100 years and are few and far between. We used a sophisticated glacier model to simulate glacier length changes over the last 1000 years for those glaciers that we do have long-term records of, to determine whether the model can run in a stable, realistic way over a long timescale, reproducing recent observed trends. We find that post-industrial changes are larger than other changes in this time period driven by recent warming.
John Erich Christian, Alexander A. Robel, Cristian Proistosescu, Gerard Roe, Michelle Koutnik, and Knut Christianson
The Cryosphere, 14, 2515–2535, https://doi.org/10.5194/tc-14-2515-2020, https://doi.org/10.5194/tc-14-2515-2020, 2020
Short summary
Short summary
We use simple, physics-based models to compare how marine-terminating glaciers respond to changes at their marine margin vs. inland surface melt. Initial glacier retreat is more rapid for ocean changes than for inland changes, but in both cases, glaciers will continue responding for millennia. We analyze several implications of these differing pathways of change. In particular, natural ocean variability must be better understood to correctly identify the anthropogenic role in glacier retreat.
Jordi Bolibar, Antoine Rabatel, Isabelle Gouttevin, Clovis Galiez, Thomas Condom, and Eric Sauquet
The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, https://doi.org/10.5194/tc-14-565-2020, 2020
Short summary
Short summary
We introduce a novel approach for simulating glacier mass balances using a deep artificial neural network (i.e. deep learning) from climate and topographical data. This has been added as a component of a new open-source parameterized glacier evolution model. Deep learning is found to outperform linear machine learning methods, mainly due to its nonlinearity. Potential applications range from regional mass balance reconstructions from observations to simulations for past and future climates.
Julia Eis, Fabien Maussion, and Ben Marzeion
The Cryosphere, 13, 3317–3335, https://doi.org/10.5194/tc-13-3317-2019, https://doi.org/10.5194/tc-13-3317-2019, 2019
Short summary
Short summary
To provide estimates of past glacier mass changes, an adequate initial state is required. However, information about past glacier states at regional or global scales is largely incomplete. Our study presents a new way to initialize the Open Global Glacier Model from past climate information and present-day geometries. We show that even with perfectly known but incomplete boundary conditions, the problem of model initialization leads to nonunique solutions, and we propose an ensemble approach.
Shun Tsutaki, Koji Fujita, Takayuki Nuimura, Akiko Sakai, Shin Sugiyama, Jiro Komori, and Phuntsho Tshering
The Cryosphere, 13, 2733–2750, https://doi.org/10.5194/tc-13-2733-2019, https://doi.org/10.5194/tc-13-2733-2019, 2019
Short summary
Short summary
We investigate thickness change of Bhutanese glaciers during 2004–2011 using repeat GPS surveys and satellite-based observations. The thinning rate of Lugge Glacier (LG) is > 3 times that of Thorthormi Glacier (TG). Numerical simulations of ice dynamics and surface mass balance (SMB) demonstrate that the rapid thinning of LG is driven by both negative SMB and dynamic thinning, while the thinning of TG is minimised by a longitudinally compressive flow regime.
Beatriz Recinos, Fabien Maussion, Timo Rothenpieler, and Ben Marzeion
The Cryosphere, 13, 2657–2672, https://doi.org/10.5194/tc-13-2657-2019, https://doi.org/10.5194/tc-13-2657-2019, 2019
Short summary
Short summary
We have implemented a frontal ablation parameterization into the Open Global Glacier Model and have shown that inversion methods based on mass conservation systematically underestimate the mass turnover (and therefore the thickness) of tidewater glaciers when neglecting frontal ablation. This underestimation can rise up to 19 % on a regional scale. Not accounting for frontal ablation will have an impact on the estimate of the glaciers’ potential contribution to sea level rise.
Johanna Beckmann, Mahé Perrette, Sebastian Beyer, Reinhard Calov, Matteo Willeit, and Andrey Ganopolski
The Cryosphere, 13, 2281–2301, https://doi.org/10.5194/tc-13-2281-2019, https://doi.org/10.5194/tc-13-2281-2019, 2019
Short summary
Short summary
Submarine melting (SM) has been discussed as potentially triggering the recently observed retreat at outlet glaciers in Greenland. How much it may contribute in terms of future sea level rise (SLR) has not been quantified yet. When accounting for SM in our experiments, SLR contribution of 12 outlet glaciers increases by over 3-fold until the year 2100 under RCP8.5. Scaling up from 12 to all of Greenland's outlet glaciers increases future SLR contribution of Greenland by 50 %.
Matt Trevers, Antony J. Payne, Stephen L. Cornford, and Twila Moon
The Cryosphere, 13, 1877–1887, https://doi.org/10.5194/tc-13-1877-2019, https://doi.org/10.5194/tc-13-1877-2019, 2019
Short summary
Short summary
Iceberg calving is a major factor in the retreat of outlet glaciers of the Greenland Ice Sheet. Massive block overturning calving events occur at major outlet glaciers. A major calving event in 2009 was triggered by the release of a smaller block of ice from above the waterline. Using a numerical model, we investigate the feasibility of this mechanism to drive large calving events. We find that relatively small perturbations induce forces large enough to open cracks in ice at the glacier bed.
Sarah Shannon, Robin Smith, Andy Wiltshire, Tony Payne, Matthias Huss, Richard Betts, John Caesar, Aris Koutroulis, Darren Jones, and Stephan Harrison
The Cryosphere, 13, 325–350, https://doi.org/10.5194/tc-13-325-2019, https://doi.org/10.5194/tc-13-325-2019, 2019
Short summary
Short summary
We present global glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding 2 °C global average warming. The ice loss contribution to sea level rise for all glaciers excluding those on the peripheral of the Antarctic ice sheet is 215.2 ± 21.3 mm. Such large ice losses will have consequences for sea level rise and for water supply in glacier-fed river systems.
Cited articles
Aizen, V. B., Aizen, E. M., and Melack, J. M.: Climate, Snow Cover, Glaciers,
and Runoff in the Tien Shan, Central Asia, J. Am. Water
Resour. As., 31, 1113–1129, https://doi.org/10.1111/j.1752-1688.1995.tb03426.x, 1995.
Aizen, V. B., Kuzmichenok, V., Surazakov, A., and Aizen, E. M.: Glacier changes
in the central and northern Tien Shan during the last 140 years based on
surface and remote-sensing data, Ann. Glaciol., 43, 202–213,
https://doi.org/10.3189/172756406781812465, 2006.
Arkhipov, S. M., Mikhalenko, V. N., Kunakhovich, M. G., Dikikh, A. N., and Nagornov, O. V.: Termich eskii rezhim, usloviia l'doobrazovaniia i akkumulyatsiia na ladnike
Grigor'eva (Tyan'-Shan') v 1962–2001 gg. [Thermal regime, ice types and
accumulation in Grigoriev Glacier, Tien Shan, 1962–2001], Mater. Glyatsiol.
Issled., 96, 77–83, 2004 (in Russian with English summary).
Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An enthalpy
formulation for glaciers and ice sheets, J. Glaciol., 58,
441–457, https://doi.org/10.3189/2012JoG11J088, 2012.
Bagdassarov, N., Batalev, V., and Egorova, V.: State of lithosphere beneath
Tien Shan from petrology and electrical conductivity of xenoliths, J. Geophys. Res.-Sol.
Ea., 116, B01202, https://doi.org/10.1029/2009JB007125, 2011.
Barandun, M., Huss, M., Sold, L., Farinotti, D., Azisov, E., Salzmann, N.,
Usubaliev, R., Merkushkin, A., and Hoelzle, M.: Re-analysis of seasonal mass balance at Abramov glacier
1968–2014, J. Glaciol., 61, 1103–1117, https://doi.org/10.3189/2015JoG14J239,
2015.
Bhattacharya, A., Bolch, T., Mukherjee, K., King O., Menounos B., Kapitsa
V., Neckel, N., Yang W., and Yao T.: High Mountain Asian glacier response to
climate revealed by multi-temporal satellite observations since the
1960s, Nat. Commun., 12, 4133, https://doi.org/10.1038/s41467-021-24180-y, 2021.
Blatter, H.: On the Thermal Regime of an Arctic Valley Glacier: A Study of
White Glacier, Axel Heiberg Island, N.W.T., Canada, J.
Glaciol., 33, 200–211, https://doi.org/10.3189/S0022143000008704, 1987.
Blatter, H. and Hutter K.: Polythermal conditions in Arctic glaciers,
J. Glaciol., 37, 261–269, https://doi.org/10.3189/S0022143000007279, 1991.
Bondarev, L. G.: Evolution of some Tien Shan glaciers during the last quarter
of the century, IAHS Publication, 54, 412–419, 1961.
Boon, S. and Sharp, M.: The role of hydrologically-driven ice fracture in
drainage system evolution on an arctic glacier, Geophys. Res.
Lett., 30, 1916, https://doi.org/10.1029/2003GL018034, 2003.
Cai, B., Huang, M., and Zichu, X.: A preliminary research on the temperature in
deep boreholes of Glacier No. 1, Ürümqi headwaters, Kexue Tongbao, Sci. Bull., 33, 2054–2056, 1988 (in Chinese).
Colgan, W., Sommers, A., Rajaram, H., Abdalati, W., and Frahm, J.:
Considering thermal-viscous collapse of the Greenland ice sheet, Earth's
Future, 3, 252–267, https://doi.org/10.1002/2015EF000301, 2015.
Colgan, W., MacGregor, J. A., Mankoff, K. D., Haagenson, R., Rajaram, H., Martos, Y. M., Morlighem, M., Fahnestock, M. A., and Kjeldsen K. K.:
Topographic correction of geothermal heat flux in Greenland and Antarctica,
J. Geophys. Res.-Earth, 126, e2020JF005598,
https://doi.org/10.1029/2020JF005598, 2021.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, 4th edn., Butterworth-Heinemann, Oxford, ISBN 978-0-12-369461-4, 2010.
Delvaux, D., Cloetingh, S., Beekman, F., Sokoutis, D., Burov, E., Buslov,
M. M., and Abdrakhmatov, K. E.: Basin evolution in a folding lithosphere: Altai-Sayan and Tien Shan belts in
Central Asia, Tectonophysics, 602, 194–222, https://doi.org/10.1016/j.tecto.2013.01.010, 2013.
Dikikh, A. N.: Temperature regime of flat-top glaciers (using Grigoriev as an
Example) – Glyatsiol. Issledovaniya na Tyan-Shane, Frunze, N. 11, 32–35,
1965 (in Russian).
Duchkov, A. D., Shvartsman, Y. G., and Sokolova, L. S.: Deep heat flow in the Tien Shan: advances and drawbacks, Geologiya i Geofizika (Russian Geology and Geophysics), 42, 1516–1532 (1436–1452), 2001 (in Russian).
Dyurgerov, M. B.: Glacier mass balance and regime: data of measurements and analysis, University of Colorado Institute of Arctic and Alpine Research Occasional Paper 55, Boulder, http://instaar.colorado.edu/other/occ_papers.html (last access: 17 October 2022), 2002
Dyurgerov M. B. and Mikhalenko V. N.: Oledeneniye Tien Shanya [Glaciation of Tien Shan], Vsesoyuznyy Institut Nauchnoy iTekhnicheskoy Informatsii (VINITI), Moscow, 1995 (in Russian).
Echelmeyer, K. and Zhongxiang, W.: Direct Observation of Basal Sliding and
Deformation of Basal Drift at Sub-Freezing Temperatures, J. Glaciol., 33, 83–98, https://doi.org/10.3189/S0022143000005396, 1987.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019.
Flowers, G. E., Björnsson, H., Geirsdóttir, Á., Miller, G. H., and
Clarke, G. K. C.: Glacier fluctuation and inferred climatology of
Langjökull ice cap through the Little Ice Age, Quaternary Sci.
Rev., 26, 2337–2353,
https://doi.org/10.1016/j.quascirev.2007.07.016, 2007.
Fujita, K., Takeuchi, N., Nikitin, S. A., Surazakov, A. B., Okamoto, S., Aizen, V. B., and Kubota, J.: Favorable climatic regime for maintaining the present-day geometry of the Gregoriev Glacier, Inner Tien Shan, The Cryosphere, 5, 539–549, https://doi.org/10.5194/tc-5-539-2011, 2011.
Fürst, J. J., Rybak, O., Goelzer, H., De Smedt, B., de Groen, P., and Huybrechts, P.: Improved convergence and stability properties in a three-dimensional higher-order ice sheet model, Geosci. Model Dev., 4, 1133–1149, https://doi.org/10.5194/gmd-4-1133-2011, 2011.
Fürst, J. J., Goelzer, H., and Huybrechts, P.: Effect of higher-order stress gradients on the centennial mass evolution of the Greenland ice sheet, The Cryosphere, 7, 183–199, https://doi.org/10.5194/tc-7-183-2013, 2013.
Fürst, J. J., Goelzer, H., and Huybrechts, P.: Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming, The Cryosphere, 9, 1039–1062, https://doi.org/10.5194/tc-9-1039-2015, 2015.
Gilbert, A., Flowers, G. E., Miller, G. H., Refsnider, K., Young, N. E., and
Radic, V.: The projected demise of Barnes Ice Cap: Evidence of an unusually
warm 21st century Arctic, Geophys. Res. Lett., 44, 2810–2816,
https://doi.org/10.1002/2016GL072394, 2017.
Gilbert, A., Sinisalo, A., Gurung, T. R., Fujita, K., Maharjan, S. B., Sherpa, T. C., and Fukuda, T.: The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier, The Cryosphere, 14, 1273–1288, https://doi.org/10.5194/tc-14-1273-2020, 2020.
Gusmeroli, A., Jansson P., Pettersson R., and Murray T.: Twenty years of cold
surface layer thinning at Storglaciaren, sub-Arctic Sweden,
1989–2009, J. Glaciol., 58, 3–10, https://doi.org/10.3189/2012JoG11J018, 2012.
Hambrey, M. J. and Glasser, N. F.: Discriminating glacier thermal and dynamic
regimes in the sedimentary record, Sediment. Geol., 251–252, 1–33, https://doi.org/10.1016/j.sedgeo.2012.01.008,
2012.
Hoelzle, M., Darms, G., Lüthi, M. P., and Suter, S.: Evidence of accelerated englacial warming in the Monte Rosa area, Switzerland/Italy, The Cryosphere, 5, 231–243, https://doi.org/10.5194/tc-5-231-2011, 2011.
Hooke, R. L.: Pleistocene ice at the base of the Barnes Ice Cap, Baffin
Island, N.W.T., Canada, J. Glaciol., 17, 49–59,
https://doi.org/10.3189/S0022143000030719, 1976.
Hooke, R. L., Gould, J. E., and Brzozowski, J.: Near-surface temperatures
near and below the equilibrium line on polar and subpolar
glaciers, Zeitschrift für Gletscherkunde und
Glazialgeologie, 19, 1–25, 1983.
Huybrechts, P. and Oerlemans, J.: Evolution of the East Antarctic Ice Sheet:
A Numerical Study of Thermo-Mechanical Response Patterns With Changing
Climate, Ann. Glaciol., 11, 52–59, https://doi.org/10.3189/S0260305500006327, 1988.
Huybrechts, P., Letreguilly, A., and Reeh, N.: The Greenland ice sheet and
greenhouse warming, Global Planet. Change, 3, 399–412, https://doi.org/10.1016/0921-8181(91)90119-H, 1991.
Huybrechts, P.: Basal temperature conditions of the Greenland ice sheet
during the glacial cycles, Ann. Glaciol., 23, 226–236, https://doi.org/10.3189/S0260305500013483, 1996.
Jouvet, G., Huss, M., Funk, M., and Blatter, H.: Modelling the retreat of
Grosser Aletschgletscher, Switzerland, in a changing climate, J. Glaciol., 57,
1033–1045, https://doi.org/10.3189/002214311798843359, 2011.
Kislov, B. V., Nozdrukhin, V. K., and Pertziger, F. I.: Temperature regime of the
active layer of Abramov Glacier, Materialy Glatsiologicheskih Issledovanii
(Data of Glaciological Studies), 30, 199–204, 1977 (in Russian).
Kronenberg, M., Barandun, M., Hoelzle, M., Huss, M., Farinotti, D., Azisov,
E., Usubaliev, R., Gafurov, A., Petrakov, D., and Kääb, A.:
Mass-balance reconstruction for Glacier No. 354, Tien Shan, from 2003 to
2014, Ann. Glaciol., 57, 92–102, https://doi.org/10.3189/2016AoG71A032, 2016.
Kronenberg, M., Machguth, H., Eichler, A., Schwikowski, M., and Hoelzle, M.:
Comparison of historical and recent accumulation rates on Abramov Glacier, Pamir Alay, J.
Glaciol., 67, 253–268, https://doi.org/10.1017/jog.2020.103, 2021.
Kutuzov, S. and Shahgedanova, M.: Glacier retreat and climatic variability
in the eastern Terskey–Alatoo, inner Tien Shan between the middle of the
19th century and beginning of the 21st century, Global Planet. Change,
69, 59–70, https://doi.org/10.1016/j.gloplacha.2009.07.001,
2009.
Li, Y., Tian, L., Yi, Y., Moore, J. C., Sun, S., and Zhao, L.: Simulating the
evolution of Qiangtang No. 1 glacier in the central Tibetan Plateau to 2050,
Arct. Antarct. Alp. Res., 49, 1–12, https://doi.org/10.1657/aaar0016-008, 2017.
Lliboutry, L.: Temperate ice permeability, stability of water veins and
percolation of internal meltwater, J. Glaciol., 42, 201–211,
https://doi.org/10.3189/S0022143000004068, 1996.
Loewe, F.: Screen Temperatures and 10 m Temperatures, J.
Glaciol., 9, 263–268, https://doi.org/10.3189/S0022143000023571, 1970.
Lüthi, M. P., Ryser, C., Andrews, L. C., Catania, G. A., Funk, M., Hawley, R. L., Hoffman, M. J., and Neumann, T. A.: Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming, The Cryosphere, 9, 245–253, https://doi.org/10.5194/tc-9-245-2015, 2015.
Maohuan, H.: On the Temperature Distribution of Glaciers in China, J. Glaciol., 36, 210–216, https://doi.org/10.3189/S002214300000945X, 1990.
Maohuan, H.: The movement mechanisms of Ürümqi Glacier No. 1, Tien
Shan mountains, China, Ann. Glaciol., 16, 39–44, https://doi.org/10.3189/1992AoG16-1-39-44, 1992.
Maohuan, H., Zhongxiang, W., and Jiawen, R.: On the Temperature Regime of
Continental-Type Glaciers in China, J. Glaciol., 28, 117–128, https://doi.org/10.3189/S0022143000011837, 1982.
Maohuan, H., Zhongxiang, W., Baolin, C., and Jiankang, H.: Some Dynamics
Studies on Urumqi Glacier No. 1, Tianshan Glaciological Station, China,
Ann. Glaciol., 12, 70–73, https://doi.org/10.3189/S0260305500006972, 1989.
Marshall, S. J.: Regime Shifts in Glacier and Ice Sheet Response to Climate
Change: Examples From the Northern Hemisphere, Frontiers in Climate, 3,
https://doi.org/10.3389/fclim.2021.702585, 2021.
Mattea, E., Machguth, H., Kronenberg, M., van Pelt, W., Bassi, M., and Hoelzle, M.: Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach, The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, 2021.
Meierbachtol, T. W., Harper J. T., Johnson J. V., Humphrey N. F., and
Brinkerhoff D. J.: Thermal boundary conditions on western Greenland: Observational constraints and impacts on
the modeled thermomechanical state, J. Geophys. Res.-Earth, 120, 623–636, https://doi.org/10.1002/2014JF003375, 2015.
Mikhalenko, V. N.: Osobennosti massoobmena lednikov ploskikh vershin
vnutrennego Tyan'-Shanya [Peculiarities of the mass exchange of flat summit glaciers of
interior Tyan'-Shan'], Materialy Glyatsiologicheskikh
Issledovaniy, 65, 86–92, 1989 (in Russian).
Mikhalenko, V. N.: Calculation and modeling of the mass balance of the
Aj-Shyirak massif changes in the Tien Shan, Materialy Glyatsiologicheskikh
Issledovaniy, 76, 102–107, 1993 (in Russian).
Mukherjee, K., Bolch, T., Goerlich, G., Kutuzov, S., Osmonov, A., Pieczonka, T.,
and Shesterova, I.: Surge-Type Glaciers in the Tien Shan (Central
Asia), Arct. Antarct. Alp. Res., 49, 147–171, https://doi.org/10.1657/AAAR0016-021, 2017.
Nagornov, O., Konovalov, Y., and Mikhalenko, V.: Prediction of thermodynamic
state of the Grigoriev ice cap, Tien Shan, central Asia, in the future, Ann.
Glaciol., 43, 307–312, https://doi.org/10.3189/172756406781812221, 2006.
Nosenko, G. A., Lavrentiev, I. I., Glazovskii, A. F., Kazatkin, N. E., and
Kokarev, A. L.: The polythermal structure of Central Tuyuksu glacier, Kriosf. Zemli (Earth's Cryosphere),
20, 105–115, 2016.
Nye, J. F. and Frank, F. C.: Hydrology of the intergranular veins in a
temperate glacier, in Symposium on the Hydrology of Glaciers, IAHS Publ.
95, 157–161, 1973.
Osmonov, A., Bolch, T., Xi, C., Kurban, A., and Guo, W.: Glacier
characteristics and changes in 610 the Sary-Jaz River Basin (Central Tien
Shan, Kyrgyzstan) – 1990–2010, Remote Sens. Lett., 4, 725–734,
https://doi.org/10.1080/2150704X.2013.789146, 2013.
Pattyn, F.: A new three-dimensional higher-order thermomechanical ice sheet
model: Basic sensitivity, ice stream development, and iceflow across
subglacial lakes, J. Geophys. Res., 108, B82382,
https://doi.org/10.1029/2002JB002329, 2003.
Petrakov, D. A., Lavrientiev, I. I., Kovalenko, N. V., and Usubaliev, R. A.: Ice
thickness, volume and modern change of the Sary-Tor Glacier area (Ak-Shyirak
Massif, Inner Tian Shan), Earth's Cryosphere, 18, 91–100, 2014.
Phillips, T., Rajaram, H., and Steffen, K.: Cryo-hydrologic warming: A
potential mechanism for rapid thermal response of ice sheets, Geophys.
Res. Lett., 37, L20503, https://doi.org/10.1029/2010GL044397, 2010.
Reeh, N.: Parameterization of Melt Rate and Surface Temperature in the
Greenland Ice Sheet, Polarforschung, Bremerhaven, Alfred Wegener Institute
for Polar and Marine Research & German Society of Polar Research, 59,
113–128, 1991.
Reijmer, C. H., van den Broeke, M. R., Fettweis, X., Ettema, J., and Stap, L. B.: Refreezing on the Greenland ice sheet: a comparison of parameterizations, The Cryosphere, 6, 743–762, https://doi.org/10.5194/tc-6-743-2012, 2012.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Digital Media, Colorado, USA [data set],
https://doi.org/10.7265/N5-RGI-60, 2017.
Riesen, P., Sugiyama, S., and Funk, M.: The influence of the presence and
drainage of an ice-marginal lake on the ice flow of Gornergletscher,
Switzerland, J. Glaciol., 56, 278–286, https://doi.org/10.3189/002214310791968575, 2010.
Rowan, A. V., Egholm, D. L., Quincey, D. J., and Glasser, N. F.: Modelling the
feedbacks between mass balance, ice flow and debris transport to predict the
response to climate change of debris-covered glaciers in the Himalaya, Earth
Planet. Sc. Lett., 430, 427–438,
https://doi.org/10.1016/j.epsl.2015.09.004, 2015.
Ryser, C., Lüthi, M., Blindow, N., Suckro, S., Funk, M., and Bauder, A.:
Cold ice in the ablation zone: its relation to glacier hydrology and ice
water content, J. Geophys. Res., 118, 693–705, https://doi.org/10.1029/2012JF002526, 2013.
Schäfer, M., Möller, M., Zwinger, T., and Moore, J. C.: Dynamic
modelling of future glacier changes: Mass-balance/elevation feedback in
projections for the Vestfonna ice cap, Nordaustlandet, Svalbard, J.
Glaciol., 61, 1121–1136, https://doi.org/10.3189/2015JoG14J184,
2015.
Shahgedanova, M., Afzal, M., Hagg, W., Kapitsa, V., Kasatkin, N., Mayr, E.,
Rybak, O., Saidaliyeva, Z., Severskiy, I., Usmanova, Z., Wade, A.,
Yaitskaya, N., and Zhumabayev, D.: Emptying Water Towers? Impacts of Future
Climate and Glacier Change on River Discharge in the Northern Tien Shan,
Central Asia, Water, 12, 627, https://doi.org/10.3390/w12030627, 2020.
Shumskiy, P. A.: Osnovy stukturnogo ledvedeniya: petrografiya presnogo l'da kak metod glyatsiologisheskogo issledovaniya [Principles of structural studies of ice: petrography of fresh water ice as a method of glaciological investigation], Moscow, Izdatel'stvo Akademii Nauk SSSR [Publishing House of the Academy of Sciences of the U.S.S.R.], 492 pp., 1955.
Sorg, A., Bolch, T., Stoffel, M., Solomina, O., and Beniston, M.: Climate
change impacts on glaciers and runoff in Tien Shan (Central Asia), Nat.
Clim. Change, 2, 725–731, https://doi.org/10.1038/nclimate1592, 2012.
Takeuchi, N., Fujita, K., Aizen, V. B., Narama, C., Yokoyama, Y., Okamoto,
S., Naoki, K., and Kubota, J.: The disappearance of glaciers in the Tien Shan Mountains in Central Asia at
the end of Pleistocene, Quaternary Science Revision, 103, 26–33, https://doi.org/10.1016/j.quascirev.2014.09.006, 2014.
Takeuchi, N., Sera, S., Fujita, K., Aizen, V. B., and Kubota, J.: Annual
layer counting using pollen grains of the Grigoriev ice core from the Tien
Shan Mountains, central Asia, Arct. Antarct. Alp. Res., 51,
299–312, https://doi.org/10.1080/15230430.2019.1638202,
2019.
Thompson, L. G., Mosley-Thompson, E., Davis, M., Lin, P. N., Yao, T.,
Dyurgerov, M., and Dai, J.: Recent warming: ice core evidence from tropical ice cores with emphasis on Central
Asia, Global Planet. Change, 7, 145–156, https://doi.org/10.1016/0921-8181(93)90046-Q, 1993.
Thompson, L. G., Mikhalenko, V., Mosley-Thompson, E., Dyurgerov, M., Lin, P. N., Moskalevsky, M., Davis, M. E., Arkhipov, S., and Dai, J.: Ice core records of recent climatic variability: Grigoriev and It-Tish Ice Caps in Central Tien Shan, Central Asia, Mater. Glyatsiol. Issled. (Data of Glaciological Studies), 81, 100–109, 1997.
van Pelt, W. J., Pohjola, V. A., and Reijmer, C. H.: The changing impact of
snow conditions and refreezing on the mass balance of an idealized Svalbard
glacier, Front. Earth Sci., 4, https://doi.org/10.3389/feart.2016.00102, 2016.
Van Tricht, L.: LanderVT/Thermal_regime: v1.0.0-thermalregime (v1.0.0.thermalregime), Zenodo [data set], https://doi.org/10.5281/zenodo.6556313, 2022.
Van Tricht, L., Huybrechts, P., Van Breedam, J., Fürst, J., Rybak, O.,
Satylkanov, R., Ermenbaiev B., Popovnin V., Neyns, R., Paice C. M., and Malz,
P.: Measuring and inferring the ice thickness distribution of four glaciers
in the Tien Shan, Kyrgyzstan, J. Glaciol., 67, 269–286,
https://doi.org/10.1017/jog.2020.104, 2021a.
Van Tricht, L., Paice, C. M., Rybak, O., Satylkanov, R., Popovnin, V., Solomina, O.,
and Huybrechts, P.: Reconstruction of the Historical (1750–2020) Mass
Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan,
Kyrgyzstan, Front. Earth Sci., 9, https://doi.org/10.3389/feart.2021.734802, 2021b.
Van Tricht, L., Huybrechts, P., Van Breedam, J., Vanhulle, A., Van Oost, K., and Zekollari, H.: Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland), The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021, 2021c.
Vasilenko, E. V., Gromyko, A. N., Dmitriev, D. N., and Macheret, Y. Y.:
Stroenie lednika Davydova po dannym radiozondirovaniya i termobureniya
[Structure of the Davydov Glacier according with radio sounding and thermal
drilling data], Akademiya nauk SSSR, Institut geografii, Materialy
gliatsiologicheskikh issledovanii [Academy of Sciences of the USSR,
Institute of Geography, Data of Glaciological Studies], Vol. 62,
208–215, 1988 (in Russian with English summary).
Vermeesch, P., Poort, J., Duchkov, A., Klerkx, J., and De Batist, M.: Lake
Issyk-Kul (Tien Shan): Unusually low heat flow in an active intermontane
basin, Geol. Geofiz., 45, 616–625, 2004.
Vilesov, E.: Temperature of ice in the lower parts of the Tuyuksu
glaciers, Union Géodésique et Géophysique Internationale,
Association Internationale d'Hydrologie Scientifique, Assemblée
générale de Helsinki, 25-7-6-8 1960, Commission des Neiges et
Glaces, Publication No. 54 de l'Association
Internationaled'Hydrologie Scientifique, 313–24, 1961.
Vincent, C., Le Meur, E., Six, D., Possenti, P., Lefebvre, E., and Funk, M.:
Climate warming revealed by englacial temperatures at Col du Dôme (4250 m, Mont-Blanc area), Geophys. Res. Lett., 34, L16502,
https://doi.org/10.1029/2007GL029933, 2007.
Vincent, C., Gilbert, A., Jourdain, B., Piard, L., Ginot, P., Mikhalenko, V., Possenti, P., Le Meur, E., Laarman, O., and Six, D.: Strong changes in englacial temperatures despite insignificant changes in ice thickness at Dôme du Goûter glacier (Mont Blanc area), The Cryosphere, 14, 925–934, https://doi.org/10.5194/tc-14-925-2020, 2020.
Wohlleben, T., Sharp, M., and Bush, A.: Factors influencing the basal
temperatures of a High Arctic polythermal glacier, Ann. Glaciol.,
50, 9–16, https://doi.org/10.3189/172756409789624210,
2009.
Wright, A. P., Wadham, J. L., Siegert, M. J., Luckman, A., Kohler, J., and
Nuttall, A. M.: Modeling the refreezing of meltwater as superimposed ice on a
high Arctic glacier: A comparison of approaches, J. Geophys.
Res., 112, F04016, https://doi.org/10.1029/2007JF000818, 2007.
Wu, Z., Zhang, H., Liu, S., Ren, D., Bai, X., Xun, Z., and Ma, Z.:
Fluctuation analysis in the dynamic characteristics of continental glacier based on Full-Stokes model,
Scientific Reports, 9, 20245, https://doi.org/10.1038/s41598-019-56864-3, 2019.
Yershov, E. D.: General Geocryology, Stud. Polar Res., edited by: Williams, P. J., Cambridge
Univ. Press, New York, 580 pp., ISBN 0-521-47334-9, 1998.
Zekollari, H., Huybrechts, P., Fürst, J. J., Rybak, O., and Eisen, O.:
Calibration of a higher-order 3-D ice-flow model of the Morteratsch glacier complex, Engadin, Switzerland,
Ann. Glaciol., 54, 343–351, https://doi.org/10.3189/2013AoG63A434, 2013.
Zekollari, H., Fürst, J., and Huybrechts, P.: Modelling the evolution of Vadret da Morteratsch, Switzerland, since the Little Ice Age and into the future, J. Glaciol., 60, 1155–1168, https://doi.org/10.3189/2014JoG14J053, 2014.
Zekollari, H. and Huybrechts, P.: On the climate–geometry imbalance,
response time and volume–area scaling of an alpine glacier: insights from a
3-D flow model applied to Vadret da Morteratsch, Switzerland, Ann.
Glaciol., 56, 51–62, https://doi.org/10.3189/2015AoG70A921, 2015.
Zekollari, H., Huybrechts, P., Noël, B., van de Berg, W. J., and van den Broeke, M. R.: Sensitivity, stability and future evolution of the world's northernmost ice cap, Hans Tausen Iskappe (Greenland), The Cryosphere, 11, 805–825, https://doi.org/10.5194/tc-11-805-2017, 2017.
Zemp, M., Huss, M., Thibert, E., McNabb R., Huber, J., Barandun, M., Machguth,
H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F.,
Kutuzov, S., and Cogley, J. G.: Global glacier mass changes and their
contributions to sea-level rise from 1961 to 2016, Nature, 568, 382–386,
https://doi.org/10.1038/s41586-019-1071-0, 2019.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime:
An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005.
Zhao, L., Tian, L., Zwinger, T., Ding, R., Zong, J., Ye, Q., and Moore, J.
C.: Numerical simulations of Gurenhekou Glacier on the Tibetan Plateau,
J. Glaciol., 60, 71–82, https://doi.org/10.3189/2014JoG13J126, 2014.
Zwinger, T., Greve, R., Gagliardini, O., Shiraiwa, T., and Lyly, M.: A full
Stokes-flow thermo-mechanical model for firn and ice applied to the Gorshkov
crater glacier, Kamchatka, Ann. Glaciol., 45, 29–37,
https://doi.org/10.3189/172756407782282543, 2007.
Zwinger, T. and Moore, J. C.: Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard, The Cryosphere, 3, 217–229, https://doi.org/10.5194/tc-3-217-2009, 2009.
Short summary
We examine the thermal regime of the Grigoriev ice cap and the Sary-Tor glacier, both located in the inner Tien Shan in Kyrgyzstan. Our findings are important as the ice dynamics can only be understood and modelled precisely if ice temperature is considered correctly in ice flow models. The calibrated parameters of this study can be used in applications with ice flow models for individual ice masses as well as to optimise more general models for large-scale regional simulations.
We examine the thermal regime of the Grigoriev ice cap and the Sary-Tor glacier, both located in...