Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-3051-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Offset of MODIS land surface temperatures from in situ air temperatures in the upper Kaskawulsh Glacier region (St. Elias Mountains) indicates near-surface temperature inversions
Ingalise Kindstedt
CORRESPONDING AUTHOR
Climate Change Institute, University of Maine, Orono, Maine, USA
Kristin M. Schild
Climate Change Institute, University of Maine, Orono, Maine, USA
School of Earth and Climate Sciences, University of Maine, Orono, Maine, USA
Dominic Winski
Climate Change Institute, University of Maine, Orono, Maine, USA
School of Earth and Climate Sciences, University of Maine, Orono, Maine, USA
Karl Kreutz
Climate Change Institute, University of Maine, Orono, Maine, USA
School of Earth and Climate Sciences, University of Maine, Orono, Maine, USA
Luke Copland
Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Ontario, Canada
Seth Campbell
Climate Change Institute, University of Maine, Orono, Maine, USA
School of Earth and Climate Sciences, University of Maine, Orono, Maine, USA
Erin McConnell
Climate Change Institute, University of Maine, Orono, Maine, USA
Related authors
Ingalise Kindstedt, Dominic Winski, C. Max Stevens, Emma Skelton, Luke Copland, Karl Kreutz, Mikaila Mannello, Renée Clavette, Jacob Holmes, Mary Albert, and Scott N. Williamson
The Cryosphere, 19, 3655–3680, https://doi.org/10.5194/tc-19-3655-2025, https://doi.org/10.5194/tc-19-3655-2025, 2025
Short summary
Short summary
Atmospheric warming over mountain glaciers is leading to increased warming and melting of snow as it compresses into glacier ice. This affects both regional hydrology and climate records contained in the ice. Here we use field observations and modeling to show that surface melting and percolation at Eclipse Icefield (Yukon, Canada) are increasing with an increase in extreme melt events and that compressing snow at Eclipse is likely to continue warming even if air temperatures remain stable.
Ingalise Kindstedt, Dominic Winski, C. Max Stevens, Emma Skelton, Luke Copland, Karl Kreutz, Mikaila Mannello, Renée Clavette, Jacob Holmes, Mary Albert, and Scott N. Williamson
The Cryosphere, 19, 3655–3680, https://doi.org/10.5194/tc-19-3655-2025, https://doi.org/10.5194/tc-19-3655-2025, 2025
Short summary
Short summary
Atmospheric warming over mountain glaciers is leading to increased warming and melting of snow as it compresses into glacier ice. This affects both regional hydrology and climate records contained in the ice. Here we use field observations and modeling to show that surface melting and percolation at Eclipse Icefield (Yukon, Canada) are increasing with an increase in extreme melt events and that compressing snow at Eclipse is likely to continue warming even if air temperatures remain stable.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Jihong Cole-Dai, Mark Wells, Aaron Putnam, and Katherine Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1897, https://doi.org/10.5194/egusphere-2025-1897, 2025
Short summary
Short summary
The Southern Hemisphere Westerly Winds impact global climate and Antarctic ice sheet stability; however, there are few complete records over the past 12,000 years. We use a new mineral dust record from a South Pole ice core and identify a decrease in particle concentration and an increase in coarse particle percentage over the past ~11,000 years. Together with other records, our data suggests a southward shift in the winds starting ~6,500 years ago related to warming in the Southern Hemisphere.
Dorota Medrzycka, Luke Copland, Laura Thomson, William Kochtitzky, and Braden Smeda
Geosci. Instrum. Method. Data Syst., 14, 69–90, https://doi.org/10.5194/gi-14-69-2025, https://doi.org/10.5194/gi-14-69-2025, 2025
Short summary
Short summary
This work explores the use of aerial photography surveys for mapping glaciers, specifically in challenging environments. Using examples from two glaciers in Arctic Canada, we discuss the main factors which can affect data collection and review methods for capturing and processing images to create accurate topographic maps. Key recommendations include choosing the right camera and positioning equipment and adapting survey design to maximise data quality, even under less-than-ideal conditions.
Ursula A. Jongebloed, Jacob I. Chalif, Linia Tashmim, William C. Porter, Kelvin H. Bates, Qianjie Chen, Erich C. Osterberg, Bess G. Koffman, Jihong Cole-Dai, Dominic A. Winski, David G. Ferris, Karl J. Kreutz, Cameron P. Wake, and Becky Alexander
Atmos. Chem. Phys., 25, 4083–4106, https://doi.org/10.5194/acp-25-4083-2025, https://doi.org/10.5194/acp-25-4083-2025, 2025
Short summary
Short summary
Marine phytoplankton emit dimethyl sulfide (DMS), which forms methanesulfonic acid (MSA) and sulfate. MSA concentrations in ice cores decreased over the industrial era, which has been attributed to pollution-driven changes in DMS chemistry. We use a model to investigate DMS chemistry compared to observations of DMS, MSA, and sulfate. We find that modeled DMS, MSA, and sulfate are influenced by pollution-sensitive oxidant concentrations, characterization of DMS chemistry, and other variables.
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
The Cryosphere, 19, 303–324, https://doi.org/10.5194/tc-19-303-2025, https://doi.org/10.5194/tc-19-303-2025, 2025
Short summary
Short summary
Determining where and when the Antarctic ice sheet was smaller than present requires recovery and exposure dating of subglacial bedrock. Here we use ice sheet model outputs and field data (geological and glaciological observations, bedrock samples, and ground-penetrating radar) to assess the suitability for subglacial drilling of sites in the Hudson Mountains, West Antarctica. We find that no sites are perfect, but two are feasible, with the most suitable being Winkie Nunatak (74.86°S, 99.77°W).
Laurane Charrier, Amaury Dehecq, Lei Guo, Fanny Brun, Romain Millan, Nathan Lioret, Luke Copland, Nathan Maier, Christine Dow, and Paul Halas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3409, https://doi.org/10.5194/egusphere-2024-3409, 2025
Short summary
Short summary
While global annual glacier velocities are openly accessible, sub-annual velocity time series are still lacking. This hinders our ability to understand flow processes and the integration of these observations in numerical models. We introduce an open source Python package called TICOI to fuses multi-temporal and multi-sensor image-pair velocities produced by different processing chains to produce standardized sub-annual velocity products.
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023, https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Short summary
We design and propose a method that can evaluate the quality of glacier velocity maps. The method includes two numbers that we can calculate for each velocity map. Based on statistics and ice flow physics, velocity maps with numbers close to the recommended values are considered to have good quality. We test the method using the data from Kaskawulsh Glacier, Canada, and release an open-sourced software tool called GLAcier Feature Tracking testkit (GLAFT) to help users assess their velocity maps.
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023, https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary
Short summary
Understanding the behavior of ocean–atmosphere teleconnections in the North Pacific during warm intervals can aid in predicting future warming scenarios. However, majority ice core records from Alaska–Yukon region only provide data for the last few centuries. This study introduces a continuous chronology for Denali ice core from Begguya, Alaska, using multiple dating methods. The early-Holocene-origin Denali ice core will facilitate future investigations of hydroclimate in the North Pacific.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Greg Balco, Nathan Brown, Keir Nichols, Ryan A. Venturelli, Jonathan Adams, Scott Braddock, Seth Campbell, Brent Goehring, Joanne S. Johnson, Dylan H. Rood, Klaus Wilcken, Brenda Hall, and John Woodward
The Cryosphere, 17, 1787–1801, https://doi.org/10.5194/tc-17-1787-2023, https://doi.org/10.5194/tc-17-1787-2023, 2023
Short summary
Short summary
Samples of bedrock recovered from below the West Antarctic Ice Sheet show that part of the ice sheet was thinner several thousand years ago than it is now and subsequently thickened. This is important because of concern that present ice thinning in this region may lead to rapid, irreversible sea level rise. The past episode of thinning at this site that took place in a similar, although not identical, climate was not irreversible; however, reversal required at least 3000 years to complete.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Joseph Mohan, Jihong Cole-Dai, Mark Wells, Michael Handley, Aaron Putnam, Katherine Anderson, and Natalie Harmon
Clim. Past, 19, 477–492, https://doi.org/10.5194/cp-19-477-2023, https://doi.org/10.5194/cp-19-477-2023, 2023
Short summary
Short summary
Ice core microparticle data typically use geometry assumptions to calculate particle mass and flux. We use dynamic particle imaging, a novel technique for ice core dust analyses, combined with traditional laser particle counting and Coulter counter techniques to assess particle shape in the South Pole Ice Core (SPC14) spanning 50–16 ka. Our results suggest that particles are dominantly ellipsoidal in shape and that spherical assumptions overestimate particle mass and flux.
Joanne S. Johnson, Ryan A. Venturelli, Greg Balco, Claire S. Allen, Scott Braddock, Seth Campbell, Brent M. Goehring, Brenda L. Hall, Peter D. Neff, Keir A. Nichols, Dylan H. Rood, Elizabeth R. Thomas, and John Woodward
The Cryosphere, 16, 1543–1562, https://doi.org/10.5194/tc-16-1543-2022, https://doi.org/10.5194/tc-16-1543-2022, 2022
Short summary
Short summary
Recent studies have suggested that some portions of the Antarctic Ice Sheet were less extensive than present in the last few thousand years. We discuss how past ice loss and regrowth during this time would leave its mark on geological and glaciological records and suggest ways in which future studies could detect such changes. Determining timing of ice loss and gain around Antarctica and conditions under which they occurred is critical for preparing for future climate-warming-induced changes.
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Jon S. Edwards, Todd A. Sowers, Emma C. Kahle, Jeffrey P. Severinghaus, Eric J. Steig, Dominic A. Winski, Erich C. Osterberg, Tyler J. Fudge, Murat Aydin, Ekaterina Hood, Michael Kalk, Karl J. Kreutz, David G. Ferris, and Joshua A. Kennedy
Clim. Past, 16, 2431–2444, https://doi.org/10.5194/cp-16-2431-2020, https://doi.org/10.5194/cp-16-2431-2020, 2020
Short summary
Short summary
A new ice core drilled at the South Pole provides a 54 000-year paleo-environmental record including the composition of the past atmosphere. This paper describes the gas chronology for the South Pole ice core, based on a high-resolution methane record. The new gas chronology, in combination with the existing ice age scale from Winski et al. (2019), allows a model-independent reconstruction of the delta age record.
Cited articles
Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.:
Estimating air surface temperature in Portugal using MODIS LST data,
Remote Sens. Environ., 124, 108–121,
https://doi.org/10.1016/J.RSE.2012.04.024, 2012. a
Boschetti, L., Vermote, E., and Wolfe, R.: MODTBGA MODIS/Terra Thermal Bands Daily L2G-Lite Global 1km SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MODTBGA.006 (last access: 17 June 2020), 2015. a
Braithwaite, R. J. and Olesen, O.: A Simple Energy-Balance Model to
Calculate Ice Ablation at the Margin of the Greenland Ice
Sheet, J. Glaciol., 36, 222–228,
https://doi.org/10.3189/S0022143000009473, 1990. a
Brock, B. W. and Arnold, N. S.: A spreadsheet-based (Microsoft Excel) point
surface energy balance model for glacier and snow melt studies, Earth Surf. Proc. Land., 25, 649–658,
https://doi.org/10.1002/1096-9837(200006)25:6<649::AID-ESP97>3.0.CO;2-U,
2000. a
Budyko, M. I.: The effect of solar radiation variations on the climate of the
Earth, Tellus, 21, 611–619, https://doi.org/10.1111/J.2153-3490.1969.TB00466.X,
1969. a
Chen, B., Chao, W. C., and Liu, X.: Enhanced climatic warming in the Tibetan
Plateau due to doubling CO2: a model study, Climate Dynamics, 20,
401–413, https://doi.org/10.1007/s00382-002-0282-4, 2003. a
Diaz, H. F., Bradley, R. S., and Ning, L.: Climatic Changes in Mountain
Regions of the American Cordillera and the Tropics: Historical
Changes and Future Outlook, Arct. Antarct. Alpine Res., 46,
735–743, https://doi.org/10.1657/1938-4246-46.4.735, 2014. a
Ebrahimi, S. and Marshall, S. J.: Surface energy balance sensitivity to meteorological variability on Haig Glacier, Canadian Rocky Mountains, The Cryosphere, 10, 2799–2819, https://doi.org/10.5194/tc-10-2799-2016, 2016. a, b
Emamifar, S., Rahimikhoob, A., and Noroozi, A. A.: Daily mean air temperature
estimation from MODIS land surface temperature products based on M5 model
tree, Int. J. Climatol., 33, 3174–3181,
https://doi.org/10.1002/JOC.3655, 2013. a
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion,
F., and Pandit, A.: A consensus estimate for the ice thickness distribution
of all glaciers on Earth, Nat. Geosci., 12, 168–173,
https://doi.org/10.1038/s41561-019-0300-3, 2019. a, b
Favier, V., Wagnon, P., Chazarin, J.-P., Maisincho, L., and Coudrain, A.:
One-year measurements of surface heat budget on the ablation zone of
Antizana Glacier 15, Ecuadorian Andes, J. Geophys.
Res.-Atmos., 109, 18105, https://doi.org/10.1029/2003JD004359,
2004. a
Giesen, R. H., van den Broeke, M. R., Oerlemans, J., and Andreassen, L. M.:
Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in
southern Norway: Interannual variability and the effect of clouds,
J. Geophys. Res.-Atmos., 113, 21111,
https://doi.org/10.1029/2008JD010390, 2008. a
Giorgi, F., Hurrell, J. W., Marinucci, M. R., and Beniston, M.: Elevation
Dependency of the Surface Climate Change Signal: A Model
Study, J. Climate, 10, 288–296,
https://doi.org/10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2, 1997. a
Good, E. J.: An in situ-based analysis of the relationship between land surface
“skin” and screen-level air temperatures, J. Geophys.
Res.-Atmos., 121, 8801–8819, https://doi.org/10.1002/2016JD025318, 2016. a
Hengl, T., Heuvelink, G. B. M., Tadić, M. P., and Pebesma, E. J.:
Spatio-temporal prediction of daily temperatures using time-series of MODIS
LST images, Theor. Appl. Climatol., 107, 265–277,
https://doi.org/10.1007/S00704-011-0464-2,
2012. a
Herrero, J. and Polo, M. J.: Parameterization of atmospheric longwave emissivity in a mountainous site for all sky conditions, Hydrol. Earth Syst. Sci., 16, 3139–3147, https://doi.org/10.5194/hess-16-3139-2012, 2012. a, b
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. d.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146,
1999–2049, https://doi.org/10.1002/QJ.3803, 2020. a
Hock, R. and Holmgren, B.: Some Aspects of Energy Balance and Ablation
of Storglaciären, Northern Sweden, Geogr. Ann. A,
78, 121–131, https://doi.org/10.1080/04353676.1996.11880458, 1996. a
Hock, R. and Noetzli, C.: Areal melt and discharge modelling of
Storglaciären, Sweden, Ann. Glaciol., 24, 211–216,
https://doi.org/10.3189/S0260305500012192, 1997. a
Hooker, J., Duveiller, G., and Cescatti, A.: A global dataset of air
temperature derived from satellite remote sensing and weather stations,
Scientific Data, 5, 1–11, https://doi.org/10.1038/sdata.2018.246, 2018. a
Hori, M., Aoki, T., Tanikawa, T., Motoyoshi, H., Hachikubo, A., Sugiura, K.,
Yasunari, T. J., Eide, H., Storvold, R., Nakajima, Y., and Takahashi, F.:
In-situ measured spectral directional emissivity of snow and ice in the
8–14 µm atmospheric window, Remote Sens. Environ., 100, 486–502,
https://doi.org/10.1016/j.rse.2005.11.001, 2006. a, b, c, d, e
Hudson, S. R. and Brandt, R. E.: A Look at the Surface-Based
Temperature Inversion on the Antarctic Plateau, J. Climate,
18, 1673–1696, https://doi.org/10.1175/JCLI3360.1, 2005. a, b
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a, b, c, d
Hulley, G.: MYD21 MODIS/Aqua Land Surface Temperature/3-Band Emissivity 5-Min L2 1km V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MYD21.006 (last access: 17 June 2020), 2015. a
Hulley, G.: MOD21A1D MODIS/Terra Land Surface Temperature/3-Band
Emissivity Daily L3 Global 1 km SIN Grid Day V006, LP DAAC [data set],
https://doi.org/10.5067/MODIS/MOD21A1D.006, 2017. a, b
Hulley, G. and Hook, S.: MOD21 MODIS/Terra Land Surface Temperature/3-Band Emissivity 5-Min L2 1km V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MOD21.006 (last access: 17 June 2020), 2017. a
Hulley, G., Veraverbeke, S., and Hook, S.: Thermal-based techniques for land
cover change detection using a new dynamic MODIS multispectral emissivity
product (MOD21), Remote Sens. Environ., 140, 755–765,
https://doi.org/10.1016/j.rse.2013.10.014, 2014. a
Janatian, N., Sadeghi, M., Sanaeinejad, S. H., Bakhshian, E., Farid, A.,
Hasheminia, S. M., and Ghazanfari, S.: A statistical framework for estimating
air temperature using MODIS land surface temperature data, Int.
J. Climatol., 37, 1181–1194, https://doi.org/10.1002/JOC.4766, 2017. a
Jin, M. and Dickinson, R. E.: Land surface skin temperature climatology:
benefitting from the strengths of satellite observations, Environ.
Res. Lett., 5, 044004, https://doi.org/10.1088/1748-9326/5/4/044004, 2010. a
Koenig, L. S. and Hall, D. K.: Comparison of satellite, thermochron and air
temperatures at Summit, Greenland, during the winter of 2008/09, J.
Glaciol., 56, 735–741, https://doi.org/10.3189/002214310793146269, 2010. a, b, c
Li, H., Li, R., Yang, Y., Cao, B., Bian, Z., Hu, T., Du, Y., Sun, L., and Liu,
Q.: Temperature-Based and Radiance-Based Validation of the
Collection 6 MYD11 and MYD21 Land Surface Temperature Products
Over Barren Surfaces in Northwestern China, IEEE T.
Geosci. Remote Sens., 59, 1–14, https://doi.org/10.1109/TGRS.2020.2998945, 2020. a
Lian, M. S. and Cess, R. D.: Energy Balance Climate Models: A
Reappraisal of Ice-Albedo Feedback, J.
Atmos. Sci., 34, https://doi.org/10.1175/1520-0469(1977)034<1058:EBCMAR>2.0.CO;2,
1977. a
NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team: ASTER Level 2 Surface Temperature Product, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/ASTER/AST_08.003 (last access: 9 June 2020), 2001. a
NASA LP DAAC: ASTER Level 1 Precision Terrain Corrected Registered At-Sensor Radiance V003, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/ASTER/AST_L1T.003 (last access: 9 June 2020), 2015. a
Ndossi, M. I. and Avdan, U.: Inversion of Land Surface Temperature
(LST) Using Terra ASTER Data: A Comparison of Three
Algorithms, Remote Sensing, 8, 993, https://doi.org/10.3390/rs8120993, 2016. a, b
Nielsen-Englyst, P., Høyer, J. L., Madsen, K. S., Tonboe, R., Dybkjær, G., and Alerskans, E.: In situ observed relationships between snow and ice surface skin temperatures and 2 m air temperatures in the Arctic, The Cryosphere, 13, 1005–1024, https://doi.org/10.5194/tc-13-1005-2019, 2019. a, b
Ohmura, A.: Physical Basis for the Temperature-Based Melt-Index Method, J. Appl. Meteorol., 40, 753–761,
https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;2, 2001. a
Ohmura, A.: Enhanced temperature variability in high-altitude climate change,
Theor. Appl. Climatol., 110, 110, 499–508,
https://doi.org/10.1007/S00704-012-0687-X, 2012. a
Østby, T. I., Schuler, T. V., and Westermann, S.: Severe cloud contamination
of MODIS Land Surface Temperatures over an Arctic ice cap,
Svalbard, Remote Sens. Environ., 142, 95–102,
https://doi.org/10.1016/j.rse.2013.11.005, 2014. a
Pellicciotti, F., Carenzo, M., Helbing, J., Rimkus, S., and Burlando, P.: On
the role of subsurface heat conduction in glacier energy-balance modelling,
Ann. Glaciol., 50, 16–24, https://doi.org/10.3189/172756409787769555, 2009. a
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe,
N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., Miller, J. R.,
Ning, L., Ohmura, A., Palazzi, E., Rangwala, I., Schöner, W., Severskiy, I.,
Shahgedanova, M., Wang, M. B., Williamson, S. N., Yang, D. Q., and Mountain
Research Initiative EDW Working Group: Elevation-dependent warming in
mountain regions of the world, Nat. Clim. Change, 5, 424–430,
https://doi.org/10.1038/nclimate2563,
2015. a
Rangwala, I. and Miller, J. R.: Climate change in mountains: a review of
elevation-dependent warming and its possible causes, Climatic Change, 114,
527–547, https://doi.org/10.1007/s10584-012-0419-3, 2012. a
Salisbury, J. W., D'Aria, D. M., and Wald, A.: Measurements of thermal infrared
spectral reflectance of frost, snow, and ice, J. Geophys.
Res.-Sol. Ea., 99, 24235–24240, https://doi.org/10.1029/94JB00579,
1994. a
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77,
85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a, b
Shea, C. and Jamieson, B.: Some fundamentals of handheld snow surface thermography, The Cryosphere, 5, 55–66, https://doi.org/10.5194/tc-5-55-2011, 2011. a
Shuman, C. A., Hall, D. K., DiGirolamo, N. E., Mefford, T. K., and Schnaubelt,
M. J.: Comparison of Near-Surface Air Temperatures and MODIS
Ice-Surface Temperatures at Summit, Greenland (2008–13), J.
Appl. Meteorol. Clim., 53, 2171–2180,
https://doi.org/10.1175/JAMC-D-14-0023.1,
2014. a
Staley, D. O. and Jurica, G. M.: Effective Atmospheric Emissivity under
Clear Skies, J.
Appl. Meteorol. Clim., 11,
349–356, 1972. a
Walsh, J. E. and Chapman, W. L.: Arctic Cloud–Radiation–Temperature
Associations in Observational Data and Atmospheric Reanalyses,
J. Climate, 11, 3030–3045,
https://doi.org/10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2, 1998. a, b
Wan, Z. and Zhang, Y.: MODIS UCSB Emissivity Library,
https://icess.eri.ucsb.edu/modis/EMIS/html/em.html (last access: 5 October 2020), 1999. a
Westermann, S., Langer, M., and Boike, J.: Systematic bias of average
winter-time land surface temperatures inferred from MODIS at a site on
Svalbard, Norway, Remote Sens. Environ., 118, 162–167,
https://doi.org/10.1016/j.rse.2011.10.025, 2012. a, b
Williamson, S. N., Hik, D. S., Gamon, J. A., Kavanaugh, J. L., and Koh, S.:
Evaluating Cloud Contamination in Clear-Sky MODIS Terra Daytime
Land Surface Temperatures Using Ground-Based Meteorology
Station Observations, J. Climate, 26, 1551–1560,
https://doi.org/10.1175/JCLI-D-12-00250.1,
2013. a
Williamson, S. N., Copland, L., and Hik, D. S.: The accuracy of
satellite-derived albedo for northern alpine and glaciated land covers, Polar
Sci., 10, 262–269, https://doi.org/10.1016/j.polar.2016.06.006, 2016. a, b, c
Williamson, S. N., Hik, D. S., Gamon, J. A., Jarosch, A. H., Anslow, F. S.,
Clarke, G. K. C., and Scott Rupp, T.: Spring and summer monthly MODIS LST
is inherently biased compared to air temperature in snow covered sub-Arctic
mountains, Remote Sens. Environ., 189, 14–24,
https://doi.org/10.1016/j.rse.2016.11.009, 2017. a, b, c, d
Williamson, S. N., Zdanowicz, C., Anslow, F. S., Clarke, G. K. C., Copland, L.,
Danby, R. K., Flowers, G. E., Holdsworth, G., Jarosch, A. H., and Hik, D. S.:
Evidence for elevation-dependent warming in the St. Elias Mountains,
Yukon, Canada, J. Climate, 33, 3253–3269, https://doi.org/10.1175/JCLI-D-19-0405.1, 2020. a, b, c
Winski, D., Osterberg, E., Kreutz, K., Wake, C., Ferris, D., Campbell, S.,
Baum, M., Bailey, A., Birkel, S., Introne, D., and Handley, M.: A 400-Year
Ice Core Melt Layer Record of Summertime Warming in the
Alaska Range, J. Geophys. Res.-Atmos., 123,
3594–3611, https://doi.org/10.1002/2017JD027539, 2018. a
Winton, M.: Amplified Arctic climate change: What does surface albedo
feedback have to do with it?, Geophys. Res. Lett., 33, L03701,
https://doi.org/10.1029/2005GL025244, 2006. a
Yang, M., Li, Z., Anjum, M. N., Zhang, X., Gao, Y., and Xu, C.: On the
importance of subsurface heat flux for estimating the mass balance of alpine
glaciers, Global Planet. Change, 207, 103651,
https://doi.org/10.1016/J.GLOPLACHA.2021.103651, 2021. a
Yang, W., Guo, X., Yao, T., Yang, K., Zhao, L., Li, S., and Zhu, M.: Summertime
surface energy budget and ablation modeling in the ablation zone of a
maritime Tibetan glacier, J. Geophys. Res.-Atmos.,
116, 14116, https://doi.org/10.1029/2010JD015183, 2011. a
Yao, R., Wang, L., Wang, S., Wang, L., Wei, J., Li, J., and Yu, D.: A detailed
comparison of MYD11 and MYD21 land surface temperature products in
mainland China, Int. J. Digit. Earth, 0, 1–17,
https://doi.org/10.1080/17538947.2019.1711211, 2020.
a, b
You, Q., Cai, Z., Pepin, N., Chen, D., Ahrens, B., Jiang, Z., Wu, F., Kang, S.,
Zhang, R., Wu, T., Wang, P., Li, M., Zuo, Z., Gao, Y., Zhai, P., and Zhang,
Y.: Warming amplification over the Arctic Pole and Third Pole:
Trends, mechanisms and consequences, Earth-Sci. Rev., 217, 103625,
https://doi.org/10.1016/j.earscirev.2021.103625, 2021. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun,
M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul,
F., Maussion, F., Kutuzov, S., and Cogley, J. G.: Global glacier mass changes
and their contributions to sea-level rise from 1961 to 2016, Nature, 568,
382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019. a, b, c
Zhang, H., Zhang, F., Ye, M., Che, T., and Zhang, G.: Estimating daily air
temperatures over the Tibetan Plateau by dynamically integrating MODIS
LST data, J. Geophys. Res.-Atmos., 121,
11425–11441, https://doi.org/10.1002/2016JD025154, 2016. a
Zhang, H., Zhang, F., Zhang, G., Ma, Y., Yang, K., and Ye, M.: Daily air
temperature estimation on glacier surfaces in the Tibetan Plateau using
MODIS LST data, J. Glaciol., 64, 132–147,
https://doi.org/10.1017/JOG.2018.6, 2018. a
Zhang, W., Zhang, B., Zhu, W., Tang, X., Li, F., Liu, X., and Yu, Q.:
Comprehensive assessment of MODIS-derived near-surface air temperature
using wide elevation-spanned measurements in China, Sci. Total
Environ., 800, 149535, https://doi.org/10.1016/J.SCITOTENV.2021.149535, 2021. a
Zhu, W., Lu, A., and Jia, S.: Estimation of daily maximum and minimum air
temperature using MODIS land surface temperature products, Remote Sens.
Environ., 130, 62–73, https://doi.org/10.1016/J.RSE.2012.10.034, 2013. a
Short summary
We show that neither the large spatial footprint of the MODIS sensor nor poorly constrained snow emissivity values explain the observed cold offset in MODIS land surface temperatures (LSTs) in the St. Elias. Instead, the offset is most prominent under conditions associated with near-surface temperature inversions. This work represents an advance in the application of MODIS LSTs to glaciated alpine regions, where we often depend solely on remote sensing products for temperature information.
We show that neither the large spatial footprint of the MODIS sensor nor poorly constrained snow...