Articles | Volume 16, issue 8
https://doi.org/10.5194/tc-16-3051-2022
https://doi.org/10.5194/tc-16-3051-2022
Research article
 | 
02 Aug 2022
Research article |  | 02 Aug 2022

Offset of MODIS land surface temperatures from in situ air temperatures in the upper Kaskawulsh Glacier region (St. Elias Mountains) indicates near-surface temperature inversions

Ingalise Kindstedt, Kristin M. Schild, Dominic Winski, Karl Kreutz, Luke Copland, Seth Campbell, and Erin McConnell

Related authors

Review of methodological considerations and recommendations for mapping remote glaciers from aerial photography surveys in suboptimal conditions
Dorota Medrzycka, Luke Copland, Laura Thomson, William Kochtitzky, and Braden Smeda
Geosci. Instrum. Method. Data Syst. Discuss., https://doi.org/10.5194/gi-2024-10,https://doi.org/10.5194/gi-2024-10, 2024
Preprint under review for GI
Short summary
Dimethyl sulfide chemistry over the industrial era: comparison of key oxidation mechanisms and long-term observations
Ursula A. Jongebloed, Jacob I. Chalif, Linia Tashmim, William C. Porter, Kelvin H. Bates, Qianjie Chen, Erich C. Osterberg, Bess G. Koffman, Jihong Cole-Dai, Dominic A. Winksi, David G. Ferris, Karl J. Kreutz, Cameron P. Wake, and Becky Alexander
EGUsphere, https://doi.org/10.5194/egusphere-2024-3026,https://doi.org/10.5194/egusphere-2024-3026, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Detecting Holocene retreat and readvance in the Amundsen Sea sector of Antarctica: assessing the suitability of sites near Pine Island Glacier for subglacial bedrock drilling
Joanne S. Johnson, John Woodward, Ian Nesbitt, Kate Winter, Seth Campbell, Keir A. Nichols, Ryan A. Venturelli, Scott Braddock, Brent M. Goehring, Brenda Hall, Dylan H. Rood, and Greg Balco
EGUsphere, https://doi.org/10.5194/egusphere-2024-1452,https://doi.org/10.5194/egusphere-2024-1452, 2024
Short summary
GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking
Whyjay Zheng, Shashank Bhushan, Maximillian Van Wyk De Vries, William Kochtitzky, David Shean, Luke Copland, Christine Dow, Renette Jones-Ivey, and Fernando Pérez
The Cryosphere, 17, 4063–4078, https://doi.org/10.5194/tc-17-4063-2023,https://doi.org/10.5194/tc-17-4063-2023, 2023
Short summary
Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14C age constraints
Ling Fang, Theo M. Jenk, Dominic Winski, Karl Kreutz, Hanna L. Brooks, Emma Erwin, Erich Osterberg, Seth Campbell, Cameron Wake, and Margit Schwikowski
The Cryosphere, 17, 4007–4020, https://doi.org/10.5194/tc-17-4007-2023,https://doi.org/10.5194/tc-17-4007-2023, 2023
Short summary

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024,https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Improved records of glacier flow instabilities using customized NASA autoRIFT (CautoRIFT) applied to PlanetScope imagery
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024,https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Lake ice break-up in Greenland: timing and spatiotemporal variability
Christoph Posch, Jakob Abermann, and Tiago Silva
The Cryosphere, 18, 2035–2059, https://doi.org/10.5194/tc-18-2035-2024,https://doi.org/10.5194/tc-18-2035-2024, 2024
Short summary
The Pléiades Glacier Observatory: high resolution digital elevation models and ortho-imagery to monitor glacier change
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquin Munoz Cobo Belart, Fanny Brun, Liss Marie Andreassen, Brian Menounos, and Charlotte Blondel
EGUsphere, https://doi.org/10.5194/egusphere-2024-250,https://doi.org/10.5194/egusphere-2024-250, 2024
Short summary

Cited articles

Adolph, A. C., Albert, M. R., and Hall, D. K.: Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures, The Cryosphere, 12, 907–920, https://doi.org/10.5194/tc-12-907-2018, 2018. a, b, c, d, e, f, g, h
Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., and Santos, A.: Estimating air surface temperature in Portugal using MODIS LST data, Remote Sens. Environ., 124, 108–121, https://doi.org/10.1016/J.RSE.2012.04.024, 2012. a
Boschetti, L., Vermote, E., and Wolfe, R.: MODTBGA MODIS/Terra Thermal Bands Daily L2G-Lite Global 1km SIN Grid V006, NASA EOSDIS Land Processes DAAC [data set], https://doi.org/10.5067/MODIS/MODTBGA.006 (last access: 17 June 2020), 2015. a
Braithwaite, R. J. and Olesen, O.: A Simple Energy-Balance Model to Calculate Ice Ablation at the Margin of the Greenland Ice Sheet, J. Glaciol., 36, 222–228, https://doi.org/10.3189/S0022143000009473, 1990. a
Brock, B. W. and Arnold, N. S.: A spreadsheet-based (Microsoft Excel) point surface energy balance model for glacier and snow melt studies, Earth Surf. Proc. Land., 25, 649–658, https://doi.org/10.1002/1096-9837(200006)25:6<649::AID-ESP97>3.0.CO;2-U, 2000. a
Download
Short summary
We show that neither the large spatial footprint of the MODIS sensor nor poorly constrained snow emissivity values explain the observed cold offset in MODIS land surface temperatures (LSTs) in the St. Elias. Instead, the offset is most prominent under conditions associated with near-surface temperature inversions. This work represents an advance in the application of MODIS LSTs to glaciated alpine regions, where we often depend solely on remote sensing products for temperature information.