Articles | Volume 16, issue 7
https://doi.org/10.5194/tc-16-2859-2022
https://doi.org/10.5194/tc-16-2859-2022
Research article
 | 
19 Jul 2022
Research article |  | 19 Jul 2022

Coherent backscatter enhancement in bistatic Ku- and X-band radar observations of dry snow

Marcel Stefko, Silvan Leinss, Othmar Frey, and Irena Hajnsek

Related authors

Monitoring the displacement of large alpine rock slope instabilities with L-band SAR interferometric techniques
Tazio Strozzi, Nina Jones, Federico Agliardi, Alessandro De Pedrini, Othmar Frey, Philipp Bernhard, Rafael Caduff, Christian Ambrosi, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2025-5347,https://doi.org/10.5194/egusphere-2025-5347, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Quantifying retrogressive thaw slump mass wasting and carbon mobilisation on the Qinghai-Tibet Plateau using multi-modal remote sensing
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
The Cryosphere, 19, 4855–4873, https://doi.org/10.5194/tc-19-4855-2025,https://doi.org/10.5194/tc-19-4855-2025, 2025
Short summary
Mapping seasonal snow melting in Karakoram using SAR and topographic data
Shiyi Li, Lanqing Huang, Philipp Bernhard, and Irena Hajnsek
The Cryosphere, 19, 1621–1639, https://doi.org/10.5194/tc-19-1621-2025,https://doi.org/10.5194/tc-19-1621-2025, 2025
Short summary
Characterization of Ice Features in the Southwest Greenland Ablation Zone Using Multi-Modal SAR Data
Sara-Patricia Schlenk, Georg Fischer, Matteo Pardini, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2024-3474,https://doi.org/10.5194/egusphere-2024-3474, 2025
Short summary
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024,https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary

Cited articles

Aegerter, C. M. and Maret, G.: Coherent Backscattering and Anderson Localization of Light, Prog. Optics, 52, 1–62​​​​​​​, https://doi.org/10.1016/S0079-6638(08)00003-6, 2009. a
Akkermans, E. and Montambaux, G.: Mesoscopic physics of photons, J. Opt. Soc. Am. B, 21, 101–112, https://doi.org/10.1364/JOSAB.21.000101, 2004. a
Akkermans, E., Wolf, P. E., and Maynard, R.: Coherent backscattering of light by disordered media: Analysis of the peak line shape, Phys. Rev. Lett., 56, 1471–1474​​​​​​​, https://doi.org/10.1103/PhysRevLett.56.1471, 1986. a, b
Akkermans, E., Wolf, P., Maynard, R., and Maret, G.: Theoretical study of the coherent backscattering of light by disordered media, J. Phys. France, 49, 77–98, https://doi.org/10.1051/jphys:0198800490107700, 1988. a, b, c, d, e, f, g
Baffelli, S., Frey, O., Werner, C., and Hajnsek, I.: Polarimetric Calibration of the Ku-Band Advanced Polarimetric Radar Interferometer, IEEE T. Geosci. Remote, 56, 2295–2311, 2017. a
Download
Short summary
The coherent backscatter opposition effect can enhance the intensity of radar backscatter from dry snow by up to a factor of 2. Despite widespread use of radar backscatter data by snow scientists, this effect has received notably little attention. For the first time, we characterize this effect for the Earth's snow cover with bistatic radar experiments from ground and from space. We are also able to retrieve scattering and absorbing lengths of snow at Ku- and X-band frequencies.
Share