Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5041-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5041-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Image classification of marine-terminating outlet glaciers in Greenland using deep learning methods
Melanie Marochov
Department of Geography, Durham University, Durham, DH1 3LE, UK
Chris R. Stokes
Department of Geography, Durham University, Durham, DH1 3LE, UK
Patrice E. Carbonneau
CORRESPONDING AUTHOR
Department of Geography, Durham University, Durham, DH1 3LE, UK
Related authors
No articles found.
Charlotte M. Carter, Steven Franke, Daniela Jansen, Chris R. Stokes, Veit Helm, John Paden, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1743, https://doi.org/10.5194/egusphere-2025-1743, 2025
Short summary
Short summary
The landscapes beneath actively fast-flowing ice in Greenland have not been explored in detail, as digital elevation models do not have a high enough resolution to see these subglacial features. We use swath radar imaging to visualise these landforms at a high resolution, revealing a landscape that would usually be assumed to be indicative of faster ice flow than the current velocities. Interpretation of the landscape also gives an indication of the properties of the bed beneath the ice stream.
Benjamin J. Stoker, Helen E. Dulfer, Chris R. Stokes, Victoria H. Brown, Christopher D. Clark, Colm Ó Cofaigh, David J. A. Evans, Duane Froese, Sophie L. Norris, and Martin Margold
The Cryosphere, 19, 869–910, https://doi.org/10.5194/tc-19-869-2025, https://doi.org/10.5194/tc-19-869-2025, 2025
Short summary
Short summary
The retreat of the northwestern Laurentide Ice Sheet allows us to investigate how the ice drainage network evolves over millennial timescales and understand the influence of climate forcing, glacial lakes and the underlying geology on the rate of deglaciation. We reconstruct the changes in ice flow at 500-year intervals and identify rapid reorganisations of the drainage network, including variations in ice streaming that we link to climatically driven changes in the ice sheet surface slope.
Holly Wytiahlowsky, Chris R. Stokes, Rebecca A. Hodge, Caroline C. Clason, and Stewart S. R. Jamieson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3894, https://doi.org/10.5194/egusphere-2024-3894, 2025
Short summary
Short summary
Channels on glaciers are important due to their role in transporting glacial meltwater from glaciers and into downstream river catchments. These channels have received little research in mountain environments. We manually mapped <2000 channels to determine their distribution and characteristics across 285 glaciers in Switzerland. We find that channels are mostly commonly found on large glaciers with lower relief and fewer crevasses. Most channels run off the glacier, but 20 % enter the glacier.
Hannah J. Picton, Chris R. Stokes, Stewart S. R. Jamieson, Dana Floricioiu, and Lukas Krieger
The Cryosphere, 17, 3593–3616, https://doi.org/10.5194/tc-17-3593-2023, https://doi.org/10.5194/tc-17-3593-2023, 2023
Short summary
Short summary
This study provides an overview of recent ice dynamics within Vincennes Bay, Wilkes Land, East Antarctica. This region was recently discovered to be vulnerable to intrusions of warm water capable of driving basal melt. Our results show extensive grounding-line retreat at Vanderford Glacier, estimated at 18.6 km between 1996 and 2020. This supports the notion that the warm water is able to access deep cavities below the Vanderford Ice Shelf, potentially making Vanderford Glacier unstable.
Bertie W. J. Miles, Chris R. Stokes, Adrian Jenkins, Jim R. Jordan, Stewart S. R. Jamieson, and G. Hilmar Gudmundsson
The Cryosphere, 17, 445–456, https://doi.org/10.5194/tc-17-445-2023, https://doi.org/10.5194/tc-17-445-2023, 2023
Short summary
Short summary
Satellite observations have shown that the Shirase Glacier catchment in East Antarctica has been gaining mass over the past 2 decades, a trend largely attributed to increased snowfall. Our multi-decadal observations of Shirase Glacier show that ocean forcing has also contributed to some of this recent mass gain. This has been caused by strengthening easterly winds reducing the inflow of warm water underneath the Shirase ice tongue, causing the glacier to slow down and thicken.
Bertie W. J. Miles, Jim R. Jordan, Chris R. Stokes, Stewart S. R. Jamieson, G. Hilmar Gudmundsson, and Adrian Jenkins
The Cryosphere, 15, 663–676, https://doi.org/10.5194/tc-15-663-2021, https://doi.org/10.5194/tc-15-663-2021, 2021
Short summary
Short summary
We provide a historical overview of changes in Denman Glacier's flow speed, structure and calving events since the 1960s. Based on these observations, we perform a series of numerical modelling experiments to determine the likely cause of Denman's acceleration since the 1970s. We show that grounding line retreat, ice shelf thinning and the detachment of Denman's ice tongue from a pinning point are the most likely causes of the observed acceleration.
Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson
The Cryosphere, 14, 4103–4120, https://doi.org/10.5194/tc-14-4103-2020, https://doi.org/10.5194/tc-14-4103-2020, 2020
Short summary
Short summary
Surface meltwater lakes can flex and fracture ice shelves, potentially leading to ice shelf break-up. A long-term record of lake evolution on Shackleton Ice Shelf is produced using optical satellite imagery and compared to surface air temperature and modelled surface melt. The results reveal that lake clustering on the ice shelf is linked to melt-enhancing feedbacks. Peaks in total lake area and volume closely correspond with intense snowmelt events rather than with warmer seasonal temperatures.
Cited articles
Alifu, H., Tateishi, R., and Johnson, B.: A new band ratio technique for
mapping debris-covered glaciers using Landsat imagery and a digital
elevation model, Int. J. Remote Sens., 36, 2063–2075,
https://doi.org/10.1080/2150704X.2015.1034886, 2015.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P.,
and Motyka, R. J.: Ice mélange dynamics and implications for terminus
stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res.-Earth, 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Amundson, J. M., Kienholz, C., Hager, A. O., Jackson, R. H., Motyka, R. J.,
Nash, J. D., and Sutherland, D. A.: Formation, flow and break-up of ephemeral
ice mélange at LeConte Glacier and Bay, Alaska, J. Glaciol.,
66, 577–590, https://doi.org/10.1017/jog.2020.29, 2020.
Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjørk, A. A., Andersen,
T. J., Kuijpers, A., Nørgaard-Pedersen, N., Kjær, K. H., Schjøth,
F., Weckström, K., and Ahlstrøm, A. P.: Rapid response of Helheim
Glacier in Greenland to climate variability over the past century, Nat.
Geosci., 5, 37–41, https://doi.org/10.1038/ngeo1349, 2012.
Andresen, C. S., Sicre, M.-A., Straneo, F., Sutherland, D. A., Schmith, T.,
Hvid Ribergaard, M., Kuijpers, A., and Lloyd, J. M.: A 100-year long record
of alkenone-derived SST changes by southeast Greenland, Cont. Shelf
Res., 71, 45–51, https://doi.org/10.1016/j.csr.2013.10.003, 2013.
Barbat, M. M., Rackow, T., Wesche, C., Hellmer, H. H., and Mata, M. M.:
Automated iceberg tracking with a machine learning approach applied to SAR
imagery: A Weddell sea case study, ISPRS J. Photogramm., 172, 189–206, https://doi.org/10.1016/j.isprsjprs.2020.12.006, 2021.
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated
extraction of Antarctic glacier and ice shelf fronts from Sentinel-1 imagery
using deep learning, Remote Sens.-Basel, 11, 2529, https://doi.org/10.3390/rs11212529,
2019.
Berberoglu, S., Lloyd, C. D., Atkinson, P. M., and Curran, P. J.: The
integration of spectral and textural information using neural networks for
land cover mapping in the Mediterranean, Comput. Geosci., 26,
385–396, https://doi.org/10.1016/S0098-3004(99)00119-3, 2000.
Bevan, S. L., Luckman, A. J., and Murray, T.: Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers, The Cryosphere, 6, 923–937, https://doi.org/10.5194/tc-6-923-2012, 2012.
Bevan, S. L., Luckman, A. J., Benn, D. I., Cowton, T., and Todd, J.: Impact of warming shelf waters on ice mélange and terminus retreat at a large SE Greenland glacier, The Cryosphere, 13, 2303–2315, https://doi.org/10.5194/tc-13-2303-2019, 2019.
Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers
in western Canada, 1985–2005, Remote Sens. Environ., 114,
127–137, https://doi.org/10.1016/j.rse.2009.08.015, 2010.
Brough, S., Carr, J. R., Ross, N., and Lea, J. M.: Exceptional retreat of
Kangerlussuaq Glacier, East Greenland, between 2016 and 2018, Front.
Earth Sci., 7, 123, https://doi.org/10.3389/feart.2019.00123, 2019.
Bunce, C., Carr, J. R., Nienow, P. W., Ross, N., and Killick, R.: Ice front
change of marine-terminating outlet glaciers in northwest and southeast
Greenland during the 21st century, J. Glaciol., 64, 523–535,
https://doi.org/10.1017/jog.2018.44, 2018.
Carbonneau, P. E., and Dietrich, J. T.: CNN-Supervised-Classification (1.1), Zenodo [code], https://doi.org/10.5281/zenodo.3928808, 2020.
Carbonneau, P. E. and Marochov, M.: SEE_ICE: glacial
landscape classification with deep learning (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.4081095, 2020.
Carbonneau, P. E., Dugdale, S. J., Breckon, T. P., Dietrich, J. T., Fonstad,
M. A., Miyamoto, H., and Woodget, A. S.: Adopting deep learning methods for
airborne RGB fluvial scene classification, Remote Sens. Environ.,
251, 112107, https://doi.org/10.1016/j.rse.2020.112107, 2020a.
Carbonneau, P. E., Belletti, B., Micotti, M., Lastoria, B., Casaioli, M.,
Mariani, S., Marchetti, G., and Bizzi, S.: UAV-based training for fully fuzzy
classification of Sentinel-2 fluvial scenes, Earth Surf. Proc.
Land., 45, 3120–3140, https://doi.org/10.1002/esp.4955, 2020b.
Carr, J. R., Stokes, C. R., and Vieli, A.: Threefold increase in
marine-terminating outlet glacier retreat rates across the Atlantic Arctic:
1992–2010, Ann. Glaciol., 58, 72–91, https://doi.org/10.1017/aog.2017.3,
2017.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A.,
Shroyer, E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L.
A., Noël, B. P. Y., and van den Broeke, M. R.: The impact of glacier
geometry on meltwater plume structure and submarine melt in Greenland
fjords, Geophys. Res. Lett., 43, 9739–9748,
https://doi.org/10.1002/2016GL070170, 2016.
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., and Joughin, I.:
Seasonal and interannual variations in ice melange and its impact on
terminus stability, Jakobshavn Isbræ, Greenland, J. Glaciol.,
61, 76–88, https://doi.org/10.3189/2015JoG13J235, 2015.
Catania, G. A., Stearns, L. A., Sutherland, D. A., Fried, M. J.,
Bartholomaus, T. C., Morlighem, M., Shroyer, E., and Nash, J.: Geometric
controls on tidewater glacier retreat in central western Greenland, J. Geophys. Res.-Earth, 123, 2024–2038,
https://doi.org/10.1029/2017JF004499, 2018.
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., and Jackson, R.
H.: Future evolution of Greenland's marine-terminating outlet glaciers,
J. Geophys. Res.-Earth, 125, e2018JF004873, https://doi.org/10.1029/2018JF004873, 2020.
Chauché, N., Hubbard, A., Gascard, J.-C., Box, J. E., Bates, R., Koppes, M., Sole, A., Christoffersen, P., and Patton, H.: Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers, The Cryosphere, 8, 1457–1468, https://doi.org/10.5194/tc-8-1457-2014, 2014.
Cheng, D., Hayes, W., Larour, E., Mohajerani, Y., Wood, M., Velicogna, I., and Rignot, E.: Calving Front Machine (CALFIN): glacial termini dataset and automated deep learning extraction method for Greenland, 1972–2019, The Cryosphere, 15, 1663–1675, https://doi.org/10.5194/tc-15-1663-2021, 2021.
Chollet, F.: Deep learning with Python, Manning Publications Co, Shelter
Island, New York, 384 pp., ISBN 978 1 6172 9443 3, 2017.
Cook, A. J., Copland, L., Noël, B. P. Y., Stokes, C. R., Bentley, M. J.,
Sharp, M. J., Bingham, R. G., and van den Broeke, M. R.: Atmospheric forcing
of rapid marine-terminating glacier retreat in the Canadian Arctic
Archipelago, Sci. Adv., 5, eaau8507, https://doi.org/10.1126/sciadv.aau8507, 2019.
Copernicus Open Access Hub: Sentinel-2 imagery, Copernicus [data set], available at: https://scihub.copernicus.eu/dhus/#/home, last access: 20 July 2020.
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet,
Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010,
2014.
Everett, A., Kohler, J., Sundfjord, A., Kovacs, K. M., Torsvik, T.,
Pramanik, A., Boehme, L., and Lydersen, C.: Subglacial discharge plume
behaviour revealed by CTD-instrumented ringed seals, Sci. Rep.-UK,
8, 13467, https://doi.org/10.1038/s41598-018-31875-8, 2018.
Foga, S., Stearns, L. A., and van der Veen, C. J.: Application of satellite
remote sensing techniques to quantify terminus and ice mélange behavior
at Helheim Glacier, East Greenland, Mar. Technol. Soc. J.,
48, 81–91, https://doi.org/10.4031/MTSJ.48.5.3, 2014.
Frey, H., Paul, F., and Strozzi, T.: Compilation of a glacier inventory for
the western Himalayas from satellite data: methods, challenges, and results,
Remote Sens. Environ., 124, 832–843, https://doi.org/10.1016/j.rse.2012.06.020,
2012.
Gerrish, L.: The coastline of Kalaallit Nunaat/ Greenland available as a
shapefile and geopackage, covering the main land and islands, with glacier
fronts updated as of 2017, 2 files, 5.26 MB,
https://doi.org/10.5285/8CECDE06-8474-4B58-A9CB-B820FA4C9429, 2020.
Goodfellow, I., Bengio, Y., and Courville, A.: Deep Learning, MIT Press,
available at: https://www.deeplearningbook.org/ (last access: 22 July
2020), 2016.
Guo, W., Liu, S., Xu, J., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao, W.,
Yu, P., Liu, Q., and Jiang, Z.: The second Chinese glacier inventory: data,
methods and results, J. Glaciol., 61, 357–372,
https://doi.org/10.3189/2015JoG14J209, 2015.
Hill, E. A., Carr, J. R., and Stokes, C. R.: A review of recent changes in
major marine-terminating outlet glaciers in northern Greenland, Front.
Earth Sci., 4, 111, https://doi.org/10.3389/feart.2016.00111, 2017.
Hochreuther, P., Neckel, N., Reimann, N., Humbert, A., and Braun, M.: Fully
automated detection of supraglacial lake area for northeast Greenland using
Sentinel-2 time-series, Remote Sens.-Basel, 13, 205, https://doi.org/10.3390/rs13020205,
2021.
Hoeser, T., Bachofer, F., and Kuenzer, C.: Object detection and image
segmentation with deep learning on earth observation data: a review – part
II: applications, Remote Sens.-Basel, 12, 3053, https://doi.org/10.3390/rs12183053,
2020.
How, P., Benn, D. I., Hulton, N. R. J., Hubbard, B., Luckman, A., Sevestre, H., van Pelt, W. J. J., Lindbäck, K., Kohler, J., and Boot, W.: Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities, The Cryosphere, 11, 2691–2710, https://doi.org/10.5194/tc-11-2691-2017, 2017.
Howat, I. M., Joughin, I., and Scambos, T. A.: Rapid changes in ice discharge
from Greenland outlet glaciers, Science, 315, 1559–1561,
https://doi.org/10.1126/science.1138478, 2007.
Howat, I. M., Ahn, Y., Joughin, I., van den Broeke, M. R., Lenaerts, J. T.
M., and Smith, B.: Mass balance of Greenland's three largest outlet glaciers,
2000–2010, Geophys. Res. Lett., 38, L12501, https://doi.org/10.1029/2011GL047565,
2011.
Johnson, J. M. and Khoshgoftaar, T. M.: Survey on deep learning with class
imbalance, Journal of Big Data, 6, 27, https://doi.org/10.1186/s40537-019-0192-5,
2019.
Joughin, I., Howat, I. M., Fahnestock, M., Smith, B., Krabill, W., Alley, R.
B., Stern, H., and Truffer, M.: Continued evolution of Jakobshavn Isbrae
following its rapid speedup, J. Geophys. Res.-Earth,
113, F04006, https://doi.org/10.1029/2008JF001023, 2008.
Juan, J. de, Elósegui, P., Nettles, M., Larsen, T. B., Davis, J. L.,
Hamilton, G. S., Stearns, L. A., Andersen, M. L., Ekström, G.,
Ahlstrøm, A. P., Stenseng, L., Khan, S. A., and Forsberg, R.: Sudden
increase in tidal response linked to calving and acceleration at a large
Greenland outlet glacier, Geophys. Res. Lett., 37, L12501,
https://doi.org/10.1029/2010GL043289, 2010.
King, M. D., Howat, I. M., Jeong, S., Noh, M. J., Wouters, B., Noël, B., and van den Broeke, M. R.: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet, The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, 2018.
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P. Y., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice
loss from the Greenland Ice Sheet driven by sustained glacier retreat,
Communications Earth & Environment, 1, 1–7,
https://doi.org/10.1038/s43247-020-0001-2, 2020.
Kingma, D. P. and Ba, J.: Adam: A method for Stochastic Optimization, arXiv [preprint], http://arxiv.org/abs/1412.6980, 2017.
Krieger, L. and Floricioiu, D.: Automatic glacier calving front delineation
on TerraSAR-X and Sentinel-1 SAR imagery, in: 2017 IEEE Int.
Geosci. Remote Se. (IGARSS), 2817–2820, https://doi.org/10.1109/IGARSS.2017.8127584, 2017.
Lea, J. M.: Google Earth Engine Digitisation Tool (GEEDiT), and Margin
change Quantification Tool (MaQiT) – simple tools for the rapid mapping and
quantification of changing Earth surface margins, Earth Surf. Dynam.,
6, 551–561, 2018.
Lea, J. M., Mair, D. W. F., and Rea, B. R.: Evaluation of existing and new
methods of tracking glacier terminus change, J. Glaciol., 60,
323–332, https://doi.org/10.3189/2014JoG13J061, 2014.
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521,
436–444, https://doi.org/10.1038/nature14539, 2015.
Li, X., Myint, S. W., Zhang, Y., Galletti, C., Zhang, X., and Turner, B. L.:
Object-based land-cover classification for metropolitan Phoenix, Arizona,
using aerial photography, Int. J. Appl. Earth Obs., 33, 321–330, https://doi.org/10.1016/j.jag.2014.04.018, 2014.
Lillesand, T. M. and Kiefer, R. W.: Remote sensing and image interpretation,
3rd ed., Wiley & Sons, New York, 750 pages, ISBN 0471 305 758, 1994.
Liu, H. and Jezek, K. C.: A complete high-resolution coastline of Antarctica
extracted from orthorectified Radarsat SAR imagery, Photogramm.
Eng. Rem. S., 70, 605–616, https://doi.org/10.14358/PERS.70.5.605,
2004.
Liu, X., Deng, Z., and Yang, Y.: Recent progress in semantic image
segmentation, Artif. Intell. Rev., 52, 1089–1106,
https://doi.org/10.1007/s10462-018-9641-3, 2019.
Miles, B. W. J., Stokes, C. R., and Jamieson, S. S. R.: Pan–ice-sheet
glacier terminus change in East Antarctica reveals sensitivity of Wilkes
Land to sea-ice changes, Sci. Adv., 2, e1501350,
https://doi.org/10.1126/sciadv.1501350, 2016.
Miles, B. W. J., Stokes, C. R., and Jamieson, S. S. R.: Velocity increases at Cook Glacier, East Antarctica, linked to ice shelf loss and a subglacial flood event, The Cryosphere, 12, 3123–3136, https://doi.org/10.5194/tc-12-3123-2018, 2018.
Mohajerani, Y., Wood, M., Velicogna, I., and Rignot, E.: Detection of glacier
calving margins with Convolutional Neural Networks: a case study, Remote
Sens.-Basel, 11, 74, https://doi.org/10.3390/rs11010074, 2019.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci., 116,
9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Nijhawan, R., Das, J., and Raman, B.: A hybrid of deep learning and
hand-crafted features based approach for snow cover mapping, Int.
J. Remote Sens., 40, 759–773,
https://doi.org/10.1080/01431161.2018.1519277, 2019.
Noël, B., van de Berg, W. J., Lhermitte, S., and van den Broeke, M. R.:
Rapid ablation zone expansion amplifies north Greenland mass loss, Sci.
Adv., 5, eaaw0123, https://doi.org/10.1126/sciadv.aaw0123, 2019.
Paul, F., Winsvold, S. H., Kääb, A., Nagler, T., and Schwaizer, G.:
Glacier remote sensing using Sentinel-2, Part II: mapping glacier extents
and surface facies, and comparison to Landsat 8, Remote Sens.-Basel, 8, 575,
https://doi.org/10.3390/rs8070575, 2016.
Rastner, P., Bolch, T., Mölg, N., Machguth, H., Le Bris, R., and Paul, F.: The first complete inventory of the local glaciers and ice caps on Greenland, The Cryosphere, 6, 1483–1495, https://doi.org/10.5194/tc-6-1483-2012, 2012.
Rignot, E. and Kanagaratnam, P.: Changes in the velocity structure of the
Greenland Ice Sheet, Science, 311, 986–990,
https://doi.org/10.1126/science.1121381, 2006.
Robson, B. A., Bolch, T., MacDonell, S., Hölbling, D., Rastner, P. and
Schaffer, N.: Automated detection of rock glaciers using deep learning and
object-based image analysis, Remote Sens. Environ., 250, 112033,
https://doi.org/10.1016/j.rse.2020.112033, 2020.
Rolnick, D., Veit, A., Belongie, S., and Shavit, N.: Deep learning is robust
to massive label noise, arXiv [preprint],
http://arxiv.org/abs/1705.10694, 2018.
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for
biomedical image segmentation, in: Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, edited by: Navab, N.,
Hornegger, J., Wells, W. M., and Frangi, A. F., pp. 234–241, Springer
International Publishing, New York, Cham., https://doi.org/10.1007/978-3-319-24574-4_28, 2015.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning Internal Representations by Error Propagation, in: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations, edited by: Rumelhart, D. E., McClelland, J. L., and the PDP Research Group, MIT Press, Cambridge, MA, 318–362, 1986.
Samarth, G. C., Bhowmik, N., and Breckon, T. P.: Experimental exploration of
compact Convolutional Neural Network architectures for non-temporal
real-time fire detection, arXiv [preprint],
http://arxiv.org/abs/1911.09010, 2019.
Seale, A., Christoffersen, P., Mugford, R. I., and O'Leary, M.: Ocean forcing
of the Greenland Ice Sheet: calving fronts and patterns of retreat
identified by automatic satellite monitoring of eastern outlet glaciers,
J. Geophys. Res.- Earth, 116, F03013, https://doi.org/10.1029/2010JF001847, 2011.
Sharma, A., Liu, X., Yang, X., and Shi, D.: A patch-based convolutional
neural network for remote sensing image classification, Neural Networks, 95,
19–28, https://doi.org/10.1016/j.neunet.2017.07.017, 2017.
Simonyan, K. and Zisserman, A.: Very Deep Convolutional Networks for
Large-Scale Image Recognition, arXiv [preprint],
http://arxiv.org/abs/1409.1556, 2015.
Sohn, H.-G. and Jezek, K. C.: Mapping ice sheet margins from ERS-1 SAR and
SPOT imagery, Int. J. Remote Sens., 20,
3201–3216, https://doi.org/10.1080/014311699211705, 1999.
Stokes, C. R., Andreassen, L. M., Champion, M. R., and Corner, G. D.:
Widespread and accelerating glacier retreat on the Lyngen Peninsula,
northern Norway, since their “Little Ice Age” maximum, J.
Glaciol., 64, 100–118, https://doi.org/10.1017/jog.2018.3, 2018.
Straneo, F., Hamilton, G. S., Stearns, L. A., and Sutherland, D. A.:
Connecting the Greenland Ice Sheet and the ocean: a case study of Helheim
Glacier and Sermilik fjord, Oceanography, 29, 34–45, 2016.
Sutherland, D. A., Jackson, R. H., Kienholz, C., Amundson, J. M., Dryer, W.
P., Duncan, D., Eidam, E. F., Motyka, R. J., and Nash, J. D.: Direct
observations of submarine melt and subsurface geometry at a tidewater
glacier, Science, 365, 369–374, https://doi.org/10.1126/science.aax3528, 2019.
Tuckett, P. A., Ely, J. C., Sole, A. J., Livingstone, S. J., Davison, B. J.,
van Wessem, J. M., and Howard, J.: Rapid accelerations of Antarctic
Peninsula outlet glaciers driven by surface melt, Nat. Commun.,
10, 4311, https://doi.org/10.1038/s41467-019-12039-2, 2019.
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T.: Observations: Cryosphere, In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Wood, M., Rignot, E., Fenty, I., Menemenlis, D., Millan, R., Morlighem, M.,
Mouginot, J., and Seroussi, H.: Ocean-induced melt triggers glacier retreat
in northwest Greenland, Geophys. Res. Lett., 45, 8334–8342,
https://doi.org/10.1029/2018GL078024, 2018.
Xie, Z., Haritashya, U. K., Asari, V. K., Young, B. W., Bishop, M. P., and
Kargel, J. S.: GlacierNet: a deep-learning approach for debris-covered
glacier mapping, IEEE Access, 8, 83495–83510,
https://doi.org/10.1109/ACCESS.2020.2991187, 2020.
Yu, Y., Zhang, Z., Shokr, M., Hui, F., Cheng, X., Chi, Z., Heil, P., and
Chen, Z.: Automatically extracted Antarctic coastline using remotely-sensed
data: an update, Remote Sens.-Basel, 11, 1844, https://doi.org/10.3390/rs11161844, 2019.
Yuan, J., Chi, Z., Cheng, X., Zhang, T., Li, T., and Chen, Z.: Automatic
extraction of supraglacial lakes in southwest Greenland during the
2014–2018 melt seasons based on Convolutional Neural Network, Water, 12,
891, https://doi.org/10.3390/w12030891, 2020.
Zhang, E., Liu, L., and Huang, L.: Automatically delineating the calving front of Jakobshavn Isbræ from multitemporal TerraSAR-X images: a deep learning approach, The Cryosphere, 13, 1729–1741, https://doi.org/10.5194/tc-13-1729-2019, 2019.
Short summary
Research into the use of deep learning for pixel-level classification of landscapes containing marine-terminating glaciers is lacking. We adapt a novel and transferable deep learning workflow to classify satellite imagery containing marine-terminating outlet glaciers in Greenland. Our workflow achieves high accuracy and mimics human visual performance, potentially providing a useful tool to monitor glacier change and further understand the impacts of climate change in complex glacial settings.
Research into the use of deep learning for pixel-level classification of landscapes containing...