Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4421-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4421-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution topography of the Antarctic Peninsula combining the TanDEM-X DEM and Reference Elevation Model of Antarctica (REMA) mosaic
Yuting Dong
School of Geography and Information Engineering, China University of
Geosciences, Wuhan, China
Remote Sensing Technology Institute (IMF), German Aerospace Center
(DLR), Oberpfaffenhofen, Germany
Ji Zhao
CORRESPONDING AUTHOR
School of Computer Science, China University of Geosciences, Wuhan,
China
Dana Floricioiu
Remote Sensing Technology Institute (IMF), German Aerospace Center
(DLR), Oberpfaffenhofen, Germany
Lukas Krieger
Remote Sensing Technology Institute (IMF), German Aerospace Center
(DLR), Oberpfaffenhofen, Germany
Thomas Fritz
Remote Sensing Technology Institute (IMF), German Aerospace Center
(DLR), Oberpfaffenhofen, Germany
Michael Eineder
Remote Sensing Technology Institute (IMF), German Aerospace Center
(DLR), Oberpfaffenhofen, Germany
Related authors
No articles found.
Sindhu Ramanath, Lukas Krieger, Dana Floricioiu, Codruț-Andrei Diaconu, and Konrad Heidler
The Cryosphere, 19, 2431–2455, https://doi.org/10.5194/tc-19-2431-2025, https://doi.org/10.5194/tc-19-2431-2025, 2025
Short summary
Short summary
Grounding lines are geophysical features that divide ice masses on the bedrock and floating ice shelves. Their accurate location is required for calculating the mass balance of ice sheets and glaciers in Antarctica and Greenland. Human experts still manually detect them in satellite-based interferometric radar images, which is inefficient given the growing volume of data. We have developed an artificial-intelligence-based automatic detection algorithm to generate Antarctica-wide grounding lines.
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024, https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Short summary
Satellites have made it possible to observe glacier elevation changes from all around the world. In the present study, we compared the results produced from two different types of satellite data between different research groups and against validation measurements from aeroplanes. We found a large spread between individual results but showed that the group ensemble can be used to reliably estimate glacier elevation changes and related errors from satellite data.
Hannah J. Picton, Chris R. Stokes, Stewart S. R. Jamieson, Dana Floricioiu, and Lukas Krieger
The Cryosphere, 17, 3593–3616, https://doi.org/10.5194/tc-17-3593-2023, https://doi.org/10.5194/tc-17-3593-2023, 2023
Short summary
Short summary
This study provides an overview of recent ice dynamics within Vincennes Bay, Wilkes Land, East Antarctica. This region was recently discovered to be vulnerable to intrusions of warm water capable of driving basal melt. Our results show extensive grounding-line retreat at Vanderford Glacier, estimated at 18.6 km between 1996 and 2020. This supports the notion that the warm water is able to access deep cavities below the Vanderford Ice Shelf, potentially making Vanderford Glacier unstable.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Cited articles
Abdel Jaber, W., Rott, H., Floricioiu, D., Wuite, J., and Miranda, N.: Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016, The Cryosphere, 13, 2511–2535, https://doi.org/10.5194/tc-13-2511-2019, 2019.
Abrams, M., Crippen, R., and Fujisada, H.: ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD), Remote Sens., 12, 1156, https://doi.org/10.3390/rs12071156, 2020.
ASTER GDEM Validation Team: ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results, NASA Land Processes Distributed Active Archive Center and Joint Japan-US ASTER Science Team, available at: http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf (last access: 3 September 2021), 2009.
ASTER GDEM Validation Team: METI/ERSDAC, NASA/LPDAAC, USGS/EROS, in cooperation with NGA and other collaborators, ASTER GDEM Validation Summary Report, available at: https://lpdaac.usgs.gov/documents/28/ASTER_GDEM_Validation_1_Summary_Report.pdf (last access: 3 September 2021), 2011.
Bamber, J. L., Gomez-Dans, J. L., and Griggs, J. A.: A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods, The Cryosphere, 3, 101–111, https://doi.org/10.5194/tc-3-101-2009, 2009.
Blair, J. B. and Hofton, M.: IceBridge LVIS L2 Geolocated Surface Elevation
Product, Version 2, NASA National Snow and Ice Data
Center Distributed Active Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/E9E9QSRNLYTK, 2019.
Brunt, K., Neumann, T., and Smith, B.: Assessment of ICESat-2 Ice Sheet
Surface Heights, Based on Comparisons Over the Interior of the Antarctic Ice
Sheet, Geophys. Res. Lett., 46, 13072–13078, 2019.
Cook, A., Fox, A., Vaughan, D., and Ferrigno, J.: Retreating glacier fronts
on the Antarctic Peninsula over the past half-century, Science, 308,
541–544, 2005.
Cook, A. J., Murray, T., Luckman, A., Vaughan, D. G., and Barrand, N. E.: A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment, Earth Syst. Sci. Data, 4, 129–142, https://doi.org/10.5194/essd-4-129-2012, 2012.
Cook, A. J., Vaughan, D. G., Luckman, A. J., and Murray, T.: A new Antarctic
Peninsula glacier basin inventory and observed area changes since the 1940s,
Antarct. Sci., 26, 614–624, https://doi.org/10.1017/S0954102014000200, 2014.
Cook, A. J., Holland, P., Meredith, M., Murray, T., Luckman, A., and
Vaughan, D. G.: Ocean forcing of glacier retreat in the western Antarctic
Peninsula, Science, 353, 283–286, 2016.
Cornford, S. L., Martin, D. F., Payne, A. J., Ng, E. G., Le Brocq, A. M., Gladstone, R. M., Edwards, T. L., Shannon, S. R., Agosta, C., van den Broeke, M. R., Hellmer, H. H., Krinner, G., Ligtenberg, S. R. M., Timmermann, R., and Vaughan, D. G.: Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate, The Cryosphere, 9, 1579–1600, https://doi.org/10.5194/tc-9-1579-2015, 2015.
DiMarzio, J., Brenner, A., Schutz, R., Shuman, C., and Zwally, H.: GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, version 1, National Snow and Ice Data Center, Distributed Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/K2IMI0L24BRJ, 2007.
Dong, Y., Liu, B., Zhang, L., Liao, M., and Zhao, J.: Fusion of Multi-Baseline and Multi-Orbit InSAR DEMs with Terrain Feature-Guided Filter, Remote Sens., 10, 1511, https://doi.org/10.3390/rs10101511, 2018.
Dryak, M. C. and Enderlin, E. M.: Analysis of Antarctic Peninsula glacier
frontal ablation rates with respect to iceberg melt-inferred variability in
ocean conditions, J. Glaciol., 66, 457–470, https://doi.org/10.1017/jog.2020.21, 2020.
Fieber, K. D., Mills, J. P., Miller, P. E., Clarke, L., Ireland, L., and
Fox, A. J.: Rigorous 3D change determination in Antarctic Peninsula glaciers
from stereo WorldView-2 and archival aerial imagery, Remote Sens. Environ.,
205, 18–31, https://doi.org/10.1016/j.rse.2017.10.042, 2018.
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013.
German Aerospace Center DLR: TanDEM-X – Digital Elevation Model (DEM) –
Global, 90 m, DLR Earth Observation Center [data set], https://doi.org/10.15489/ju28hc7pui09, 2018.
González, J. H., Antony, J. M. W., Bachmann, M., Krieger, G., Zink, M.,
Schrank, D., and Schwerdt, M.: Bistatic system and baseline calibration in
TanDEM-X to ensure the global digital elevation model quality, ISPRS J.
Photogramm. Remote Sens., 73, 3–11, 2012.
Griggs, J. A. and Bamber, J. L.: A new 1 km digital elevation model of Antarctica derived from combined radar and laser data – Part 2: Validation and error estimates, The Cryosphere, 3, 113–123, https://doi.org/10.5194/tc-3-113-2009, 2009.
Gruber, A., Wessel, B., Huber, M., and Roth, A.: Operational TanDEM-X DEM
calibration and first validation results, ISPRS J. Photogramm. Remote Sens.,
73, 39–49, 2012.
Gruber, A., Wessel, B., Martone, M., and Roth, A.: The TanDEM-X DEM
Mosaicking: Fusion of Multiple Acquisitions Using InSAR Quality Parameters,
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 9, 1047–1057,
https://doi.org/10.1109/jstars.2015.2421879, 2016.
Helm, V., Humbert, A., and Miller, H.: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2, The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, 2014.
Hofton, M. A., Blair, J. B., Luthcke, S. B., and Rabine, D. L.: Assessing the performance of 20–25 m footprint waveform lidar data collected in ICESat data corridors in Greenland, Geophys. Res. Lett., 35, L24501, https://doi.org/10.1029/2008gl035774, 2008.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Huber, J., Cook, A. J., Paul, F., and Zemp, M.: A complete glacier inventory of the Antarctic Peninsula based on Landsat 7 images from 2000 to 2002 and other preexisting data sets, Earth Syst. Sci. Data, 9, 115–131, https://doi.org/10.5194/essd-9-115-2017, 2017.
Huss, M. and Farinotti, D.: A high-resolution bedrock map for the Antarctic Peninsula, The Cryosphere, 8, 1261–1273, https://doi.org/10.5194/tc-8-1261-2014, 2014.
Jezek, K. C.: Glaciological properties of the Antarctic ice sheet from
RADARSAT-1 synthetic aperture radar imagery, Ann. Glaciol., 29,
286–290, 1999.
Jezek, K. C., Curlander, J. C., Carsey, F., Wales, C., and Barry, R. G.: RAMP AMM-1 SAR Image Mosaic of Antarctica, Version 2, NSIDC: National Snow and Ice Data Center, Boulder, Colorado USA, https://doi.org/10.5067/8AF4ZRPULS4H, 2013.
Jiang, H., Zhang, L., Wang, Y., and Liao, M.: Fusion of high-resolution DEMs
derived from COSMO-SkyMed and TerraSAR-X InSAR datasets, J. Geod., 88,
587–599, 2014.
Korona, J., Berthier, E., Bernard, M., Rémy, F., and Thouvenot, E.:
SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and
topographies during the fourth International Polar Year (2007–2009), ISPRS
J. Photogramm. Remote Sens., 64, 204–212, 2009.
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M.,
and Zink, M.: TanDEM-X: A satellite formation for high-resolution SAR
interferometry, IEEE T. Geosci. Remote, 45, 3317–3341, 2007.
Krieger, G., Zink, M., Bachmann, M., Bräutigam, B., Schulze, D.,
Martone, M., Rizzoli, P., Steinbrecher, U., Antony, J. W., and De Zan, F.:
TanDEM-X: A radar interferometer with two formation-flying satellites, Acta
Astronaut., 89, 83–98, 2013.
Krieger, L., Floricioiu, D., and Neckel, N.: Drainage basin delineation for outlet glaciers of Northeast Greenland based on Sentinel-1 ice velocities and TanDEM-X elevations, Remote Sens. Environ., 237, 111483, https://doi.org/10.1016/j.rse.2019.111483, 2020a.
Krieger, L., Strößenreuther, U., Helm, V., Floricioiu, D., and Horwath, M.: Synergistic Use of Single-Pass Interferometry and Radar Altimetry to Measure Mass Loss of NEGIS Outlet Glaciers between 2011 and 2014, Remote Sens., 12, 996, https://doi.org/10.3390/rs12060996, 2020b.
Lachaise, M., Fritz, T., and Bamler, R.: The dual-baseline phase unwrapping
correction framework for the TanDEM-X mission part 1: Theoretical
description and algorithms, IEEE T. Geosci. Remote, 56, 780–798,
2018.
Lachaise, M., Bachmann, M., Fritz, T., Huber, M., Schweißhelm, B., and Wessel, B.: Generation Of the Tandem-X Change Dem From the New Global Acquisitions (2017–2019), in: Proc. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 4480–4483, https://doi.org/10.1109/IGARSS.2019.8900192, 2019.
Li, F., Xiao, F., Zhang, S. K., E, D. C., Cheng, X., Hao, W. F., Yuan, L. X., and Zuo, Y. W.: DEM development and precision analysis for Antarctic ice sheet using Cryosat-2 altimetry data, Chin. J. Geophys., 60, 1617–1629, https://doi.org/10.6038/cjg20170501, 2017.
Liu, H., Jezek, K., Li, B., and Zhao, Z.: Radarsat Antarctic Mapping Project
digital elevation model version 2, Digital media, National Snow and Ice Data
Center, Boulder, CO, USA, 2001.
Matsuoka, K., Skoglund, A., Roth, G., de Pomereu, J., Griffiths, H.,
Headland, R., Herried, B., Katsumata, K., Le Brocq, A., Licht, K., Morgan,
F., Neff, P. D., Ritz, C., Scheinert, M., Tamura, T., Van de Putte, A., van
den Broeke, M., von Deschwanden, A., Deschamps-Berger, C., Van Liefferinge,
B., Tronstad, S., and Melvær, Y.: Quantarctica, an integrated mapping
environment for Antarctica, the Southern Ocean, and sub-Antarctic islands,
Environ. Model. Softw., 140, 105015,
https://doi.org/10.1016/j.envsoft.2021.105015, 2021.
Mouginot, J., Scheuchl, B., and Rignot, E.: Mapping of ice motion in
Antarctica using synthetic-aperture radar data, Remote Sens., 4, 2753–2767,
2012.
Papasaika, H., Poli, D., and Baltsavias, E.: Fusion of Digital Elevation Models from Various Data Sources, in: Proc. of 2009 International Conference on Advanced Geographic Information Systems & Web Services, Cancun, Mexico, 117–122, https://doi.org/10.1109/GEOWS.2009.22, 2009.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic ice
sheet, Science, 333, 1427–1430, 2011a.
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. T.: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise, Geophys. Res. Lett., 38, L05503, https://doi.org/10.1029/2011GL046583, 2011b.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M.
J., and Morlighem, M.: Four decades of Antarctic Ice Sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, 2019.
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and
Hindmarsh, R. C.: Potential sea-level rise from Antarctic ice-sheet
instability constrained by observations, Nature, 528, 115–118, 2015.
Rizzoli, P., Bräutigam, B., Kraus, T., Martone, M., and Krieger, G.:
Relative height error analysis of TanDEM-X elevation data, ISPRS J.
Photogramm. Remote Sens., 73, 30–38,
https://doi.org/10.1016/j.isprsjprs.2012.06.004, 2012.
Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D. B.,
Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., and Huber, M.:
Generation and performance assessment of the global TanDEM-X digital
elevation model, ISPRS J. Photogramm. Remote Sens., 132, 119–139, 2017a.
Rizzoli, P., Martone, M., Rott, H., and Moreira, A.: Characterization of snow facies on the Greenland ice sheet observed by TanDEMX interferometric SAR data, Remote Sens., 9, 315, https://doi.org/10.3390/rs9040315, 2017b.
Rott, H., Abdel Jaber, W., Wuite, J., Scheiblauer, S., Floricioiu, D., van Wessem, J. M., Nagler, T., Miranda, N., and van den Broeke, M. R.: Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016, The Cryosphere, 12, 1273–1291, https://doi.org/10.5194/tc-12-1273-2018, 2018.
Seehaus, T., Cook, A. J., Silva, A. B., and Braun, M.: Changes in glacier dynamics in the northern Antarctic Peninsula since 1985, The Cryosphere, 12, 577–594, https://doi.org/10.5194/tc-12-577-2018, 2018.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., Van Den Broeke, M.,
Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., and Krinner, G.:
Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558,
219–222, 2018.
Slater, T., Shepherd, A., McMillan, M., Muir, A., Gilbert, L., Hogg, A. E., Konrad, H., and Parrinello, T.: A new digital elevation model of Antarctica derived from CryoSat-2 altimetry, The Cryosphere, 12, 1551–1562, https://doi.org/10.5194/tc-12-1551-2018, 2018.
Smith, B., Fricker, H. A., Gardner, A., Siegfried, M. R., Adusumilli, S.,
Csathó, B. M., Holschuh, N., Nilsson, J., Paolo F. S., and the ICESat-2
Science Team: ATLAS/ICESat-2 L3A Land Ice Height, Version 2, subset:
ATL06_ATLAS/ICESat-2 L3A Glacier Elevation/Ice Sheet
Elevation (HDF5), NSIDC: National Snow and Ice Data
Center, Boulder, Colorado, USA, https://doi.org/10.5067/ATLAS/ATL06.002, 2019.
Smith, B., Fricker, H. A., Gardner, A., Medley, B., Nilsson, J., Paolo, F.
S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K.,
Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice
sheet mass loss reflects competing ocean and atmosphere processes, Science,
368, 1239, https://doi.org/10.1126/science.aaz5845, 2020.
Sutterley, T. C., Velicogna, I., Rignot, E., Mouginot, J., Flament, T., Van
Den Broeke, M. R., Van Wessem, J. M., and Reijmer, C. H.: Mass loss of the
Amundsen Sea Embayment of West Antarctica from four independent techniques,
Geophys. Res. Lett., 41, 8421–8428, 2014.
Wessel, B.: TanDEM-X Ground Segment – DEM Products Specification Document, in: Tech. rep. EOC, DLR, Oberpfaffenhofen, Germany, Public Document TD-GS-PS0021, Issue 3.1, available at: https://elib.dlr.de/108014/1/TD-GS-PS-0021_DEM-Product-Specification_v3.1.pdf (last access: 3 September 2021), 2016.
Wessel, B., Huber, M., Wohlfart, C., Bertram, A., Osterkamp, N., Marschalk, U., Gruber, A., Reuß, F., Abdullahi, S., Georg, I., and Roth, A.: TanDEM-X PolarDEM 90 m of Antarctica: Generation and error characterization, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-19, in review, 2021.
Short summary
We generated a consistent, gapless and high-resolution (12 m) topography product of the Antarctic Peninsula by combining the complementary advantages of the two most recent high-resolution digital elevation model (DEM) products: the TanDEM-X DEM and the Reference Elevation Model of Antarctica. The generated DEM maintains the characteristics of the TanDEM-X DEM, has a better quality due to the correction of the residual height errors in the non-edited TanDEM-X DEM and will be freely available.
We generated a consistent, gapless and high-resolution (12 m) topography product of the...