Articles | Volume 15, issue 9
The Cryosphere, 15, 4221–4239, 2021
https://doi.org/10.5194/tc-15-4221-2021
The Cryosphere, 15, 4221–4239, 2021
https://doi.org/10.5194/tc-15-4221-2021
Research article
06 Sep 2021
Research article | 06 Sep 2021

Measuring the state and temporal evolution of glaciers in Alaska and Yukon using synthetic-aperture-radar-derived (SAR-derived) 3D time series of glacier surface flow

Sergey Samsonov et al.

Related authors

Landfast ice growth and displacement in the Mackenzie Delta observed by 3D time-series SAR speckle offset tracking
Byung-Hun Choe, Sergey V. Samsonov, and Jungkyo Jung
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-116,https://doi.org/10.5194/tc-2020-116, 2020
Revised manuscript not accepted
Short summary
Growth of a young pingo in the Canadian Arctic observed by RADARSAT-2 interferometric satellite radar
Sergey V. Samsonov, Trevor C. Lantz, Steven V. Kokelj, and Yu Zhang
The Cryosphere, 10, 799–810, https://doi.org/10.5194/tc-10-799-2016,https://doi.org/10.5194/tc-10-799-2016, 2016
Short summary
Modeling of fast ground subsidence observed in southern Saskatchewan (Canada) during 2008–2011
S. V. Samsonov, P. J. González, K. F. Tiampo, and N. d'Oreye
Nat. Hazards Earth Syst. Sci., 14, 247–257, https://doi.org/10.5194/nhess-14-247-2014,https://doi.org/10.5194/nhess-14-247-2014, 2014

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Three different glacier surges at a spot: what satellites observe and what not
Frank Paul, Livia Piermattei, Désirée Treichler, Lin Gilbert, Luc Girod, Andreas Kääb, Ludivine Libert, Thomas Nagler, Tazio Strozzi, and Jan Wuite
The Cryosphere, 16, 2505–2526, https://doi.org/10.5194/tc-16-2505-2022,https://doi.org/10.5194/tc-16-2505-2022, 2022
Short summary
Correlation dispersion as a measure to better estimate uncertainty in remotely sensed glacier displacements
Bas Altena, Andreas Kääb, and Bert Wouters
The Cryosphere, 16, 2285–2300, https://doi.org/10.5194/tc-16-2285-2022,https://doi.org/10.5194/tc-16-2285-2022, 2022
Short summary
Glacier and rock glacier changes since the 1950s in the La Laguna catchment, Chile
Benjamin Aubrey Robson, Shelley MacDonell, Álvaro Ayala, Tobias Bolch, Pål Ringkjøb Nielsen, and Sebastián Vivero
The Cryosphere, 16, 647–665, https://doi.org/10.5194/tc-16-647-2022,https://doi.org/10.5194/tc-16-647-2022, 2022
Short summary
Brief communication: Increased glacier mass loss in the Russian High Arctic (2010–2017)
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022,https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region
Jan Bouke Pronk, Tobias Bolch, Owen King, Bert Wouters, and Douglas I. Benn
The Cryosphere, 15, 5577–5599, https://doi.org/10.5194/tc-15-5577-2021,https://doi.org/10.5194/tc-15-5577-2021, 2021
Short summary

Cited articles

Abe, T. and Furuya, M.: Winter speed-up of quiescent surge-type glaciers in Yukon, Canada, The Cryosphere, 9, 1183–1190, https://doi.org/10.5194/tc-9-1183-2015, 2015.
Abrams, M., Crippen, R., and Fujisada, H.: ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD)., Remote Sens.-Basel, 12, 1156, https://doi.org/10.3390/rs12071156, 2020.
Altena, B., Scambos, T., Fahnestock, M., and Kääb, A.: Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data, The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, 2019.
Arendt, A.: Assessing the Status of Alaska's Glaciers, Science, 332, 1044–1045, https://doi.org/10.1126/science.1204400, 2011.
Arendt, A., Walsh, J., and Harrison, W.: Changes of glaciers and climate in northwestern North America during the late twentieth century, J. Climate, 22, 4117–4134, https://doi.org/10.1175/2009JCLI2784.1, 2009.
Download
Short summary
The direction and intensity of glacier surface flow adjust in response to a warming climate, causing sea level rise, seasonal flooding and droughts, and changing landscapes and habitats. We developed a technique that measures the evolution of surface flow for a glaciated region in three dimensions with high temporal and spatial resolution and used it to map the temporal evolution of glaciers in southeastern Alaska (Agassiz, Seward, Malaspina, Klutlan, Walsh, and Kluane) during 2016–2021.