Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4221-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4221-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measuring the state and temporal evolution of glaciers in Alaska and Yukon using synthetic-aperture-radar-derived (SAR-derived) 3D time series of glacier surface flow
Sergey Samsonov
CORRESPONDING AUTHOR
Canada Centre for Mapping and Earth Observation, Natural Resources Canada, 560 Rochester Street, Ottawa, ON K1S5K2 Canada
Kristy Tiampo
Earth Science and Observation Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309 USA
Ryan Cassotto
Earth Science and Observation Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309 USA
Related authors
Yulia K. Antropova, Derek Mueller, Sergey V. Samsonov, Alexander S. Komarov, and Jérémie Bonneau
EGUsphere, https://doi.org/10.5194/egusphere-2025-4771, https://doi.org/10.5194/egusphere-2025-4771, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Arctic glaciers are rapidly changing due to climate warming. The grounding line, where glaciers transition from land to ocean, is key to their stability. Using satellite, field, and model data, we study Milne Glacier in the Canadian High Arctic. We find that tides and air pressure drive glacier grounding line migration, while subglacial ridges affect its short-term shifts and long-term retreat. Faster ice flow linked to the grounding line retreat suggests future ice thinning and deterioration.
Xie Hu, Yuqi Song, Sayyed Mohammad Javad Mirzadeh, Qingbai Wu, Dongfeng Li, Yiling Lin, Yuanzhuo Zhou, Mei Chen, Shengwen Qi, and Kristy Tiampo
EGUsphere, https://doi.org/10.5194/egusphere-2025-4184, https://doi.org/10.5194/egusphere-2025-4184, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We use satellite radar remote sensing imagery to measure how the frozen ground moves along the Qinghai-Tibet Engineering Corridor. We can estimate the thickness of the soil layer affected by freezing and thawing, known as the Active Layer Thickness (ALT). By accounting for the density difference between water and ice and the constraint by the field-measured ALT at discrete sites, our approach converts seasonal ground movements into high-resolution, continuous maps of ALT.
Yulia K. Antropova, Derek Mueller, Sergey V. Samsonov, Alexander S. Komarov, and Jérémie Bonneau
EGUsphere, https://doi.org/10.5194/egusphere-2025-4771, https://doi.org/10.5194/egusphere-2025-4771, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Arctic glaciers are rapidly changing due to climate warming. The grounding line, where glaciers transition from land to ocean, is key to their stability. Using satellite, field, and model data, we study Milne Glacier in the Canadian High Arctic. We find that tides and air pressure drive glacier grounding line migration, while subglacial ridges affect its short-term shifts and long-term retreat. Faster ice flow linked to the grounding line retreat suggests future ice thinning and deterioration.
Sandeep Kumar Mondal, Rishikesh Bharti, and Kristy F. Tiampo
EGUsphere, https://doi.org/10.5194/egusphere-2023-2253, https://doi.org/10.5194/egusphere-2023-2253, 2023
Preprint archived
Short summary
Short summary
This study explains the capabilities of C-band Synthetic Aperture Radar (SAR) system in detection of glacial deformation due to earthquakes. Due to the remote location of the Himalayan glaciers associated with harsh weather conditions and rugged topography, the method of differential interferometric SAR (DInSAR) can be very useful in studying the impact of earthquakes in the glaciated regions where field-based seismological study is extremely tough to execute.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Mylène Jacquemart and Kristy Tiampo
Nat. Hazards Earth Syst. Sci., 21, 629–642, https://doi.org/10.5194/nhess-21-629-2021, https://doi.org/10.5194/nhess-21-629-2021, 2021
Short summary
Short summary
We used interferometric radar coherence – a data quality indicator typically used to assess the reliability of radar interferometry data – to document the destabilization of the Mud Creek landslide in California, 5 months prior to its catastrophic failure. We calculated a time series of coherence on the slide relative to the surrounding hillslope and suggest that this easy-to-compute metric might be useful for assessing the stability of a hillslope.
P. Sharma, J. Wang, M. Zhang, C. Woods, B. Kar, D. Bausch, Z. Chen, K. Tiampo, M. Glasscoe, G. Schumann, M. Pierce, and R. Eguchi
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VI-3-W1-2020, 107–113, https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-107-2020, https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-107-2020, 2020
Cited articles
Abe, T. and Furuya, M.: Winter speed-up of quiescent surge-type glaciers in Yukon, Canada, The Cryosphere, 9, 1183–1190, https://doi.org/10.5194/tc-9-1183-2015, 2015.
Abrams, M., Crippen, R., and Fujisada, H.: ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD)., Remote Sens.-Basel, 12, 1156, https://doi.org/10.3390/rs12071156, 2020.
Altena, B., Scambos, T., Fahnestock, M., and Kääb, A.: Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data, The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-13-795-2019, 2019.
Arendt, A.: Assessing the Status of Alaska's Glaciers, Science, 332, 1044–1045, https://doi.org/10.1126/science.1204400, 2011.
Arendt, A., Walsh, J., and Harrison, W.: Changes of glaciers and climate in northwestern North America during the late twentieth century, J. Climate, 22, 4117–4134, https://doi.org/10.1175/2009JCLI2784.1, 2009.
Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M., and Sole, A.: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411, https://doi.org/10.1038/ngeo863, 2010.
Bechor, N. and Zebker, H.: Measuring two-dimensional movements using a single InSAR pair, Geophys. Res. Lett., 33, L16311, https://doi.org/10.1029/2006GL026883, 2006.
Berthier, E., Vadon, H., Baratoux, D., Arnaud, Y., Vincent, C., Feigl, K., Remy, F., and Legresy, B.: Surface motion of mountain glaciers derived from satellite optical imagery, Remote Sens. Environ., 95, 14–28, https://doi.org/10.1016/j.rse.2004.11.005, 2005.
Bisset, R., Dehecq, A., Goldberg, D., Huss, M., Bingham, R., and Gourmelen, N.: Reversed Surface-Mass-Balance Gradients on Himalayan Debris-Covered Glaciers Inferred from Remote Sensing, Remote Sens.-Basel, 12, 1563, https://doi.org/10.3390/rs12101563, 2020.
Burgess, E., Forster, R., and Larsen, C.: Flow velocities of Alaskan glaciers, Nat. Commun., 4, 2146, https://doi.org/10.1038/ncomms3146, 2013.
Dehecq, A., Gourmelen, N., and Trouve, E.: Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir–Karakoram–Himalaya, Remote Sens. Environ., 162, 55–66, https://doi.org/10.1016/j.rse.2015.01.031, 2015.
Driscoll, F. J.: Formation of the neoglacial surge moraines of the Klutlan glacier, Yukon Territory, Canada, Quaternary Res., 19–30, https://doi.org/10.1016/0033-5894(80)90004-6, 1980.
Enderlin, E. M., O'Neel, S., Bartholomaus, T. C., and Joughin, I.: Evolving Environmental and Geometric Controls on Columbia Glacier's Continued Retreat, J. Geophys. Res.-Earth, 123, 1528–1545, https://doi.org/10.1029/2017JF004541, 2018.
Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., and Klinger, M.: Rapid large-area mapping of ice flow using Landsat 8, Remote Sens. Environ., Remote Sens. Environ., 185, 84–94, https://doi.org/10.1016/j.rse.2015.11.023, 2015.
Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., and Klinger, M.: Rapid large-area mapping of ice flow using Landsat 8, Remote Sens. Environ., 185, 84–94, https://doi.org/10.1016/j.rse.2015.11.023, 2016.
Fialko, Y., Simons, M., and Agnew, D.: The complete (3-D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake, California, from space geodetic observations, Geophys. Res. Lett., 28, 3063–3066, https://doi.org/10.1029/2001GL013174, 2001.
Ford, A. L., Forster, R. R., and Bruhn, R. L.: Ice surface velocity patterns on Seward Glacier, Alaska/Yukon, and their implications for regional tectonics in the Saint Elias Mountains, Ann. Glaciol., 36, 21–28, https://doi.org/10.3189/172756403781816086, 2003.
Fu, X. and Zhou, J.: Recent surge behavior of Walsh glacier revealed by remote sensing data, Sensors, 20, 716, https://doi.org/10.3390/s20030716, 2020.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Gardner, A., Fahnestock, M., and Scambos, T.: ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities, Data archived at National Snow and Ice Data Center, https://doi.org/10.5067/6II6VW8LLWJ7, 2019.
Goldstein, R. M., Engelhardt, H., Kamb, B., and Frolich, R. M.: Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream, Science, 262, 1525–1530, https://doi.org/10.1126/science.262.5139.1525, 1993.
Gourmelen, N., Amelung, F., Casu, F., Manzo, M., and Lanari, R.: Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks, Geophys. Res. Lett., 34, L09309, https://doi.org/10.1029/2007GL029427, 2007.
Gourmelen, N., Amelung, F., and Lanari, R.: Interferometric synthetic aperture radar–GPS integration: Interseismic strain accumulation across the Hunter Mountain fault in the eastern California shear zone, J. Geophys. Res.-Sol. Ea., 115, B09408, https://doi.org/10.1029/2009JB007064, 2010.
Gourmelen, N., Kim, S., Shepherd, A., Park, J., Sundal, A., Björnsson, H., and Pálsson, F.: Ice velocity determined using conventional and multiple-aperture InSAR, Earth Planet. Sc. Lett., 307, 156–160, https://doi.org/10.1016/j.epsl.2011.04.026, 2011.
Gray, L.: Using multiple RADARSAT InSAR pairs to estimate a full three-dimensional solution for glacial ice movement, Geophys. Res. Lett., 38, L05502, https://doi.org/10.1029/2010GL046484, 2011.
Gray, L., Joughin, I., Tulaczyk, S., Spikes, V., Bindschadler, R., and Jezek, K.: Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry, Geophys. Res. Lett., 32, L03501, https://doi.org/10.1029/2004GL021387, 2005.
Gudmundsson, G. and Bauder, A.: Towards an Indirect Determination of the Mass-Balance Distribution of Glaciers Using the Kinematic Boundary Condition, Geogr. Ann. A, 81, 575–583, 1999.
Guo, L., Li, J., Li, Z.-w., Wu, L.-x., Li, X., Hu, J., Li, H.-l., Li, H.-y., Miao, Z.-l., and Li, Z.-q.: The Surge of the Hispar Glacier, Central Karakoram: SAR 3-D Flow Velocity Time Series and Thickness Changes, J. Geophys. Res.-Sol. Ea., 125, e2019JB018945, https://doi.org/10.1029/2019JB018945, 2020.
Hansen, P. and O'Leary, D.: The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14, 1487–1503, 1993.
Herman, F., Anderson, B., and Leprince, S.: Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images, J. Glaciol., 57, 197–207, https://doi.org/10.3189/002214311796405942, 2011.
Hooke, R. L.: Principles of Glacier Mechanics, Cambridge University Press, 3rd edn., https://doi.org/10.1017/9781108698207, 2019.
Hu, J., Li, Z., Ding, X., Zhu, J., Zhang, L., and Sun, Q.: Resolving three-dimensional surface displacements from InSAR measurements: A review, Earth-Sci. Rev., 133, 1–17, https://doi.org/10.1016/j.earscirev.2014.02.005, 2014.
Immerzeel, W., Kraaijenbrink, P., Shea, J., Shrestha, A., Pellicciotti, F., Bierkens, M., and de Jong, S.: High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles, Remote Sens. Environ., 150, 93–103, https://doi.org/10.1016/j.rse.2014.04.025, 2014.
Joughin, I.: Ice-sheet velocity mapping:
A combined interferometric and speckle-tracking approach, Ann. Glaciol., 34, 195–201, https://doi.org/10.3189/172756402781817978, 2002.
Joughin, I., Winebrenner, D., and Fahnestock, M.: Observations of ice-sheet motion in Greenland using satellite radar interferometry, Geophys. Res. Lett., 22, 571–574, https://doi.org/10.1029/95GL00264, 1995.
Joughin, I., Kwok, R., and Fahnestock, M.: Interferometric estimation of three-dimensional ice-flow using ascending and descending passes, IEEE T. Geosci. Remote, 36, 25–37, https://doi.org/10.1109/36.655315, 1998.
Kumar, V., Venkataramana, G., and Høgda, K.: Glacier surface velocity estimation using SAR interferometry technique applying ascending and descending passes in Himalayas, Int. J. Appl. Earth Obs., 13, 545–551, https://doi.org/10.1016/j.jag.2011.02.004, 2011.
Larsen, C., Burgess, E., Arendt, A. A., O'Neel, S., Johnson, A. J., and Kienholz, C.: Surface melt dominates Alaska glacier mass balance, Geophys. Res. Lett., 42, 5902–5908, https://doi.org/10.1002/2015GL064349, 2015.
Main, B., Copland, L., Samsonov, S., Dow, C., Flowers, G., Young, E., and Kochtitzky, W.: Surge of Little Kluane Glacier in the St. Elias Mountains, Yukon, Canada, from 2017–2018, in: American Geophysical Union, Fall Meeting, 9–13 December 2019, San Francisco. abstract C31B-1517, 2019.
Massonnet, D. and Feigl, K.: Discrimination of geophysical phenomena in satellite radar interferograms, Geophys. Res. Lett., 22, 1537–1540, 1995.
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, 2019.
Meier, M. and Post, A.: What are glacier surges?, Can. J. Earth Sci., 6, 807–817, https://doi.org/10.1139/e69-081, 1969.
Milillo, P., Minchew, B., Simons, M., Agram, P., and Riel, B.: Geodetic imaging of time-dependent three-component surface deformation: Application to tidal-timescale ice flow of Rutford Ice Stream, West Antarctica, IEEE T. Geosci. Remote, 55, 5515–5524, https://doi.org/10.1109/TGRS.2017.2709783, 2017.
Minchew, B. M., Simons, M., Riel, B., and Milillo, P.: Tidally induced variations in vertical and horizontal motion on Rutford Ice Stream, West Antarctica, inferred from remotely sensed observations, J. Geophys. Res.-Earth, 122, 167–190, https://doi.org/10.1002/2016JF003971, 2017.
Mohr, J., Reeh, N., and Madsen, S.: Three-dimensional glacial flow and surface elevation measured with radar interferometry, Nature, 391, 273–276, https://doi.org/10.1038/34635, 1998.
Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H., and Aubry, D.: A mass conservation approach for mapping glacier ice thickness, Geophys. Res. Lett., 38, L19503, https://doi.org/10.1029/2011GL048659, 2011.
Muskett, R. R., Lingle, C. S., Tangborn, W. V., and Rabus, B. T.: Multi-decadal elevation changes on Bagley Ice Valley and Malaspina Glacier, Alaska, Geophys. Res. Lett., 30, 1857, https://doi.org/10.1029/2003GL017707, 2003.
Palmer, S. J., Shepherd, A., Sundal, A., Rinne, E., and Nienow, P.: InSAR observations of ice elevation and velocity fluctuations at the Flade Isblink ice cap, eastern North Greenland, J. Geophys. Res.-Earth, 115, F04037, https://doi.org/10.1029/2010JF001686, 2010.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Tech. rep., Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-60, 2017.
Riel, B., Simons, M., Agram, P., and Zhan, Z.: Detecting transient signals in geodetic time series using sparse estimation techniques, J. Geophys. Res.-Solid, 119, 5140–5160, https://doi.org/10.1002/2014JB011077, 2014.
Riel, B., Simons, M., Ponti, D., and Agram, P.and Jolivet, R.: Quantifying ground deformation in the Los Angeles and Santa Ana Coastal Basins due to groundwater withdrawal, Water Resour. Res., 54, 3557–3582, https://doi.org/10.1029/2017WR021978, 2018.
Riel, B., Minchew, B., and Joughin, I.: Observing traveling waves in glaciers with remote sensing: new flexible time series methods and application to Sermeq Kujalleq (Jakobshavn Isbræ), Greenland, The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-15-407-2021, 2021.
Rignot, E.: Fast Recession of a West Antarctic Glacier, Science, 281, 549–551, https://doi.org/10.1126/science.281.5376.549, 1998.
Rignot, E.: Mass balance of East Antarctic glaciers and ice shelves from satellite data, Ann. Glaciol., 34, 217–227, https://doi.org/10.3189/172756402781817419, 2002.
Rignot, E., Echelmeyer, K., and Krabill, W.: Penetration depth of interferometric synthetic-aperture radar signals in snow and ice, Geophys. Res. Lett., 28, 3501–3504, https://doi.org/10.1029/2000GL012484, 2001.
Rosen, P., Hensley, P., Joughin, I., Li, F., Madsen, S., Rodriguez, E., and Goldstein, R.: Synthetic aperture radar interferometry, P. IEEE,, 88, 333–382, 2000.
Samsonov, S.: Three-dimensional deformation time series of glacier motion from multiple-aperture DInSAR observation, J. Geodesy, 93, 2651–2660, https://doi.org/10.1007/s00190-019-01325-y, 2019.
Samsonov, S. and d`Oreye, N.: Multidimensional time series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province, Geophys. J. Int., 191, 1095–1108, https://doi.org/10.1111/j.1365-246X.2012.05669.x, 2012.
Samsonov, S. and d`Oreye, N.: Multidimensional Small Baseline Subset (MSBAS) for Two-Dimensional Deformation Analysis: Case Study Mexico City, Can. J. Remote Sens., 43, 318–329, https://doi.org/10.1080/07038992.2017.1344926, 2017.
Samsonov, S. and Tiampo, K.: Analytical optimization of DInSAR and GPS dataset for derivation of three-dimensional surface motion, IEEE Geosci. Remote S., 3, 107–111, 2006.
Samsonov, S., Tiampo, K., Rundle, J., and Li, Z.: Application of DInSAR-GPS optimization for derivation of fine scale surface motion maps of southern California, IEEE T. Geosci. Remote, 45, 512–521, 2007.
Samsonov, S., Dille, A., Dewitte, O., Kervyn, F., and d`Oreye, N.: Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: A new method illustrated on a slow-moving landslide, Eng. Geol., 266, 105471, https://doi.org/10.1016/j.enggeo.2019.105471, 2020.
Samsonov, S., Tiampo, K., and Cassotto, R.: SAR-derived flow velocity and its link to glacier surface elevation change and mass balance, Remote Sens. Environ., 258, 112343, https://doi.org/10.1016/j.rse.2021.112343, 2021a.
Samsonov, S., Tiampo, K., and Cassotto, R.: “Data for: Measuring the state and temporal evolution of glaciers in Alaska and Yukon using SAR-derived 3D time series of glacier surface flow”, Mendeley Data, V1, https://doi.org/10.17632/zf67rsgydv.1, 2021b.
Sauber, J., Molnia, B., Carabajal, C., Luthcke, S., and Muskett, R.: Ice elevations and surface change on the Malaspina Glacier, Alaska, Geophys. Res. Lett., 32, L23S01, https://doi.org/10.1029/2005GL023943, 2005.
Sharp, R. P.: Accumulation and ablation on the Seward-Malaspina glacier system, Canada-Alaska, GSA Bulletin, 62, 725–744, https://doi.org/10.1130/0016-7606(1951)62[725:AAAOTS]2.0.CO;2, 1951.
Sharp, R. P.: Malaspina Glacier, Alaska, Geol. Soc. Am. Bull., 69, 617–646, https://doi.org/10.1130/0016-7606(1958)69[617:MGA]2.0.CO;2, 1958.
Shen, Z.-K. and Liu, Z.: Integration of GPS and InSAR data for resolving 3-dimensional crustal deformation, Earth and Space Science, 7, e2019EA001036, https://doi.org/10.1029/2019EA001036, 2020.
Shepherd, A., Wingham, D. J., Mansley, J. A. D., and Corr, H. F. J.: Inland Thinning of Pine Island Glacier, West Antarctica, Science, 291, 862–864, https://doi.org/10.1126/science.291.5505.862, 2001.
Shepherd, A., Ivins, E., and Rignot, E. e. a.: Mass balance of the Greenland Ice Sheet from 1992 to 2018., Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020.
Strozzi, T., Luckman, A., Murray, T., and Wegmuller, U.and Werner, C. L.: Glacier motion estimation using SAR offset-tracking procedures, IEEE T. Geosci. Remote, 40, 2384–2391, https://doi.org/10.1109/TGRS.2002.805079, 2002.
van de Wal, R. S. W., Boot, W., van den Broeke, M. R., Smeets, C. J. P. P., Reijmer, C. H., Donker, J. J. A., and Oerlemans, J.: Large and Rapid Melt-Induced Velocity Changes in the Ablation Zone of the Greenland Ice Sheet, Science, 321, 111–113, https://doi.org/10.1126/science.1158540, 2008.
Vijay, S. and Braun, M.: Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): ice velocity, mass flux, surface elevation and front position, Remote Sens.-Basel, 9, 635, https://doi.org/10.3390/rs9060635, 2017.
Waechter, A., Copland, L., and Herdes, E.: Modern glacier velocities across the Icefield Ranges, St Elias Mountains, and variability at selected glaciers from 1959 to 2012, J. Glaciol., 61, 624–634, https://doi.org/10.3189/2015JoG14J147, 2015.
Wang, Q., Fan, J., Zhou, W., Tong, L., Guo, Z., Liu, G., Yuan, W., Sousa, J. J., and Perski, Z.: 3D Surface velocity retrieval of mountain glacier using an offset tracking technique applied to ascending and descending SAR constellation data: a case study of the Yiga Glacier, Int. J. Digit. Earth, 12, 614–624, https://doi.org/10.1080/17538947.2018.1470690, 2019.
Werder, M. A., Huss, M., Paul, F., Dehecq, A., and Farinotti, D.: A Bayesian ice thickness estimation model for large-scale applications, J. Glaciol., 66, 137–152, https://doi.org/10.1017/jog.2019.93, 2019.
Wright, H.: Surge Moraines of the Klutlan Glacier, Yukon Territory, Canada: Origin, Wastage, Vegetation Succession, Lake Development, and Application to the Late-Glacial of Minnesota, Quaternary Res., 14, 2–18, https://doi.org/10.1016/0033-5894(80)90003-4, 1980.
Wright, T., Parsons, B., and Lu, Z.: Toward mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett., 31, L01607, https://doi.org/10.1029/2003GL018827, 2004.
Short summary
The direction and intensity of glacier surface flow adjust in response to a warming climate, causing sea level rise, seasonal flooding and droughts, and changing landscapes and habitats. We developed a technique that measures the evolution of surface flow for a glaciated region in three dimensions with high temporal and spatial resolution and used it to map the temporal evolution of glaciers in southeastern Alaska (Agassiz, Seward, Malaspina, Klutlan, Walsh, and Kluane) during 2016–2021.
The direction and intensity of glacier surface flow adjust in response to a warming climate,...