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Abstract. Climate change has reduced global ice mass over
the last 2 decades as enhanced warming has accelerated sur-
face melt and runoff rates. Glaciers have undergone dynamic
processes in response to a warming climate that impacts the
surface geometry and mass distribution of glacial ice. Un-
til recently no single technique could consistently measure
the evolution of surface flow for an entire glaciated region in
three dimensions with high temporal and spatial resolution.
We have improved upon earlier methods by developing a
technique for mapping, in unprecedented detail, the temporal
evolution of glaciers. Our software computes north, east, and
vertical flow velocity and/or displacement time series from
the synthetic aperture radar (SAR) ascending and descending
range and azimuth speckle offsets. The software can handle
large volumes of satellite data and is designed to work on
high-performance computers (HPCs) as well as workstations
by utilizing multiple parallelization methods. We then com-
pute flow velocity–displacement time series for glaciers in
southeastern Alaska during 2016–2021 and observe seasonal
and interannual variations in flow velocities at Seward and
Malaspina glaciers as well as culminating phases of surging
at Klutlan, Walsh, and Kluane glaciers. On a broader scale,
this technique can be used for reconstructing the response
of worldwide glaciers to the warming climate using archived
SAR data and for near-real-time monitoring of these glaciers
using rapid revisit SAR data from satellites, such as Sentinel-
1 (6 or 12 d revisit period) and the forthcoming NISAR mis-
sion (12 d revisit period).

1 Introduction

The magnitude and direction of glacier flow adjust in re-
sponse to the warming climate, leading to changes in sea-
sonal flooding and droughts, landscapes and habitats, and
ultimately sea level variations. Surface flow is a key vari-
able for determining glacier mass balance (Shepherd et al.,
2020), ice thickness (Morlighem et al., 2011; Werder et al.,
2019), and surface mass balance (Bisset et al., 2020). Here
we present a technique that can be used for measuring the
temporal evolution of surface flow for an entire glaciated re-
gion in three dimensions (3D) with high temporal and spatial
resolution.

Modern techniques and platforms used for monitoring
glacier flow include synthetic aperture radar (SAR) (Gold-
stein et al., 1993; Mohr et al., 1998; Rignot, 2002; Joughin,
2002), the Global Navigation Satellite System (GNSS)
(van de Wal et al., 2008; Bartholomew et al., 2010), opti-
cal imagery (Berthier et al., 2005; Herman et al., 2011; De-
hecq et al., 2015; Fahnestock et al., 2016), and uncrewed
aerial vehicles (Immerzeel et al., 2014). Among these, SAR
is the only active side-looking sensor with global coverage at
high temporal and spatial resolution that can operate in any
weather conditions, day or night. SAR techniques comprise
displacement measurements with sub-meter to meter-scale
precision using speckle offset tracking (SPO) (Strozzi et al.,
2002), split-beam interferometry (or multi-aperture interfer-
ometry, MAI) (Bechor and Zebker, 2006; Gourmelen et al.,
2011), and centimeter-scale differential interferometry (DIn-
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SAR) (Massonnet and Feigl, 1995; Rosen et al., 2000). SPO
applies image correlation algorithms to radar data to measure
displacements in the satellite range and azimuth directions
using two SAR images. Since its early inception, SAR has
been used in glacier monitoring for estimating flow veloc-
ities, surface flux, tidal variations, grounding line behavior,
and subglacial lake activity (Goldstein et al., 1993; Joughin
et al., 1995, 1998; Rignot, 1998; Shepherd et al., 2001; Gray
et al., 2005; Palmer et al., 2010; Minchew et al., 2017). In
this study, we use the SPO technique to produce deformation
maps in range and azimuth coordinates that do not require
phase unwrapping.

The SAR-derived displacements for a single epoch can
be transformed into 3D (north, east, vertical) displacements
by either combining multiple datasets or assuming various
model constraints (Mohr et al., 1998; Wright et al., 2004;
Gourmelen et al., 2007; Kumar et al., 2011; Hu et al., 2014).
However, the 3D displacement time series cannot be easily
computed due to limitations inherent in the data acquisition
strategy. Specifically, SAR data on ascending and descending
orbits are usually acquired on different days, often with dif-
ferent incidence angles and varying temporal and spatial res-
olutions and wavelengths. The multidimensional small base-
line subset (MSBAS) methodology (Samsonov and d‘Oreye,
2012, 2017; Samsonov, 2019; Samsonov et al., 2020) has
been developed specifically for computing multidimensional
displacement time series from SAR data acquired with dif-
ferent acquisition parameters.

Historically, three components of mean glacier velocity
were computed from DInSAR and/or range offsets by in-
troducing a surface-parallel flow (SPF) constraint. This ap-
proach was used for 3D mapping of Greenlandic (Joughin
et al., 1998; Mohr et al., 1998) and Himalayan (Kumar et al.,
2011) glaciers and validated by independent GNSS (Kumar
et al., 2011) measurements. In our previous work (Samsonov,
2019), we adopted the SPF method for computing the 3D
flow displacement time series of the Barnes Ice Cap using
ascending and descending DInSAR data combined using the
MSBAS technique. However, the SPF constraint ignores sub-
mergence and emergence velocities and other vertical mo-
tion. In some studies, ascending and descending DInSAR
(Gray, 2011) or range and azimuth offsets (Wang et al., 2019)
were used to compute 3D glacier velocities for a few isolated
epochs. Recently, Guo et al. (2020) developed a technique
based on MSBAS that computes 3D flow velocity time se-
ries from ascending and descending range and azimuth off-
sets and used it to study Hispar Glacier in central Karako-
ram. Here, we present our independently developed version
of this algorithm, which offers several distinct advantages
over Guo et al. (2020). First, our technique does not use
weights determined by the pixel spacing. Second, our open-
source software provides additional functionalities, such as
zeroth-, first- (implemented in Guo et al., 2020), and second-
order Tikhonov regularizations. Third, the user can choose
to compute 1D, 2D, constrained 3D, unconstrained 3D (pre-

sented in this paper), and 4D (Samsonov et al., 2021a) ve-
locity and/or displacement time series. Finally, the software
is also parallelized (OpenMP, MPI), making it suitable for
running on high-performance computers (HPCs) or personal
workstations.

In contrast to MSBAS-based techniques, Minchew et al.
(2017) and Milillo et al. (2017) took a different approach
and inferred time-dependent 3D flow velocity by assuming a
form for the temporal basis functions based on prior knowl-
edge of the study area. The need for prior knowledge means
that this method is not general, so its application is limited
to areas where the assumed basis functions should be valid.
The advantage of the Minchew et al. (2017) approach is inter-
pretability of the results, a straightforward connection of the
results to the physics of the systems being observed, and ro-
bust quantification of uncertainties. A recent improvement to
Minchew et al. (2017) is Riel et al. (2021), who adopted some
of the methods of Riel et al. (2014, 2018) and applied them to
remote sensing observations of glaciers. From a methodolog-
ical perspective, this generalizes the approach of Minchew
et al. (2017) and allows for a generic set of temporal ba-
sis functions, from which a sparsity-inducing optimization
is used to identify the simplest set of basis functions that
describe the data. The advantage there is also in the inter-
pretability of the results and robust uncertainty quantifica-
tion, which provides the ability to decompose the observed
signal into short- and long-term variations and features the
ability to constrain transients, secular, and periodic signals.
However, this method still requires a priori knowledge to
provide confidence in the resulting basis functions. The tech-
nique we present here is complementary because it does not
rely on basis functions and provides flexibility at the expense
of interpretability of the results, whereas the Minchew et al.
(2017) and Riel et al. (2021) techniques sacrifice flexibility
in the method for enhanced interpretability of the results.

Here we focus on dynamic changes along six land-
terminating glaciers in southeastern Alaska during 20 Oc-
tober 2016–21 January 2021: Agassiz, Seward, Malaspina,
Klutlan, Kluane, and Walsh glaciers. This technique can be
used to analyze 3D flow velocities of glacier surfaces over
large regional scales using nearly 3 decades of archived SAR
data and for near-real-time monitoring of these glaciers using
rapid revisit SAR data.

2 Model

The inversion technique described below utilizes ascending
and descending range and azimuth speckle offset products
computed from SAR data using a speckle offset tracking al-
gorithm implemented in GAMMA software (Wegmuller and
Werner, 1997). We chose to use the speckle offsets because
their computation does not require phase unwrapping, which
is not possible due to large flow velocities in our study area.
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Figure 1. Schematics of the simplified case described by Eq. (3).
Ascending and descending SAR acquisitions at time ti are marked
with black stars. Horizontal solid lines represent range and azimuth
offset maps. Vertical dashed lines divide temporal scale in time in-
tervals1ti = ti+1− ti between consecutive acquisitions. The times
of first and last descending acquisitions (marked with blue stars) are
adjusted to match the first and last time of ascending acquisitions
(marked with gray stars).

The 3D displacement time series are computed by invert-
ing a set of linear equations, first solving for the north, east,
and vertical flow velocities Vn,e,v for each acquisition epoch
(Fialko et al., 2001; Bechor and Zebker, 2006) and then for
cumulative 3D flow displacements Dn,e,v.
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Equation (1a) has a straightforward application: time inter-
val multiplied by velocity is equal to displacement. Here, in
matrix form, RO represents the range and AO represents the
azimuth offsets computed from SAR data; L is the Tikhonov
regularization matrix multiplied by the scalar regularization
parameter, λ, and A is the transform matrix constructed from
the time intervals between consecutive SAR acquisitions and
the range (sρ) and azimuth (sα) directional cosines with
north, east, and vertical components:

sρ = {snρ, seρ, svρ} = {sin(φ)sin(θ),−cos(φ)sin(θ),cos(θ)}
sα = {snα, seα, svα} = {cos(φ),sin(φ),0}, (2)

where φ is the azimuth and θ is the incidence angle. The
azimuth is the satellite heading, measured from the north;
it discerns ascending vs. descending orbits. The incidence
angle is the angle between the nadir and the look direction
from the satellite; it is one of the acquisition parameters of
the side-looking SAR sensor.

The need for regularization arises because SAR images
from different tracks are acquired at different times, which
results in more unknowns than equations, producing a rank-
deficient, underdetermined problem. When solving a set of
linear equations in general there can be three possible sce-
narios: the number of equations can be less than, equal to, or

greater than the number of unknowns. In the equal case, the
matrix is square and no regularization is required (but can
still be applied). In the greater case, the least square solu-
tion is found using singular value decomposition (SVD); this
scenario is common in 1D MSBAS, wherein usually there
are more interferograms than single-look complex (SLC) im-
ages. In the lesser case, as always in 2D and 3D MSBAS,
the solution is found using either the truncated SVD or the
zeroth-order Tikhonov regularization. The higher-order reg-
ularizations must be applied if the objective is to fill the tem-
poral gaps due to missing data, which results in smoothing
and the interpolation of missing values in the temporal do-
main. We observe that the first- and second-order regular-
izations work equally well in this case, probably because of
slowly changing velocities.

In the M ×N transform matrix A with M rows and N
columns, N is equal to the number of available distinct SLC
images (with the boundary correction – defined below) mi-
nus 1 then multiplied by 3 (i.e.,N = 3(

∑K
k=1N

k
slc−1), where

K is the total number of ascending and descending sets and
Nk

slc is the number of SLC images in k set). M is equal to
the total number of range and azimuth offset maps computed
from those SLC images (i.e., M =

∑K
k=1(N

k
α +N

k
ρ ), where

K is the total number of ascending and descending sets, Nk
α

is the number of computed azimuth offset maps, and Nk
ρ is

the number of computed range offset maps in k set).
The regularization matrix L has the same number of

columnsN as the transform matrixA, but its number of rows
depends on the regularization order. It is equal to N for the
zeroth order,N−3 for the first order, andN−6 for the second
order.

The structure of A can be deduced from a simplified ex-
ample shown in Fig. 1 and described below. In this exam-
ple, it is assumed that the ascending set consists of three
SAR images acquired on t0, t2, and t4, and the descend-
ing set consists of four SAR images acquired on t−1, t1,
t3, and t5. Two ascending range ROasc

= {ρasc
0−2,ρ

asc
2−4} and

azimuth AOasc
= {αasc

0−2,α
asc
2−4} offset products are computed

from three ascending SAR images, and three descending
range ROdsc

= {ρdsc
−1−1,ρ

dsc
1−3,ρ

dsc
3−5} and azimuth AOdsc

=

{αdsc
−1−1,α

dsc
1−3,α

dsc
3−5} offset products are computed from four

descending SAR images (therefore,M = 2+2+3+3= 10).
A boundary correction (shown as blue arrows in Fig. 1) is ap-
plied to the first and last descending offset products ρdsc

−1−1,
αdsc
−1−1, ρdsc

3−5, and αdsc
3−5 by multiplying by (t1− t0)/(t1− t−1)

and (t4− t3)/(t5− t3) in order to adjust the temporal cover-
age to match the ascending offset products. The boundary-
corrected descending offsets therefore become ρdsc

0−1, αdsc
0−1,

ρdsc
3−4, and αdsc

3−4. Note that the boundary correction reduces
the number of SLC images by two; after correction, t−1 ef-
fectively becomes t0, and t5 effectively becomes t4 (i.e., re-
ducing the total number of SLC images to five and thus
N = 3(5− 1)= 12). The first-order regularization matrix L
in this case has 12 columns and 9 rows.
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Figure 2. Results of numerical simulations demonstrating the ability of this technique to reconstruct input signal in one of components.
Equations of input signals are shown in corresponding subfigure legends; t is time. Harmonic input signals are assumed. Gaussian noise with
a mean value of zero and standard deviations of 0.15 m (which is approximately 10 % of the signal) is added to subfigures in the second row.

Assuming that 1ti = ti+1− ti in this simplified example,
Eq. (1a) becomes
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The 3D flow displacement time series are then computed
as in Eq. (1b) asDi+1

n,e,v =D
i
n,e,v+V

i
n,e,v1ti for i = {0,1,2,3},

assuming that the initial displacements D0
n,e,v are equal to

zero. Note that in this notation D0
n,e,v represents the 3D dis-

placements at time t0, while V 0
n,e,v and 1t0 are the 3D ve-

locities and the time interval at the time epoch t0− t1, thus
effectively available at time t1. For simplicity of presenta-
tion, a linear trend is computed by applying linear regres-
sion to the derived values, calculated over the entire record,
to illustrate the 3D displacement time series and three linear
rate maps used for visualizing the results. Note that in the
case of non-steady-state flow, the linear rates, which are ef-
fectively mean linear rates, can significantly differ from the
instantaneous flow velocities. Linear rates can potentially be
computed over a time interval of any duration (for example,
1 month or 1 year).

Tikhonov regularizations of various orders can be applied
during the inversion, resulting in temporal smoothing. The
zeroth-order regularization is effectively the constant dis-
placement constraint. The first-order regularization is effec-
tively the constant velocity constraint, and the second-order
regularization is effectively the constant acceleration con-
straint. The first- and second-order regularizations both pro-
duce good, virtually indistinguishable results. The example
above in Eq. (3) uses first-order regularization. Zeroth- and
second-order regularizations are explicitly shown in Sam-
sonov and d‘Oreye (2017) for the 2D case. The magnitude
of smoothing is controlled by the regularization parameter λ
that can be selected, for example, using the L-curve method
(Hansen and O’Leary, 1993; Samsonov and d‘Oreye, 2017).
We used a value of 0.1 for λ selected using the L-curve
method.

MSBAS methodology has been developed for computing
multidimensional time series by combining multiple DIn-
SAR data acquired at different times and in various obser-
vational geometries. The 2D (east and vertical) method was
described in Samsonov and d‘Oreye (2012, 2017) and the
surface-parallel flow-constrained 3D (north, east, vertical)
method in Samsonov (2019) and Samsonov et al. (2020). The
unconstrained 3D method (i.e., without the surface-parallel
flow constraint) presented here uses both range and azimuth
measurements for computing 3D displacements. This work
is now possible due to improved availability over large areas
of high-quality, high-resolution, temporally dense ascend-
ing and descending SAR data and the increase in computa-
tional power that allows computing a large number of range
and azimuth offset maps and inverting large matrices. Since
this method does not make any assumptions about the di-
rection of motion, it provides the optimal solution applica-
ble to any surface motion (e.g., glacier flow, tectonic and an-
thropogenic deformation). The typical size of the transform
matrix exceeds hundreds and often thousands of columns
and rows for each pixel. It is 446× 666 (or 1109× 666 in-
cluding regularization terms; in the following, for simplic-

ity, matrix L is assumed to be a part of matrix A) in our
case. Thus, the total number of azimuth and range offset
maps M equals 446, and the number of unknowns N equals
666, which corresponds to 223 SLC images after applying
the boundary correction. The additional N − 3= 663 rows
represent the first-order Tikhonov regularization terms. The
singular value decomposition (SVD) algorithm from the Lin-
ear Algebra PACKage (LAPACK) library is used for invert-
ing this matrix for each pixel. Processing is parallelized using
Open Multi-Processing (OpenMP) implementation of multi-
threading. Depending on the number of cores in the process-
ing unit and the number of pixels, this process can take from
several hours to several days. Processing time in our case,
on a 44-core workstation is approximately 24 h. The Mes-
sage Passing Interface (MPI) version of the software has also
been developed. The processing time in an MPI version is
reduced proportionally to the number of nodes.

2.1 Synthetic tests

We used synthetic tests with the actual transform matrix A,
which is described in detail in the next section, to demon-
strate the effectiveness of the proposed technique. First, we
reconstructed deformation components using the harmonic
input signal in only one of the components, which is de-
scribed in the respective legends in Fig. 2a–c. Then we added
Gaussian noise and repeated the computations (Fig. 2d–f).
The magnitude of the noise was computed as 10 % of the av-
erage displacement between consecutive epochs. Second, we
reconstructed deformation components using the complex
partially uncorrelated input signal: harmonic (with a differ-
ent period in all components) and linear input signals in the
horizontal components and the harmonic signals in the verti-
cal component. Three runs were performed with 0 %, 10 %,
and 30 % Gaussian noise added (Fig. 3a–c). Third, we re-
constructed deformation components using the complex cor-
related input signal: harmonic (with the same period in all
components) and linear input signals in all three components.
Three runs were performed, again with 0 %, 10 %, and 30 %
Gaussian noise added (Fig. 3d–f).

Without added noise the reconstructed output signal is
practically identical to the input signal; with added noise,
the reconstructed signal still resembles the input signal very
well. For a quantitative assessment, we computed correlation
and covariance matrices between three vectors comprising
east, north, and vertical components of velocity at each ob-
servation epoch. Six correlation and covariance matrices are
presented in Table 2 for each of six tests shown in Fig. 3.
Both matrices provide valuable information about the qual-
ity of reconstruction.

In the covariance matrices, diagonal elements are vari-
ances of north, east, and vertical components of the velocity.
They reflect variability due to a true signal and noise. Poten-
tially, an input model can be subtracted to compute variances
due to noise; however, it is not a goal of this test. Instead,
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Figure 3. Results of numerical simulations demonstrating the ability of this technique to reconstruct complex uncorrelated and correlated
input signals in all three components. Equations of input signals are shown in corresponding subfigure legends; t is time. Harmonic and
linear input signals are assumed. Gaussian noise with a mean value of zero and standard deviations in the range 0.15–0.45 m (which is
approximately 10 %–30 % of the signal) is added to subfigures in the second and third columns.

Table 1. Sentinel-1 SAR data used in this study; θ is incidence and φ is azimuth angle.

Span θ◦ φ◦ Number of SLC swaths

Sentinel-1 track 123 (asc) 16 August 2016–28 January 2021 39 342 109
Sentinel-1 track 116 (dsc) 20 October 2016–21 January 2021 39 198 116
Total (after boundary correction) 20 October 2016–20 January 2021 223

we are interested in covariance (i.e., non-diagonal) terms of
the covariance matrix. They are expected to be small (com-
parable) in comparison to diagonal terms in the case of the
uncorrelated (correlated) signal. In the correlation matrices,
it is expected that non-diagonal terms should be small (close
to one) in the case of the uncorrelated (correlated) signal.
Indeed, this pattern is clearly observed in both cases of un-
correlated (Table 2a–c) and correlated (Table 2d–f) signals.

Overall these tests indicate that the ascending–descending
geometry is sufficient for a full reconstruction of 3D motion.
This can also be inferred theoretically by computing a rank
of the transform matrix in the case of one ascending and one
descending pair acquired at the same time, which would be
equal to 3.

3 Study area and data

Southeastern Alaska has experienced significant ice mass
loss and retreat over the last 50 years (Arendt et al., 2009;
Arendt, 2011). Of the 27 000 glaciers that occupy the region,
the majority (99.8 %) are land-terminating (RGI Consortium,
2017). Consequently, monitoring the mass balance and ice
dynamic variations of Alaska’s land-terminating glaciers is
paramount for the future of its landscape and resultant con-
tributions to sea level rise (Larsen et al., 2015). Unlike the
plethora of ice velocity data products available for Green-
land and Antarctica, regional studies of Alaskan glacier sur-
face velocities are less abundant. The first regional map of
Alaskan glacier flow velocities was released in 2013 using
ALOS PALSAR data (Burgess et al., 2013). Soon after, fea-
ture tracking of Landsat optical data began to regularly map
regional surface velocities (Fahnestock et al., 2015; Gard-
ner et al., 2018, 2019). Recent studies demonstrate the im-
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Table 2. Correlation (first matrix in cell) and covariance (second matrix in cell) matrices of north, east, and vertical components of velocity
for six synthetic tests shown in Fig. 3. Labels (a)–(f) correspond to subfigures in Fig. 3. Columns are in order – north, east, vertical. Units of
covariance matrix terms are (myr−1)2.

(a) (b) (c) 1.000 −0.087 −0.083
−0.087 1.000 −0.040
−0.083 −0.040 1.000

 0.470 −0.023 −0.052
−0.023 0.143 −0.014
−0.052 −0.014 0.846

  1.000 −0.084 −0.081
−0.084 1.000 −0.080
−0.081 −0.080 1.000

 0.465 −0.022 −0.051
−0.022 0.151 −0.029
−0.051 −0.029 0.847

  1.000 −0.069 −0.073
−0.069 1.000 −0.140
−0.073 −0.140 1.000

 0.486 −0.021 −0.047
−0.021 0.201 −0.059
−0.047 −0.059 0.877


(d) (e) (f) 1.000 0.999 −0.997

0.999 1.000 −0.995
−0.997 −0.995 1.000

 0.581 0.287 −0.145
0.287 0.142 −0.072
−0.145 −0.072 0.036

  1.000 0.975 −0.937
0.975 1.000 −0.923
−0.937 −0.923 1.000

 0.594 0.290 −0.151
0.290 0.149 −0.075
−0.151 −0.075 0.044

  1.000 0.824 −0.681
0.824 1.000 −0.618
−0.681 −0.618 1.000

 0.653 0.297 −0.162
0.297 0.199 −0.081
−0.162 −0.081 0.087



Figure 4. Outlines of four areas of interest (AOIs) in southeastern
Alaska are shown in red. AOI1 covers Agassiz (AG), Malaspina
(MG), and Seward (SG) glaciers. AOI2 covers Klutlan Glacier
(KG). AOI3 covers Walsh Glacier (WG). AOI4 covers Kluane
Glacier. Flow lines in black and red were computed using Open
Global Glacier Model (OGGM) software (Maussion et al., 2019).
Outlines of ascending (track 123) and descending (track 116)
Sentinel-1 swaths are shown in black. The background is the 30 m
Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter (ASTER) digital elevation model (Abrams et al., 2020). The
Canada–US border is shown as a dashed black line.

Figure 5. Spatial and temporal baselines of Sentinel-1 pairs used
in this study. Mean temporal resolution, i.e., mean temporal spac-
ing between consecutive SAR acquisitions regardless of orbit direc-
tion, computed as duration divided by the number of SAR images
(4.25 years×365/223) is about 7 d. Note that the offset between as-
cending and descending sets depends on the selection of reference
images, which is arbitrary.

portance of characterizing the temporal evolution of glacier
surface flow for understanding changes in ice dynamics in
Alaska (Waechter et al., 2015; Altena et al., 2019). However,
all regional studies of Alaskan glacier flow have so far been
limited to two dimensions, thus ignoring an important verti-
cal component of flow, which links glacier surface elevation
change and its mass balance. Here, we introduce a technique
to generate a dense record of regional Alaskan glacier surface
flow in three dimensions.

We focus on studying the dynamic changes along six land-
terminating glaciers in southeastern Alaska during 20 Oc-
tober 2016–21 January 2021: Agassiz, Seward, Malaspina,
Klutlan, Kluane, and Walsh glaciers (Fig. 4). The Malaspina
Glacier is the world’s largest piedmont glacier covering ap-
proximately 2200 km2 on the flat coastal foreland (Sharp,
1958; Muskett et al., 2003; Sauber et al., 2005) and is par-
tially fed by Seward Glacier, a surge-type glacier that origi-
nates in the upper reaches of Mt. Logan (Sharp, 1951; Ford
et al., 2003). A mass budget deficit in the Malaspina–Seward
complex has long been recognized (Sharp, 1951). Agassiz
Glacier is another surge-type glacier that flows in an adja-
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Figure 6. Magnitude of mean 3D flow velocities plotted using loga-
rithmic scale. For regions P1–P4 at Malaspina and Seward glaciers,
P5–P6 at Klutlan Glacier, P7–P8 at Walsh Glacier, and P9 at Kluane
Glacier time series are provided in Figs. 11 and 12.

cent sinuous valley northwest of the Malaspina–Seward com-
plex (Muskett et al., 2003; Sauber et al., 2005). The Klutlan
Glacier is an 82 km long surge-type valley glacier located at
elevations between 1300 and 2100 m; it has surged repeat-
edly over the last few hundred years (Wright, 1980; Driscoll,
1980). A surge at Kluane Glacier in the eastern St. Elias
Mountains during 2017/18 was previously reported in Main
et al. (2019). Walsh Glacier is a 90 km long surge-type valley
glacier located at a higher elevation of about 1500–3000. It is
fed by two major branches, one from the north and one from
the east, and it converges with the Logan Glacier downstream
(Fu and Zhou, 2020).

In this study, we used 218 ascending (track 123) and
232 descending (track 116) Sentinel-1 interferometric wide
(IW) single-look complex (SLC) images with 2.3 m (range)
×14.9 m (azimuth) spatial resolution from the NASA Dis-
tributed Active Archive Center (DAAC) operated by the
Alaska Satellite Facility (ASF) (Table 1). Two ascend-
ing and two descending frames along the azimuth direc-
tions were concatenated for each, resulting in 109 and 116
swaths, respectively. Ascending and descending sets were
processed individually using GAMMA software (Wegmuller
and Werner, 1997) that produced range and azimuth off-
sets for consecutive pairs (Fig. 5). To compute offsets, we
used a 64× 16 pixel sampling interval (or approximately
200×200 m) and a square 128×128 pixel (or approximately
400×1600 m) correlation window. Such a large window was
required to obtain a distinct, statistically significant peak of
the 2D cross-correlation function; its square shape produced
similar precision in range and azimuth directions in radar co-

ordinates and azimuth precision 4 times coarser than range
precision in geocoded products. Note that the correlation
window is not uniform, with larger weights given to the pixel
in the center of the window. While the estimation of spatial
resolution resulting from a nonuniform weighting of the pixel
is beyond the scope of this study, the initial tests suggest that
the spatial resolution is significantly better than the window
size, which is also confirmed by the developers of GAMMA
software (GAMMA Remote Sensing, personal communica-
tion, 20 January 2021). Offsets were spatially filtered using a
Gaussian filter with a 1.3 km (6-sigma) filter width, geocoded
using the TerraSAR-X 90 m digital elevation model (DEM)
and resampled to a common grid with a ground spacing of
200 m. Using Gaussian weights for filtering proved to be par-
ticularly beneficial as the filter produced satisfactory results
for small and large glaciers. Filter width was chosen exper-
imentally for our study but may be suboptimal in other re-
gions.

4 Results

The magnitude of the mean 3D linear flow velocities plot-
ted for the entire region using a logarithmic scale is shown
in Fig. 6. An in-depth analysis was further performed for
four small areas of interest (AOI1, AOI2, AOI3, and AOI4
in Fig. 4) shown in detail in Figs. 7–10. The flow lines in
Fig. 4 were computed using the Open Global Glacier Model
(OGGM) software (Maussion et al., 2019), and the central
flow lines were chosen for in-depth analysis. Note that these
flow lines are approximated to the actual glacier flow pattern.
They are, however, computed in a consistent and repeatable
way. In addition, time series sampled from 5×5 pixel regions
along Malaspina and Seward glaciers (P1–P4), the Klutlan
Glacier (P5–P6), Walsh Glacier (P7–P8), and Kluane Glacier
(P9) are provided in Figs. 11 and 12.

For each AOI, the SAR backscatter intensity images show
the six glaciers in detail: Agassiz, Malaspina, and Seward
(AG, MG, and SG; Fig. 7a), Klutlan (KtG; Fig. 8a), Walsh
(WG; Fig. 9a), and Kluane (KnG; Fig. 10a) glaciers. For
five of these glaciers (excluding the Agassiz Glacier) veloci-
ties are sampled along flow lines with 20 km markers shown.
Mean flow velocities are shown in Figs. 7b, 8b, 9b, and 10b;
horizontal flow velocities are shown as vectors and vertical
flow velocities are color-coded, with red representing down-
ward motion. For aesthetic purposes, horizontal flow vectors
are resampled to a coarser resolution. The fastest horizontal
flow velocity exceeds 1000 myr−1, and the fastest vertical
flow velocity exceeds 200 myr−1. Overall, Seward Glacier
experiences the fastest motion and Malaspina Glacier expe-
riences the slowest motion (Fig. 7b); vertical flow is predom-
inately downward along both glaciers. In contrast, vertical
flow along the Klutlan (Fig. 8b), Walsh (Fig. 9b), and Klu-
ane (Fig. 10b) glaciers changes direction a number of times.
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Figure 7. (a) Sentinel-1 SAR intensity image acquired on 22 December 2019 (in YYYYMMDD format) over AOI1 that covers Agassiz
(AG), Malaspina (MG), and Seward (SG) glaciers. Flow lines are in orange and red. Markers in green show the distance in kilometers along
the selected red flow line. (b) Time-averaged 3D flow velocities: horizontal velocity is shown as a (coarse-resolution) vector map, and vertical
velocity is color-coded. Surface topographic contour lines derived from the TerraSAR-x 90 m DEM with intervals of 100 m are shown in
gray. Flow displacement time series for regions P1–P4 are plotted in Fig. 11. (c) Time-averaged 3D flow velocities and glacier height along
the red flow line. (d) Temporal evolution of horizontal flow velocity magnitude along the red flow line. (e) Temporal evolution of vertical
flow velocity along the red flow line.
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Figure 8. (a) Sentinel-1 SAR intensity image acquired on 22 December 2019 over AOI2 that covers Klutlan Glacier (KtG). Flow lines are
in orange and red. Markers in green show the distance in kilometers along the selected red flow line. (b) Time-averaged 3D flow velocities:
horizontal velocity is shown as a (coarse-resolution) vector map, and vertical velocity is color-coded. Surface topographic contour lines
derived from the TerraSAR-x 90 m DEM with intervals of 100 m are shown in gray. Flow displacement time series for regions P5–P6 are
plotted in Fig. 11. (c) Time-averaged 3D flow velocities and glacier height along the red flow line. (d) Temporal evolution of horizontal flow
velocity magnitude along the red flow line. (e) Temporal evolution of vertical flow velocity along the red flow line.
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Figure 9. (a) Sentinel-1 SAR intensity image acquired on 22 December 2019 over AOI3 that covers Walsh Glacier (WG). Flow lines are
in orange and red. Markers in green show the distance in kilometers along the selected red flow line. (b) Time-averaged 3D flow velocities:
horizontal velocity is shown as a (coarse-resolution) vector map, and vertical velocity is color-coded. Surface topographic contour lines
derived from the TerraSAR-x 90 m DEM with intervals of 100 m are shown in gray. Flow displacement time series for regions P7–P8 are
plotted in Fig. 11. (c) Time-averaged 3D flow velocities and glacier height along the red flow line. (d) Temporal evolution of horizontal flow
velocity magnitude along the red flow line. (e) Temporal evolution of vertical flow velocity along the red flow line.

The direction and magnitude of the mean linear flow ve-
locities sampled along central flow lines from Malaspina and
Seward, Klutlan, Walsh, and Kluane glaciers are shown in
Figs. 7c, 8c, 9c, and 10c as vectors with tails that start at the
surface elevation of each glacier. Animations of these flow
velocities as time series along these profiles are also provided

in the Supplement. Note that the vertical axis (surface eleva-
tion) and horizontal axis (distance along profile) are scaled
differently, producing significant but equal angular distortion
in the flow velocities and topographic slopes. The mean lin-
ear flow velocities provide insight into the direction and mag-
nitude of mean velocities calculated over a specific interval
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Figure 10. (a) Sentinel-1 SAR intensity image acquired on 22 December 2019 over AOI4 that covers Kluane Glacier (KnG). Flow lines are
in orange and red. Markers in green show the distance in kilometers along the selected red flow line. (b) Time-averaged 3D flow velocities:
horizontal velocity is shown as a (coarse-resolution) vector map, and vertical velocity is color-coded. Surface topographic contour lines
derived from the TerraSAR-x 90 m DEM with intervals of 100 m are shown in gray. Flow displacement time series for region P9 are plotted
in Fig. 11. (c) Time-averaged 3D flow velocities and glacier height along the red flow line. (d) Temporal evolution of horizontal flow velocity
magnitude along the red flow line. (e) Temporal evolution of vertical flow velocity along the red flow line.
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Figure 11. 3D flow displacement time series for regions P1–P9, the locations of which are shown in Figs. 6–10.

(e.g., the Sentinel-1 record); however, these values can vary
over time. This is evident in the temporal evolution of the
horizontal velocity magnitude and vertical velocity sampled
along these profiles for the Seward and Malaspina glaciers
(Fig. 7d and e), the Klutlan Glacier (Fig. 8d and e), the Walsh
Glacier (Fig. 9d and e), and the Kluane Glacier (Fig. 10d and
e). Flow along the lower reaches of the Malaspina Glacier
varies seasonally, although the seasonal acceleration was de-
layed in 2020 and was higher in magnitude. Seasonal flow
along the Klutlan, Walsh, and Kluane glaciers is far less pro-
nounced; however, each shows an episodic shift in a flow that
occurred around mid-2018, mid-2017, and mid-2018, respec-
tively.

Examples of 3D flow displacement and velocity time se-
ries for the 5× 5 pixel regions P1–P9 are shown in Figs. 11
and 12. Similar time series can be easily produced for any
colored pixel in Fig. 6; the locations selected were chosen to
demonstrate diverse ice dynamic observations possible with
the MSBAS-3D method. Regions P1 and P4 are located on
the lower lobes of the Malaspina Glacier at an elevation of
about 200 ma.s.l. The displacement time series show that
flow is predominately west-southwest at P1 and northeast at

P4. An abrupt change in a flow regime occurred at P1 at the
end of June 2020. Since then, the flow velocity at P1 has
remained elevated in comparison to the values observed in
prior years. This many-fold velocity increase can also be ob-
served in Fig. 7d and e along the latter part of the profile.
Horizontal and vertical flow velocities in these regions are
only a few meters per year, with a seasonal signal evident at
P4 in the vertical component. Such seasonal signals are ob-
served at most low-elevation glaciers. Regions P2 and P3 are
located at elevations of about 1000 and 700 m. At these lo-
cations, horizontal flow dominates flow displacement, while
vertical flow displacement is minimal. The southwest direc-
tion of flow is persistent at both locations. Flow velocities
along the main branch of the Agassiz Glacier (not shown) are
very similar to the flow velocities along the Seward Glacier
but of a lesser magnitude.

Regions P5 and P6 are located on Klutlan Glacier at ele-
vations of about 1900 and 1500 m, respectively. The overall
vertical flow is slightly downward in these regions, but hor-
izontal and vertical components both show significant vari-
ability over time. Regions P7 and P8 are located on Walsh
Glacier at an elevation of about 1700 and 2000 m, respec-
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Figure 12. 3D flow velocity time series for regions P1–P9, the locations of which are shown in Figs. 6–10.

tively. At P7, northwest upward displacement is observed un-
til July 2017 when a gradual reduction occurred. Region P9
is located on Kluane Glacier at an elevation of about 1700 m.
Here, southeast and upward displacement is observed during
2018 when a gradual reduction occurred. Error bars through-
out Figs. 11 and 12 show measurement variability within the
5×5 pixel region rather than precision, though the two quan-
tities are likely related.

5 Discussion

The technique presented in this study is a viable solution for
computing 3D flow displacement time series from ascend-
ing and descending range and azimuth SAR measurements.
Synthetic tests (Figs. 2 and 3) suggest that the precision of
the inversion largely depends on the precision of input data
and is not limited by the Sentinel-1 suboptimal acquisition
geometry (i.e., nonorthogonal orbits). Range offsets can be
substituted or complemented with DInSAR measurements
since both measure the same quantity; similarly, azimuth off-
sets can be substituted or complemented by multiple-aperture

interferometry (MAI) (Bechor and Zebker, 2006) measure-
ments. For high-resolution SAR data, the precision of the
SPO technique approaches that of DInSAR. In addition to
glaciers, this technique can be used to study other geophys-
ical processes (e.g., landslides, sea–river–lake ice drift) if
their motion exceeds the sensitivity of SPO and/or MAI tech-
niques.

The reported precision of the individual offset maps com-
puted using the SPO technique is 1/10–1/30 of the SAR
pixel size (Strozzi et al., 2002). An average precision of
our speckle offset product computed over a typical inter-
val of 12 d (i.e., Sentinel-1 repeat period) is about 1 m (or
30 myr−1) in range and 4 m (or 120 myr−1) in azimuth. Our
precision is lower than reported in Strozzi et al. (2002) be-
cause we intentionally interpret the motion outside glaciers
(e.g., irregular snowdrift, landslides) as noise. However,
for computing the mean linear velocity the length of the
time series is more important than the precision of indi-
vidual measurements. Standard deviations of the mean lin-
ear velocities averaged over the entire region are 0.7, 0.3,
and 0.2 myr−1 (while the maximum values are 21, 18, and
7 myr−1, these higher values would be due to seasonal vari-

The Cryosphere, 15, 4221–4239, 2021 https://doi.org/10.5194/tc-15-4221-2021



S. Samsonov et al.: Measuring the state and temporal evolution of glaciers in Alaska and Yukon 4235

ations and changes in surge activity) for northward, east-
ward, and vertical components, respectively. This is some-
what analogous to the precision of GNSS-derived deforma-
tion rates, which largely depend on the length of time series
rather than the precision of individual GNSS measurements.
The best approach for estimating the absolute measurement
accuracy, of course, is comparing these remote sensing mea-
surements with ground-based measurements (Gudmundsson
and Bauder, 1999), which unfortunately are not available for
this region and this period. SAR measures glacier motion at
a certain depth rather than at the surface. Previous studies for
this region suggest that the C-band SAR penetrates ∼ 4 m
into the glacier’s firn layer in dry conditions (Rignot et al.,
2001). The standard deviation and coefficient of determina-
tion for each component of velocity and each pixel are pro-
vided in the Supplement.

One of the practical computational challenges of the SPO
technique is the selection of pixels, the offsets of which are
computed with high confidence. After multiple tests, we de-
termined that the SNR function works very well for this pur-
pose but only when the search window is large. However,
such a large window applied to the medium-resolution SAR
data limits the spatial resolution of the results. It is possible
to use high-resolution SAR data and the 128×28 pixel search
window to overcome this limitation and achieve a high spa-
tial resolution of results; however, such SAR data are not yet
readily available on a global scale. The utilization of high-
resolution SAR data also allows for the use of a spatial filter
with a large window size in terms of pixels.

We compared the magnitude of mean linear horizontal
flow velocities along the four profiles with the results pre-
sented in Gardner et al. (2019). There, surface velocities are
derived from Landsat 4, 5, 7, and 8 imagery over the pe-
riod from 1985 to 2018 using the autoRIFT feature-tracking
processing chain described in Gardner et al. (2018). We
used the horizontal velocities computed during 2017, 2018,
and the entire 2018–present period; these results are shown
in the Supplement. The velocities computed over the 2017
and 2018 periods (Figs. S7–S14 in the Supplement) are
in reasonable agreement. When we compare entire datasets
(Figs. S15–S18 in the Supplement) they still show some
agreement. Statistical parameters, such as correlation coef-
ficients and room mean square errors (RMSEs), are provided
in the figure captions. We observe that in areas experienc-
ing nearly constant flow velocity, for example at Seward and
Malaspina glaciers, both datasets show close results with a
correlation of 0.93 and RMSE of 269 myr−1. At Klutlan,
Walsh, and Kluane glaciers, SAR-derived velocities are af-
fected by the surges, which are not reflected in Gardner et al.
(2019), resulting in a lower correlation (0.43–0.80) and a
larger RMSE (80–266 myr−1) in comparison to the average
velocity at those glaciers. Furthermore, the Landsat record
will be temporally biased towards cloud-free images and pe-
riods when sufficient sunlight is available to obtain optical
imagery, thus eliminating a significant portion of late fall and

early winter scenes. One final discrepancy can be attributed
to the differences in processing parameters, such as corre-
lation window and filter shape and strength. Significant fil-
tering is required in our processing because, for time series
analysis, every single range and azimuth offset map must be
defined at every pixel, which can be only achieved by using a
large correlation window followed by strong filtering. Preser-
vation of spatial coverage in every single range and azimuth
offset map forces us to select pixels with a moderate signal-
to-noise ratio (SNR), which would not have been selected if
we wanted to compute only the mean velocity. Our software
can potentially handle missing values in data by interpolating
in the time domain (using first- and second-order regulariza-
tions), but here we have chosen not to introduce interpolation
bias and instead lowered the SNR. Overall, in addition to pro-
viding the three components of flow velocity at a higher and
more consistent temporal resolution, our study demonstrates
that deviations from the mean flow velocity can be very sig-
nificant. Although the time series in Fig. 11 resemble GNSS-
derived displacements, it is important to remember that these
Eulerian measurements represent the cumulative displace-
ment at any one pixel over time. Hence, to emphasize this
difference, we use the flow displacement terminology. Note
also that the vertical velocities do not represent rates of ele-
vation change but evolving submergence and emergence ve-
locities indicative of broader (and faster) changes in dynamic
configuration than previously understood.

The overall direction of vertical flow is down along al-
most the entire length of the Seward and Malaspina glaciers
(Fig. 7). The downward flow is expected in the upper reaches
of accumulation zones because of firn compaction and in ar-
eas with steeply dipping surfaces due to sloping bed topog-
raphy; however, downward flow, with the slope steeper than
surface topography in the lower ablation zone, is of partic-
ular interest. In general, the accumulation of snow and ice
in high elevations produces a net mass gain that replenishes
ice lost through ablation processes along the lower glacier.
In a steady state, these processes balance each other and lead
to submergent flow in the accumulation zone and emergent
flow in the ablation zone; thus, ice mass lost through melt
in the ablation zone is replenished by ice that emerges from
the depths of ice columns to the glacier surface to main-
tain a consistent surface elevation (Hooke, 2019). The pre-
dominately downward flow of ice observed throughout the
Malaspina Glacier’s massive lobe (Figs. 7b, c, e, and 12d)
indicates that ablation rates have exceeded emergence veloc-
ities during our 4-year study period, implying that the glacier
is still adjusting to climatic warming. Indeed, the Seward,
Malaspina, and Agassiz glaciers are not in a steady state
(Muskett et al., 2003; Larsen et al., 2015). Seasonal vari-
ability is observed along the Seward and Malaspina glaciers
(Figs. 7d, e and 12b, c, d). The fastest horizontal motion oc-
curs during late spring–early summer and the slowest in late
summer–early fall, consistent with other glaciers in the re-
gion (Abe and Furuya, 2015; Vijay and Braun, 2017; Ender-
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lin et al., 2018). The fastest vertical motion is observed in the
middle of summer. An animation provided with the Supple-
ment clearly shows seasonality in flow rates over the entire
complex. Seasonal variability at P1 is obstructed by a many-
fold increase in velocity observed in the second half of 2020
that persists at the time of this study.

Velocities along Klutlan Glacier vary in more complex
ways, with multiple zones of upward and downward flow
observed (Fig. 8). This surge-type glacier (RGI Consortium,
2017) has a 30- to 60-year surge cycle (Meier and Post, 1969;
Wright, 1980; Driscoll, 1980). Altena et al. (2019) used op-
tical satellite data to show that its most recent surge initi-
ated in 2014 and continued through 2017. The surge started
mid-glacier and had two propagating fronts: a dominant
surge front that propagated downglacier and a secondary sub-
dued front that propagated upglacier. Our SAR-based record
shows that surge activity terminated in mid-2018. The time
series at P5 and P6 (Figs. 11e, f and 12e, f) show complex
flow dynamics in both the horizontal and vertical compo-
nents.

The Walsh Glacier is another surge-type glacier with re-
cent surge activity. Using optical Landsat data, Fu and Zhou
(2020) showed that the latest surge initiated before 2015
(Fig. 9). Our SAR-based observations show residual surge
activity continued into 2017 and abruptly ended in mid-2017
(Fig. 9d). The time series at P8 (Figs. 11h and 12h) show that
regular increases in flow velocity during summer, while at P7
these seasonal increases are less pronounced (Figs. 11g and
12g). The surge at P7 during 2017 is a dominant signal.

A surge of the Kluane Glacier has previously been de-
tected using RADARSAT-2 SAR measurements (Main et al.,
2019). It occurred during 2018 in a secondary valley of the
glacier (Fig. 10). The entire surge cycle is captured by our
time series (Figs. 11i and 12i). Such a complex flow pattern
can only be derived from side-looking SAR measurements
that capture horizontal and vertical components of motion.

These six in-depth-analyzed glaciers were selected from
the regional results shown in Fig. 6. Other glaciers in this
region may have also experienced surges or other interesting
behaviors. The entire dataset, which includes instantaneous
velocities and cumulative displacements for each pixel, and
the processing software are provided with this paper.

6 Conclusions

We presented a flow displacement technique to observe vari-
ations in glacier surface flow in 3D using ascending and de-
scending SAR scenes. The 3D flow displacement (and/or
velocity) time series computed allowed us to map in un-
precedented detail the state and the temporal evolution of
six glaciers in southeastern Alaska during 20 October 2016–
21 January 2021. On a broader scale, this technique can be
used for reconstructing the historic response of worldwide
glaciers to the warming climate using over 30 years of avail-

able satellite SAR records. The horizontal components can
be resolved to study flow variations over time and, if inte-
grated along a profile that is perpendicular to flow, ice flux.
The vertical component can be used to assess changes in ver-
tical ice flux or changes in surface slope over time, which is
useful for studying glacier surge dynamics or variations in
driving stress as a glacier dynamically adjusts to a changing
climate. The software is freely available to the research com-
munity.

Code and data availability. The range and azimuth offsets com-
puted from Sentinel-1 data as well as all derived products and pro-
cessing software used in this study can be downloaded from Mende-
ley Data at https://doi.org/10.17632/zf67rsgydv.1 (Samsonov et al.,
2021b).

Video supplement. The animations of flow velocities for stud-
ied glaciers (files movie_malaspina.gif, movie_klutlan.gif,
movie_walsh.gif, movie_kluane.gif) are provided. Comparisons
between the magnitude of mean linear horizontal flow velocities
along the four profiles with the results presented in Gardner et al.
(2019) are also provided.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-15-4221-2021-supplement.

Author contributions. SeS was responsible for conceptualization,
data curation, formal analysis, investigation, methodology, project
administration, resources, software, visualization, and writing (orig-
inal draft; review and editing). KT was responsible for investiga-
tion, formal analysis, methodology, and writing (review and edit-
ing). RC was responsible for investigation, formal analysis, method-
ology, and writing (review and editing).

Competing interests. The authors declare that they have no conflict
of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank the European Space Agency for ac-
quiring and the National Aeronautics and Space Administration
(NASA) and ASF for distributing Sentinel-1 SAR data. Figures
were plotted with GMT and Gnuplot software. The work of Sergey
Samsonov was supported by the Canadian Space Agency through
the Data Utilization and Application Plan (DUAP) program. The
work of Kristy Tiampo was supported by CIRES, University of Col-
orado Boulder.

The Cryosphere, 15, 4221–4239, 2021 https://doi.org/10.5194/tc-15-4221-2021

https://doi.org/10.17632/zf67rsgydv.1
https://doi.org/10.5194/tc-15-4221-2021-supplement


S. Samsonov et al.: Measuring the state and temporal evolution of glaciers in Alaska and Yukon 4237

Financial support. The work of Ryan Cassotto was supported by
NASA (grant no. 80NSSC17K0017).

Review statement. This paper was edited by Joseph MacGregor and
reviewed by Brent Minchew and two anonymous referees.

References

Abe, T. and Furuya, M.: Winter speed-up of quiescent surge-
type glaciers in Yukon, Canada, The Cryosphere, 9, 1183–1190,
https://doi.org/10.5194/tc-9-1183-2015, 2015.

Abrams, M., Crippen, R., and Fujisada, H.: ASTER Global
Digital Elevation Model (GDEM) and ASTER Global Wa-
ter Body Dataset (ASTWBD)., Remote Sens.-Basel, 12, 1156,
https://doi.org/10.3390/rs12071156, 2020.

Altena, B., Scambos, T., Fahnestock, M., and Kääb, A.: Extract-
ing recent short-term glacier velocity evolution over south-
ern Alaska and the Yukon from a large collection of Landsat
data, The Cryosphere, 13, 795–814, https://doi.org/10.5194/tc-
13-795-2019, 2019.

Arendt, A.: Assessing the Status of Alaska’s Glaciers, Science, 332,
1044–1045, https://doi.org/10.1126/science.1204400, 2011.

Arendt, A., Walsh, J., and Harrison, W.: Changes of glaciers
and climate in northwestern North America during
the late twentieth century, J. Climate, 22, 4117–4134,
https://doi.org/10.1175/2009JCLI2784.1, 2009.

Bartholomew, I., Nienow, P., Mair, D., Hubbard, A., King, M., and
Sole, A.: Seasonal evolution of subglacial drainage and accel-
eration in a Greenland outlet glacier, Nat. Geosci., 3, 408–411,
https://doi.org/10.1038/ngeo863, 2010.

Bechor, N. and Zebker, H.: Measuring two-dimensional movements
using a single InSAR pair, Geophys. Res. Lett., 33, L16311,
https://doi.org/10.1029/2006GL026883, 2006.

Berthier, E., Vadon, H., Baratoux, D., Arnaud, Y., Vincent, C.,
Feigl, K., Remy, F., and Legresy, B.: Surface motion of moun-
tain glaciers derived from satellite optical imagery, Remote Sens.
Environ., 95, 14–28, https://doi.org/10.1016/j.rse.2004.11.005,
2005.

Bisset, R., Dehecq, A., Goldberg, D., Huss, M., Bingham, R.,
and Gourmelen, N.: Reversed Surface-Mass-Balance Gra-
dients on Himalayan Debris-Covered Glaciers Inferred
from Remote Sensing, Remote Sens.-Basel, 12, 1563,
https://doi.org/10.3390/rs12101563, 2020.

Burgess, E., Forster, R., and Larsen, C.: Flow veloc-
ities of Alaskan glaciers, Nat. Commun., 4, 2146,
https://doi.org/10.1038/ncomms3146, 2013.

Dehecq, A., Gourmelen, N., and Trouve, E.: Deriving large-scale
glacier velocities from a complete satellite archive: Applica-
tion to the Pamir–Karakoram–Himalaya, Remote Sens. Environ.,
162, 55–66, https://doi.org/10.1016/j.rse.2015.01.031, 2015.

Driscoll, F. J.: Formation of the neoglacial surge moraines of the
Klutlan glacier, Yukon Territory, Canada, Quaternary Res., 19–
30, https://doi.org/10.1016/0033-5894(80)90004-6, 1980.

Enderlin, E. M., O’Neel, S., Bartholomaus, T. C., and Joughin, I.:
Evolving Environmental and Geometric Controls on Columbia
Glacier’s Continued Retreat, J. Geophys. Res.-Earth, 123, 1528–
1545, https://doi.org/10.1029/2017JF004541, 2018.

Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., and
Klinger, M.: Rapid large-area mapping of ice flow using Landsat
8, Remote Sens. Environ., Remote Sens. Environ., 185, 84–94,
https://doi.org/10.1016/j.rse.2015.11.023, 2015.

Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Ha-
ran, T., and Klinger, M.: Rapid large-area mapping of ice
flow using Landsat 8, Remote Sens. Environ., 185, 84–94,
https://doi.org/10.1016/j.rse.2015.11.023, 2016.

Fialko, Y., Simons, M., and Agnew, D.: The complete (3-
D) surface displacement field in the epicentral area of the
1999 MW7.1 Hector Mine Earthquake, California, from space
geodetic observations, Geophys. Res. Lett., 28, 3063–3066,
https://doi.org/10.1029/2001GL013174, 2001.

Ford, A. L., Forster, R. R., and Bruhn, R. L.: Ice surface velocity
patterns on Seward Glacier, Alaska/Yukon, and their implications
for regional tectonics in the Saint Elias Mountains, Ann. Glaciol.,
36, 21–28, https://doi.org/10.3189/172756403781816086, 2003.

Fu, X. and Zhou, J.: Recent surge behavior of Walsh
glacier revealed by remote sensing data, Sensors, 20, 716,
https://doi.org/10.3390/s20030716, 2020.

Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M.,
Ligtenberg, S., van den Broeke, M., and Nilsson, J.: In-
creased West Antarctic and unchanged East Antarctic ice dis-
charge over the last 7 years, The Cryosphere, 12, 521–547,
https://doi.org/10.5194/tc-12-521-2018, 2018.

Gardner, A., Fahnestock, M., and Scambos, T.: ITS_LIVE
Regional Glacier and Ice Sheet Surface Velocities,
Data archived at National Snow and Ice Data Center,
https://doi.org/10.5067/6II6VW8LLWJ7, 2019.

Goldstein, R. M., Engelhardt, H., Kamb, B., and Frolich, R. M.:
Satellite Radar Interferometry for Monitoring Ice Sheet Motion:
Application to an Antarctic Ice Stream, Science, 262, 1525–
1530, https://doi.org/10.1126/science.262.5139.1525, 1993.

Gourmelen, N., Amelung, F., Casu, F., Manzo, M., and Lanari, R.:
Mining-related ground deformation in Crescent Valley, Nevada:
Implications for sparse GPS networks, Geophys. Res. Lett., 34,
L09309, https://doi.org/10.1029/2007GL029427, 2007.

Gourmelen, N., Amelung, F., and Lanari, R.: Interferometric syn-
thetic aperture radar–GPS integration: Interseismic strain accu-
mulation across the Hunter Mountain fault in the eastern Cal-
ifornia shear zone, J. Geophys. Res.-Sol. Ea., 115, B09408,
https://doi.org/10.1029/2009JB007064, 2010.

Gourmelen, N., Kim, S., Shepherd, A., Park, J., Sundal, A., Björns-
son, H., and Pálsson, F.: Ice velocity determined using conven-
tional and multiple-aperture InSAR, Earth Planet. Sc. Lett., 307,
156–160, https://doi.org/10.1016/j.epsl.2011.04.026, 2011.

Gray, L.: Using multiple RADARSAT InSAR pairs to estimate a full
three-dimensional solution for glacial ice movement, Geophys.
Res. Lett., 38, L05502, https://doi.org/10.1029/2010GL046484,
2011.

Gray, L., Joughin, I., Tulaczyk, S., Spikes, V., Bindschadler, R.,
and Jezek, K.: Evidence for subglacial water transport in
the West Antarctic Ice Sheet through three-dimensional satel-
lite radar interferometry, Geophys. Res. Lett., 32, L03501,
https://doi.org/10.1029/2004GL021387, 2005.

Gudmundsson, G. and Bauder, A.: Towards an Indirect Determi-
nation of the Mass-Balance Distribution of Glaciers Using the
Kinematic Boundary Condition, Geogr. Ann. A, 81, 575–583,
1999.

https://doi.org/10.5194/tc-15-4221-2021 The Cryosphere, 15, 4221–4239, 2021

https://doi.org/10.5194/tc-9-1183-2015
https://doi.org/10.3390/rs12071156
https://doi.org/10.5194/tc-13-795-2019
https://doi.org/10.5194/tc-13-795-2019
https://doi.org/10.1126/science.1204400
https://doi.org/10.1175/2009JCLI2784.1
https://doi.org/10.1038/ngeo863
https://doi.org/10.1029/2006GL026883
https://doi.org/10.1016/j.rse.2004.11.005
https://doi.org/10.3390/rs12101563
https://doi.org/10.1038/ncomms3146
https://doi.org/10.1016/j.rse.2015.01.031
https://doi.org/10.1016/0033-5894(80)90004-6
https://doi.org/10.1029/2017JF004541
https://doi.org/10.1016/j.rse.2015.11.023
https://doi.org/10.1016/j.rse.2015.11.023
https://doi.org/10.1029/2001GL013174
https://doi.org/10.3189/172756403781816086
https://doi.org/10.3390/s20030716
https://doi.org/10.5194/tc-12-521-2018
https://doi.org/10.5067/6II6VW8LLWJ7
https://doi.org/10.1126/science.262.5139.1525
https://doi.org/10.1029/2007GL029427
https://doi.org/10.1029/2009JB007064
https://doi.org/10.1016/j.epsl.2011.04.026
https://doi.org/10.1029/2010GL046484
https://doi.org/10.1029/2004GL021387


4238 S. Samsonov et al.: Measuring the state and temporal evolution of glaciers in Alaska and Yukon

Guo, L., Li, J., Li, Z.-w., Wu, L.-x., Li, X., Hu, J., Li, H.-l., Li, H.-y.,
Miao, Z.-l., and Li, Z.-q.: The Surge of the Hispar Glacier, Cen-
tral Karakoram: SAR 3-D Flow Velocity Time Series and Thick-
ness Changes, J. Geophys. Res.-Sol. Ea., 125, e2019JB018945,
https://doi.org/10.1029/2019JB018945, 2020.

Hansen, P. and O’Leary, D.: The use of the L-curve in the regular-
ization of discrete ill-posed problems, SIAM J. Sci. Comput., 14,
1487–1503, 1993.

Herman, F., Anderson, B., and Leprince, S.: Mountain glacier ve-
locity variation during a retreat/advance cycle quantified using
sub-pixel analysis of ASTER images, J. Glaciol., 57, 197–207,
https://doi.org/10.3189/002214311796405942, 2011.

Hooke, R. L.: Principles of Glacier Mechanics, Cambridge Uni-
versity Press, 3rd edn., https://doi.org/10.1017/9781108698207,
2019.

Hu, J., Li, Z., Ding, X., Zhu, J., Zhang, L., and Sun, Q.:
Resolving three-dimensional surface displacements from In-
SAR measurements: A review, Earth-Sci. Rev., 133, 1–17,
https://doi.org/10.1016/j.earscirev.2014.02.005, 2014.

Immerzeel, W., Kraaijenbrink, P., Shea, J., Shrestha, A.,
Pellicciotti, F., Bierkens, M., and de Jong, S.: High-
resolution monitoring of Himalayan glacier dynamics using un-
manned aerial vehicles, Remote Sens. Environ., 150, 93–103,
https://doi.org/10.1016/j.rse.2014.04.025, 2014.

Joughin, I.: Ice-sheet velocity mapping: A combined interferomet-
ric and speckle-tracking approach, Ann. Glaciol., 34, 195–201,
https://doi.org/10.3189/172756402781817978, 2002.

Joughin, I., Winebrenner, D., and Fahnestock, M.: Obser-
vations of ice-sheet motion in Greenland using satellite
radar interferometry, Geophys. Res. Lett., 22, 571–574,
https://doi.org/10.1029/95GL00264, 1995.

Joughin, I., Kwok, R., and Fahnestock, M.: Interferometric es-
timation of three-dimensional ice-flow using ascending and
descending passes, IEEE T. Geosci. Remote, 36, 25–37,
https://doi.org/10.1109/36.655315, 1998.

Kumar, V., Venkataramana, G., and Høgda, K.: Glacier
surface velocity estimation using SAR interferometry
technique applying ascending and descending passes
in Himalayas, Int. J. Appl. Earth Obs., 13, 545–551,
https://doi.org/10.1016/j.jag.2011.02.004, 2011.

Larsen, C., Burgess, E., Arendt, A. A., O’Neel, S., John-
son, A. J., and Kienholz, C.: Surface melt dominates Alaska
glacier mass balance, Geophys. Res. Lett., 42, 5902–5908,
https://doi.org/10.1002/2015GL064349, 2015.

Main, B., Copland, L., Samsonov, S., Dow, C., Flowers, G.,
Young, E., and Kochtitzky, W.: Surge of Little Kluane Glacier
in the St. Elias Mountains, Yukon, Canada, from 2017–2018,
in: American Geophysical Union, Fall Meeting, 9–13 December
2019, San Francisco. abstract C31B-1517, 2019.

Massonnet, D. and Feigl, K.: Discrimination of geophysical phe-
nomena in satellite radar interferograms, Geophys. Res. Lett., 22,
1537–1540, 1995.

Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J.,
Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle,
F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and
Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1,
Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-
12-909-2019, 2019.

Meier, M. and Post, A.: What are glacier surges?, Can. J. Earth Sci.,
6, 807–817, https://doi.org/10.1139/e69-081, 1969.

Milillo, P., Minchew, B., Simons, M., Agram, P., and Riel, B.:
Geodetic imaging of time-dependent three-component surface
deformation: Application to tidal-timescale ice flow of Rutford
Ice Stream, West Antarctica, IEEE T. Geosci. Remote, 55, 5515–
5524, https://doi.org/10.1109/TGRS.2017.2709783, 2017.

Minchew, B. M., Simons, M., Riel, B., and Milillo, P.: Tidally
induced variations in vertical and horizontal motion on Rut-
ford Ice Stream, West Antarctica, inferred from remotely
sensed observations, J. Geophys. Res.-Earth, 122, 167–190,
https://doi.org/10.1002/2016JF003971, 2017.

Mohr, J., Reeh, N., and Madsen, S.: Three-dimensional glacial flow
and surface elevation measured with radar interferometry, Na-
ture, 391, 273–276, https://doi.org/10.1038/34635, 1998.

Morlighem, M., Rignot, E., Seroussi, H., Larour, E., Ben Dhia, H.,
and Aubry, D.: A mass conservation approach for map-
ping glacier ice thickness, Geophys. Res. Lett., 38, L19503,
https://doi.org/10.1029/2011GL048659, 2011.

Muskett, R. R., Lingle, C. S., Tangborn, W. V., and Rabus, B. T.:
Multi-decadal elevation changes on Bagley Ice Valley and
Malaspina Glacier, Alaska, Geophys. Res. Lett., 30, 1857,
https://doi.org/10.1029/2003GL017707, 2003.

Palmer, S. J., Shepherd, A., Sundal, A., Rinne, E., and Nienow, P.:
InSAR observations of ice elevation and velocity fluctuations at
the Flade Isblink ice cap, eastern North Greenland, J. Geophys.
Res.-Earth, 115, F04037, https://doi.org/10.1029/2010JF001686,
2010.

RGI Consortium: Randolph Glacier Inventory – A Dataset of
Global Glacier Outlines: Version 6.0: Technical Report, Global
Land Ice Measurements from Space, Tech. rep., Colorado, USA,
Digital Media, https://doi.org/10.7265/N5-RGI-60, 2017.

Riel, B., Simons, M., Agram, P., and Zhan, Z.: Detecting
transient signals in geodetic time series using sparse esti-
mation techniques, J. Geophys. Res.-Solid, 119, 5140–5160,
https://doi.org/10.1002/2014JB011077, 2014.

Riel, B., Simons, M., Ponti, D., and Agram, P.and Jolivet, R.: Quan-
tifying ground deformation in the Los Angeles and Santa Ana
Coastal Basins due to groundwater withdrawal, Water Resour.
Res., 54, 3557–3582, https://doi.org/10.1029/2017WR021978,
2018.

Riel, B., Minchew, B., and Joughin, I.: Observing traveling waves
in glaciers with remote sensing: new flexible time series methods
and application to Sermeq Kujalleq (Jakobshavn Isbræ), Green-
land, The Cryosphere, 15, 407–429, https://doi.org/10.5194/tc-
15-407-2021, 2021.

Rignot, E.: Fast Recession of a West Antarctic Glacier, Science,
281, 549–551, https://doi.org/10.1126/science.281.5376.549,
1998.

Rignot, E.: Mass balance of East Antarctic glaciers and ice
shelves from satellite data, Ann. Glaciol., 34, 217–227,
https://doi.org/10.3189/172756402781817419, 2002.

Rignot, E., Echelmeyer, K., and Krabill, W.: Penetration
depth of interferometric synthetic-aperture radar signals
in snow and ice, Geophys. Res. Lett., 28, 3501–3504,
https://doi.org/10.1029/2000GL012484, 2001.

Rosen, P., Hensley, P., Joughin, I., Li, F., Madsen, S., Rodriguez, E.,
and Goldstein, R.: Synthetic aperture radar interferometry, P.
IEEE„ 88, 333–382, 2000.

The Cryosphere, 15, 4221–4239, 2021 https://doi.org/10.5194/tc-15-4221-2021

https://doi.org/10.1029/2019JB018945
https://doi.org/10.3189/002214311796405942
https://doi.org/10.1017/9781108698207
https://doi.org/10.1016/j.earscirev.2014.02.005
https://doi.org/10.1016/j.rse.2014.04.025
https://doi.org/10.3189/172756402781817978
https://doi.org/10.1029/95GL00264
https://doi.org/10.1109/36.655315
https://doi.org/10.1016/j.jag.2011.02.004
https://doi.org/10.1002/2015GL064349
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.1139/e69-081
https://doi.org/10.1109/TGRS.2017.2709783
https://doi.org/10.1002/2016JF003971
https://doi.org/10.1038/34635
https://doi.org/10.1029/2011GL048659
https://doi.org/10.1029/2003GL017707
https://doi.org/10.1029/2010JF001686
https://doi.org/10.7265/N5-RGI-60
https://doi.org/10.1002/2014JB011077
https://doi.org/10.1029/2017WR021978
https://doi.org/10.5194/tc-15-407-2021
https://doi.org/10.5194/tc-15-407-2021
https://doi.org/10.1126/science.281.5376.549
https://doi.org/10.3189/172756402781817419
https://doi.org/10.1029/2000GL012484


S. Samsonov et al.: Measuring the state and temporal evolution of glaciers in Alaska and Yukon 4239

Samsonov, S.: Three-dimensional deformation time series of
glacier motion from multiple-aperture DInSAR observation, J.
Geodesy, 93, 2651–2660, https://doi.org/10.1007/s00190-019-
01325-y, 2019.

Samsonov, S. and d‘Oreye, N.: Multidimensional time series analy-
sis of ground deformation from multiple InSAR data sets applied
to Virunga Volcanic Province, Geophys. J. Int., 191, 1095–1108,
https://doi.org/10.1111/j.1365-246X.2012.05669.x, 2012.

Samsonov, S. and d‘Oreye, N.: Multidimensional Small Baseline
Subset (MSBAS) for Two-Dimensional Deformation Analysis:
Case Study Mexico City, Can. J. Remote Sens., 43, 318–329,
https://doi.org/10.1080/07038992.2017.1344926, 2017.

Samsonov, S. and Tiampo, K.: Analytical optimization of DInSAR
and GPS dataset for derivation of three-dimensional surface mo-
tion, IEEE Geosci. Remote S., 3, 107–111, 2006.

Samsonov, S., Tiampo, K., Rundle, J., and Li, Z.: Application of
DInSAR-GPS optimization for derivation of fine scale surface
motion maps of southern California, IEEE T. Geosci. Remote,
45, 512–521, 2007.

Samsonov, S., Dille, A., Dewitte, O., Kervyn, F., and d‘Oreye, N.:
Satellite interferometry for mapping surface deformation time
series in one, two and three dimensions: A new method illus-
trated on a slow-moving landslide, Eng. Geol., 266, 105471,
https://doi.org/10.1016/j.enggeo.2019.105471, 2020.

Samsonov, S., Tiampo, K., and Cassotto, R.: SAR-derived flow
velocity and its link to glacier surface elevation change
and mass balance, Remote Sens. Environ., 258, 112343,
https://doi.org/10.1016/j.rse.2021.112343, 2021a.

Samsonov, S., Tiampo, K., and Cassotto, R.: “Data for: Measuring
the state and temporal evolution of glaciers in Alaska and Yukon
using SAR-derived 3D time series of glacier surface flow”,
Mendeley Data, V1, https://doi.org/10.17632/zf67rsgydv.1,
2021b.

Sauber, J., Molnia, B., Carabajal, C., Luthcke, S., and
Muskett, R.: Ice elevations and surface change on the
Malaspina Glacier, Alaska, Geophys. Res. Lett., 32, L23S01,
https://doi.org/10.1029/2005GL023943, 2005.

Sharp, R. P.: Accumulation and ablation on the Seward-
Malaspina glacier system, Canada-Alaska, GSA Bul-
letin, 62, 725–744, https://doi.org/10.1130/0016-
7606(1951)62[725:AAAOTS]2.0.CO;2, 1951.

Sharp, R. P.: Malaspina Glacier, Alaska, Geol. Soc.
Am. Bull., 69, 617–646, https://doi.org/10.1130/0016-
7606(1958)69[617:MGA]2.0.CO;2, 1958.

Shen, Z.-K. and Liu, Z.: Integration of GPS and In-
SAR data for resolving 3-dimensional crustal defor-
mation, Earth and Space Science, 7, e2019EA001036,
https://doi.org/10.1029/2019EA001036, 2020.

Shepherd, A., Wingham, D. J., Mansley, J. A. D., and Corr, H. F. J.:
Inland Thinning of Pine Island Glacier, West Antarctica, Science,
291, 862–864, https://doi.org/10.1126/science.291.5505.862,
2001.

Shepherd, A., Ivins, E., and Rignot, E. e. a.: Mass balance of the
Greenland Ice Sheet from 1992 to 2018., Nature, 579, 233–239,
https://doi.org/10.1038/s41586-019-1855-2, 2020.

Strozzi, T., Luckman, A., Murray, T., and Weg-
muller, U.and Werner, C. L.: Glacier motion estimation
using SAR offset-tracking procedures, IEEE T. Geosci. Remote,
40, 2384–2391, https://doi.org/10.1109/TGRS.2002.805079,
2002.

van de Wal, R. S. W., Boot, W., van den Broeke, M. R.,
Smeets, C. J. P. P., Reijmer, C. H., Donker, J. J. A., and Oerle-
mans, J.: Large and Rapid Melt-Induced Velocity Changes in the
Ablation Zone of the Greenland Ice Sheet, Science, 321, 111–
113, https://doi.org/10.1126/science.1158540, 2008.

Vijay, S. and Braun, M.: Seasonal and interannual variability of
Columbia Glacier, Alaska (2011–2016): ice velocity, mass flux,
surface elevation and front position, Remote Sens.-Basel, 9, 635,
https://doi.org/10.3390/rs9060635, 2017.

Waechter, A., Copland, L., and Herdes, E.: Modern glacier veloc-
ities across the Icefield Ranges, St Elias Mountains, and vari-
ability at selected glaciers from 1959 to 2012, J. Glaciol., 61,
624–634, https://doi.org/10.3189/2015JoG14J147, 2015.

Wang, Q., Fan, J., Zhou, W., Tong, L., Guo, Z., Liu, G., Yuan, W.,
Sousa, J. J., and Perski, Z.: 3D Surface velocity retrieval of
mountain glacier using an offset tracking technique applied
to ascending and descending SAR constellation data: a case
study of the Yiga Glacier, Int. J. Digit. Earth, 12, 614–624,
https://doi.org/10.1080/17538947.2018.1470690, 2019.

Wegmuller, U. and Werner, C.: GAMMA SAR processor and in-
terferometry software, in: The 3rd ERS symposium on space
at the service of our environment, Florence, Italy, available at:
https://earth.esa.int/workshops/ers97/papers/wegmuller2/, 1997.

Werder, M. A., Huss, M., Paul, F., Dehecq, A., and
Farinotti, D.: A Bayesian ice thickness estimation model
for large-scale applications, J. Glaciol., 66, 137–152,
https://doi.org/10.1017/jog.2019.93, 2019.

Wright, H.: Surge Moraines of the Klutlan Glacier, Yukon Ter-
ritory, Canada: Origin, Wastage, Vegetation Succession, Lake
Development, and Application to the Late-Glacial of Min-
nesota, Quaternary Res., 14, 2–18, https://doi.org/10.1016/0033-
5894(80)90003-4, 1980.

Wright, T., Parsons, B., and Lu, Z.: Toward mapping surface defor-
mation in three dimensions using InSAR, Geophys. Res. Lett.,
31, L01607, https://doi.org/10.1029/2003GL018827, 2004.

https://doi.org/10.5194/tc-15-4221-2021 The Cryosphere, 15, 4221–4239, 2021

https://doi.org/10.1007/s00190-019-01325-y
https://doi.org/10.1007/s00190-019-01325-y
https://doi.org/10.1111/j.1365-246X.2012.05669.x
https://doi.org/10.1080/07038992.2017.1344926
https://doi.org/10.1016/j.enggeo.2019.105471
https://doi.org/10.1016/j.rse.2021.112343
https://doi.org/10.17632/zf67rsgydv.1
https://doi.org/10.1029/2005GL023943
https://doi.org/10.1130/0016-7606(1951)62[725:AAAOTS]2.0.CO;2
https://doi.org/10.1130/0016-7606(1951)62[725:AAAOTS]2.0.CO;2
https://doi.org/10.1130/0016-7606(1958)69[617:MGA]2.0.CO;2
https://doi.org/10.1130/0016-7606(1958)69[617:MGA]2.0.CO;2
https://doi.org/10.1029/2019EA001036
https://doi.org/10.1126/science.291.5505.862
https://doi.org/10.1038/s41586-019-1855-2
https://doi.org/10.1109/TGRS.2002.805079
https://doi.org/10.1126/science.1158540
https://doi.org/10.3390/rs9060635
https://doi.org/10.3189/2015JoG14J147
https://doi.org/10.1080/17538947.2018.1470690
https://earth.esa.int/workshops/ers97/papers/wegmuller2/
https://doi.org/10.1017/jog.2019.93
https://doi.org/10.1016/0033-5894(80)90003-4
https://doi.org/10.1016/0033-5894(80)90003-4
https://doi.org/10.1029/2003GL018827

	Abstract
	Introduction
	Model
	Synthetic tests

	Study area and data
	Results
	Discussion
	Conclusions
	Code and data availability
	Video supplement
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

