Articles | Volume 15, issue 7
https://doi.org/10.5194/tc-15-3279-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-3279-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geophysical constraints on the properties of a subglacial lake in northwest Greenland
Ross Maguire
CORRESPONDING AUTHOR
Department of Geology, University of Maryland, College Park,
MD 20742, USA
Department of Earth and Planetary Sciences, University of New Mexico,
Albuquerque, NM 87131, USA
Nicholas Schmerr
Department of Geology, University of Maryland, College Park,
MD 20742, USA
Erin Pettit
College of Earth, Ocean, and Atmospheric Sciences, Oregon State
University, Corvallis, OR 97331-5503, USA
Kiya Riverman
Courant Institute of Mathematical Sciences, New York University, New
York, NY 10012 USA
Christyna Gardner
Department of Geosciences, Utah State University, Logan, UT
84322-4505, USA
Daniella N. DellaGiustina
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ
85721-0092, USA
Brad Avenson
Silicon Audio Inc., Austin, Pflugerville, TX 78660, USA
Natalie Wagner
Department of Geosciences, University of Alaska, Fairbanks, AK 99775,
USA
Angela G. Marusiak
Department of Geology, University of Maryland, College Park,
MD 20742, USA
Namrah Habib
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ
85721-0092, USA
Juliette I. Broadbeck
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ
85721-0092, USA
Veronica J. Bray
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ
85721-0092, USA
Samuel H. Bailey
Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ
85721-0092, USA
Related authors
No articles found.
Christian T. Wild, Tasha Snow, Tiago S. Dotto, Peter E. D. Davis, Scott Tyler, Ted A. Scambos, Erin C. Pettit, and Karen J. Heywood
Ocean Sci., 21, 2605–2629, https://doi.org/10.5194/os-21-2605-2025, https://doi.org/10.5194/os-21-2605-2025, 2025
Short summary
Short summary
Thwaites Glacier is retreating due to warm ocean water melting it from below, but its thick ice shelf makes this heat hard to monitor. Using hot-water drilling, we placed sensors beneath the floating ice, revealing how surface freezing in Pine Island Bay influences heat at depth. Alongside gradual warming, we found bursts of heat that could speed up melting at the grounding zone, which may become more common as sea ice declines.
Gabriela Collao-Barrios, Ted A. Scambos, Christian T. Wild, Martin Truffer, Karen E. Alley, and Erin C. Pettit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1895, https://doi.org/10.5194/egusphere-2024-1895, 2024
Preprint archived
Short summary
Short summary
Destabilization of ice shelves frequently leads to significant acceleration and greater mass loss, affecting rates of sea level rise. Our results show a relation between tides, flow direction, and grounding-zone acceleration that result from changing stresses in the ice margins and around a nunatak in Dotson Ice Shelf. The study describes a new way tides can influence ice shelf dynamics, an effect that could become more common as ice shelves thin and weaken around Antarctica.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023, https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Short summary
The total air content (TAC) of polar ice cores has long been considered a potential proxy for past ice sheet elevation. This study presents a high-resolution record of TAC from the South Pole ice core. The record reveals orbital- and millennial-scale variability that cannot be explained by elevation changes. The orbital- and millennial-scale changes are likely a product of firn grain metamorphism near the surface of the ice sheet, due to summer insolation changes or local accumulation changes.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022, https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Short summary
Thwaites Glacier has the potential to significantly raise Antarctica's contribution to global sea-level rise by the end of this century. Here, we use satellite measurements of surface elevation to show that its floating part is close to losing contact with an underwater ridge that currently acts to stabilize. We then use computer models of ice flow to simulate the predicted unpinning, which show that accelerated ice discharge into the ocean follows the breakup of the floating part.
Karen E. Alley, Christian T. Wild, Adrian Luckman, Ted A. Scambos, Martin Truffer, Erin C. Pettit, Atsuhiro Muto, Bruce Wallin, Marin Klinger, Tyler Sutterley, Sarah F. Child, Cyrus Hulen, Jan T. M. Lenaerts, Michelle Maclennan, Eric Keenan, and Devon Dunmire
The Cryosphere, 15, 5187–5203, https://doi.org/10.5194/tc-15-5187-2021, https://doi.org/10.5194/tc-15-5187-2021, 2021
Short summary
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Short summary
We simulate the past 1000 years of glacier length variability using a simple glacier model and an ensemble of global climate model simulations. Glaciers with long response times are more likely to record global climate changes caused by events like volcanic eruptions and greenhouse gas emissions, while glaciers with short response times are more likely to record natural variability. This difference stems from differences in the frequency spectra of natural and forced temperature variability.
Cited articles
Achberger, A. M., Christner, B. C., Michaud, A. B., Priscu, J. C., Skidmore,
M. L., Vick-Majors, T. J., Adkins, W., Anandakrishnan, S., Barbante, C.,
Barcheck, G., and Beem, L.: Microbial community structure of subglacial lake
Whillans, West Antarctica, Front. Microbiol., 7, 1457,
https://doi.org/10.3389/fmicb.2016.01457, 2016.
Aki, K. and Richards, P. G.: Quantitative Seismology, University Science
Books, Sausalito, CA, 2nd edn., 123–144, 2002.
Artemieva, I. M.: Lithosphere thermal thickness and geothermal heat flux in
Greenland from a new thermal isostasy method, Earth-Sci. Rev., 188, 469–481,
https://doi.org/10.1016/j.earscirev.2018.10.015, 2019.
Badgeley, J. A., Pettit, E. C., Carr, C. G., Tulaczyk, S., Mikucki, J. A., and
Lyons, W. B.: An englacial hydrologic system of brine within a cold glacier:
Blood Falls, McMurdo Dry Valleys, Antarctica, J. Glaciol., 63, 387–400,
https://doi.org/10.1017/jog.2017.16, 2017.
Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A., and Joughin, I.:
Large subglacial lakes in East Antarctica at the onset of fast-flowing ice
streams, Nature, 445, 904–907, https://doi.org/10.1038/nature05554,
2007.
Bell, R. E., Tinto, K., Das, I., Wolovick, M., Chu, W., Creyts, T. T.,
Frearson, N., Abdi, A., and Paden, J. D.: Deformation, warming and softening
of Greenland's ice by refreezing meltwater, Nat. Geosci., 7, 497–502,
https://doi.org/10.1038/ngeo2179, 2014.
Bentley, C. R. and Kohnen, H.: Seismic refraction measurements of internal
friction in Antarctic ice, J. Geophys. Res., 81, 1519–1526,
https://doi.org/10.1029/JB081i008p01519, 1976.
Bentley, M. J., Christoffersen, P., Hodgson, D. A., Smith, A. M., Tulaczyk, S.,
and Le Brocq, A. M.: Subglacial lake sediments and sedimentary processes:
potential archives of ice sheet evolution, past environmental change, and
the presence of life, in: Antarctic Subglacial Aquatic Environments, American Geophysical Union, Washington, D.C., 83–110,
2011.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and
Wassermann, J.: ObsPy: A Python toolbox for seismology, Seismol. Res.
Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010.
Booth, A. D., Emir, E., and Diez, A.: Approximations to seismic AVA responses:
Validity and potential in glaciological applications, Geophysics, 81, 1–11,
https://doi.org/10.1190/geo2015-0187.1, 2016.
Bowling, J. S., Livingstone, S. J., Sole, A. J., and Chu, W.: Distribution and
dynamics of Greenland subglacial lakes, Nat. Commun., 10, 1–11,
https://doi.org/10.1038/s41467-019-10821-w, 2019.
Campen, R., Kowalski, J., Lyons, W. B., Tulaczyk, S., Dachwald, B., Pettit,
E., Welch, K. A., and Mikucki, J. A.: Microbial diversity of an Antarctic
subglacial community and high-resolution replicate sampling inform
hydrological connectivity in a polar desert, Environ. Microbiol., 21,
2290–2306, https://doi.org/10.1111/1462-2920.14607, 2019.
Christianson, K., Peters, L. E., Alley, R. B., Anandakrishnan, S., Jacobel,
R. W., Riverman, K. L., Muto, A., and Keisling, B. A.: Dilatant till facilitates
ice-stream flow in northeast Greenland, Earth Planet. Sc. Lett., 401, 57–69,
https://doi.org/10.1016/j.epsl.2014.05.060, 2014.
Christianson, K., Jacobel, R. W., Horgan, H. J., Alley, R. B., Anandakrishnan,
S., Holland, D. M., and DallaSanta, K. J.: Basal conditions at the grounding
zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar, J.
Geophys. Res.-Earth, 121, 1954–1983, https://doi.org/10.1002/2015JF003806,
2016.
Church, G., Grab, M., Schmelzbach, C., Bauder, A., and Maurer, H.: Monitoring the seasonal changes of an englacial conduit network using repeated ground-penetrating radar measurements, The Cryosphere, 14, 3269–3286, https://doi.org/10.5194/tc-14-3269-2020, 2020.
Dasgupta, R. and Clark, R.A.: Estimation of Q from surface seismic
reflection data, Geophysics, 63, 2120–2128,
https://doi.org/10.1190/1.1444505, 1998.
Dawes, P. R.: Explanatory notes to the geological map of Greenland, 1:500 000, Humboldt Gletscher, Sheet 6, Geological Survey of Denmark and Greenland
Map Series, 1, 1–48, https://doi.org/10.34194/geusm.v1.4615, 2004.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Fahnestock, M., Abdalati, W., Joughin, I., Brozena, J., and Gogineni, P.:
High geothermal heat flow, basal melt, and the origin of rapid ice flow in
central Greenland, Science, 294, 2338–2342,
https://doi.org/10.1126/science.1065370, 2001.
Filina, I. Y., Blankenship, D. D., Thoma, M., Lukin, V. V., Masolov, V. N., and
Sen, M. K.: New 3D bathymetry and sediment distribution in Lake Vostok:
Implication for pre-glacial origin and numerical modeling of the internal
processes within the lake, Earth Planet. Sc. Lett., 276, 106–114,
https://doi.org/10.1016/j.epsl.2008.09.012, 2008.
Fofonoff, N. P. and Millard Jr., R. C.: Algorithms for computation of
fundamental properties of seawater, Unesco Tech. Pap. Mar. Sci., 44, 1–58,
1983.
Fricker, H. A., Scambos, T., Bindschadler, R., and Padman, L.: An Active
Subglacial Water System in West Antarctica Mapped from Space, Science, 315,
1544–1548, https://doi.org/10.1126/science.1136897, 2007.
Hills, B. H., Christianson, K., and Holschuh, N.: A framework for attenuation
method selection evaluated with ice-penetrating radar data at south pole
lake, Ann. Glaciol., 61, 176–187, https://doi.org/10.1017/aog.2020.32, 2020.
Horgan, H. J., Anandakrishnan, S., Jacobel, R. W., Christianson, K., Alley,
R. B., Heeszel, D. S., Picotti, S., and Walter, J. I.: Subglacial Lake
Whillans-Seismic observations of a shallow active reservoir beneath a West
Antarctic ice stream, Earth Planet. Sc. Lett., 331, 201–209,
https://doi.org/10.1016/j.epsl.2012.02.023, 2012.
Hubbard, A., Lawson, W., Anderson, B., Hubbard, B., and Blatter, H.: Evidence
for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica, Ann.
Glaciol., 39, 79–84, https://doi.org/10.3189/172756404781813970, 2004.
Jacobel, R. W., Welch, B. C., Osterhouse, D., Pettersson, R., and Gregor, J.
A. M.: Spatial variation of radar-derived basal conditions on Kamb Ice
Stream, West Antarctica, Ann. Glaciol., 50, 10–16,
https://doi.org/10.3189/172756409789097504, 2009.
Jordan, T., Martin, C., Ferraccioli, F., Matsuoka, K., Corr, H., Forsberg,
R., Olesen, A., and Siegert, M.: Anomalously high geothermal flux near the
South Pole, Sci. Rep.-UK, 8, 16785,
https://doi.org/10.1038/s41598-018-35182-0, 2018.
Jordan, T. M., Cooper, M. A., Schroeder, D. M., Williams, C. N., Paden, J. D., Siegert, M. J., and Bamber, J. L.: Self-affine subglacial roughness: consequences for radar scattering and basal water discrimination in northern Greenland, The Cryosphere, 11, 1247–1264, https://doi.org/10.5194/tc-11-1247-2017, 2017.
Langley, K., Kohler, J., Matsuoka, K., Sinisalo, T., Scambos, T., Neumann,
T., Muto, A., Winther, J.-G., and Albert, M.: Recovery Lakes, East
Antarctica: Radar assessment of sub-glacial water extent, Geophys. Res.
Lett., 38, L05501, https://doi.org/10.1029/2010GL046094, 2011.
Lyons, W. B., Welch, K. A., Snyder, G., Olesik, J., Graham, E. Y., Marion, G. M.,
and Poreda, R. J.: Halogen geochemistry of the McMurdo Dry Valleys lakes,
Antarctica: clues to the origin of solutes and lake evolution, Geochim.
Cosmochim. Ac., 69, 305–323, https://doi.org/10.1016/j.gca.2004.06.040, 2005.
Lyons, W. B., Mikucki, J. A., German, L. A., Welch, K. A., Welch, S. A.,
Gardner, C. B., Tulaczyk, S. M., Pettit, E. C., Kowalski, J., and Dachwald,
B.: The geochemistry of englacial brine from Taylor Glacier, Antarctica, J.
Geophys. Res.-Biogeo., 124, 633–648, https://doi.org/10.1029/2018JG004411,
2019.
MacGregor, J., Li, J., Paden, J., Catania, G., Clow, G., Fahnestock, M.,
Gogineni, S., Grimm, R., Morlighem, M., Nandi, S., Seroussi, H., and
Stillman, D.: Radar attenuation and temperature within the Greenland Ice
Sheet, J. Geophys. Res.-Sol. Ea., 120, 983–1008,
https://doi.org/10.1002/2014JF003418, 2015.
MacGregor, J. A., Fahnestock, M. A., Catania, G. A., Aschwanden, A., Clow,
G. D., Colgan, W. T., Gogineni, S. P., Morlighem, M., Nowicki, S. M. J.,
Paden, J. D., Price, S. F., and Seroussi, H.: A synthesis of the basal
thermal state of the Greenland Ice Sheet, J. Geophys. Res.-Earth, 121,
1328–1350, https://doi.org/10.1002/2015JF003803, 2016.
Martos, Y. M., Jordan, T. A., Catalan, M., Jordan, T. M., Bamber, J. L., and
Vaughan, D. G.: Geothermal heat flux reveals the Iceland hotspot track
underneath Greenland, Geophys. Res. Lett., 45, 8214–8222,
https://doi.org/10.1029/2018GL078289, 2018.
Matsuoka, K., Morse, D., and Raymond, C. F.: Estimating englacial radar
attenuation using depth profiles of the returned power, central West
Antarctica, J. Geophys. Res., 115, 1–15,
https://doi.org/10.1029/2009JF001496, 2010.
Mikucki, J. A., Pearson, A., Johnston, D. T., Turchyn, A. V., Farquhar, J.,
Schrag, D. P., Anbar, A. D., Priscu, J. C., and Lee, P. A.: A contemporary
microbially maintained subglacial ferrous “Ocean”, Science, 324, 397–400,
https://doi.org/10.1126/science.1167350, 2009.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauche, N., Dowdeswell, J. A., Dorschel, B., Fenty, I.,
Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen,
K. K., Millan, R., Mayer, L., Mouginot, J., Noel, B. P. Y., O'Cofaigh, C.,
Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo,
F., van den Broeke, M. R., Weinrebe, W., Wood, M., and Zinglersen, K. B.:
BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of
Greenland From Multibeam Echo Sounding Combined With Mass Conservation,
Geophys. Res. Lett., 44, 11051–11061, https://doi.org/10.1002/2017GL074954,
2017.
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P. P., van Ulft, L. H., van de Wal, R. S. W., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, 2018.
Palmer, S. J., Dowdeswell, J. A., Christoffersen, P., Young, D. A.,
Blankenship, D. D., Greenbaum, J. S., Benham, T., Bamber, J., and Siegert,
M. J.: Greenland subglacial lakes detected by radar, Geophys. Res. Lett.,
40, 6154–6159, https://doi.org/10.1002/2013GL058383, 2013.
Palmer, S., McMillan, M., and Morlighem, M.: Subglacial lake drainage
detected beneath the Greenland ice sheet, Nat. Commun., 6, 8408,
https://doi.org/10.1038/ncomms9408, 2015.
Peters, L. E., Anandakrishnan, S., Holland, C. W., Horgan, H. J.,
Blankenship, D. D., and Voigt, D. E.: Seismic detection of a subglacial lake
near the South Pole, Antarctica, Geophys. Res. Lett., 35, L23501,
https://doi.org/10.1029/2008GL035704, 2008.
Peters, L. E., Anandakrishnan, S., Alley, R. B., and Voigt, D. E.: Seismic
attenuation in glacial ice: A proxy for englacial temperature, J. Geophys.
Res.-Earth, 117, F02008, https://doi.org/10.1029/2011JF002201, 2012.
Robin, G. de Q., Swithinbank, C., and Smith, B. M. E.: Radio echo exploration of
the Antarctic ice sheet, in: International Symposium on Antarctic
Glaciological Exploration (ISAGE), edited by: Gow, A. J., Keeler, C.,
Langway, C. C., Weeks, W. F., International Association of Scientific Hydrology, Hanover, New Hampshire, 3–7 September 1968,
Gentbrugge, IASH
Publication, 86, 97–115, 1970.
Rogozhina, I., Petrunin, A. G., Vaughan, A. P. M., Steinberger, B., Johnson,
J. V., Kaban, M. K., Calov, R., Rickers, F., Thomas, M., and Koulakov, I.:
Melting at the base of the Greenland ice sheet explained by Iceland hotspot
history, Nat. Geosci., 9, 366–369, https://doi.org/10.1038/ngeo2689, 2016.
Rutishauser, A., Blankenship, D. D., Sharp, M., Skidmore, M. L., Greenbaum,
J. S., Grima, C., Schroeder, D. M., Dowdeswell, J. A., and Young, D. A.:
Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap,
Canadian Arctic, Sci. Adv., 4, eaar4353,
https://doi.org/10.1126/sciadv.aar4353, 2018.
Schmerr, N.,
Maguire, R.,
Pettit, E.,
Riverman, K.,
Gardner, C.,
DellaGiustina, D.,
Avenson, B.,
Wagner, N.,
Marusiak, A.,
Habib, N.,
Broadbeck, J.,
Bray, V.,
Bailey, S.,
Carr, C.,
Dahl, P., and
Weber, R.: Northwest Greenland Active Source Seismic Experiment [data set], Digital Repository at the University of Maryland, https://doi.org/10.13016/yy2o-nhua, 2021.
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M.,
Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G.,
Nowicki, S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C.,
Ahlstrøm, A., Babonis, G., Barletta, V., Bjørk A., Blazquez, A.,
Bonin, J., Colgan, W., Csatho, B., Cullather, R., Engdahl, M. E., Felikson,
D., Fettweis, X., Forsberg, R., Hogg, A., Gallee, H., Gardner, A., Gilbert,
L., Gourmelen, N., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V.,
Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P.,
Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild,
S., Mohajerani, Y., Moore, P., Mottram, R., Mouginot, J., Moyano, G., Muir,
A., Nagler, T., Nield, G., Nilsson, J., Noël, B., Otosaka, I., Pattle,
M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H.,
Sandberg-Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E.,
Schröder, L., Seo, K.-W., Simonsen, S., Slater, T., Spada, G.,
Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W.,
van Wessem, M., Vishwakarma, B. D., Wiese, D., Wilton, D., Wagner, T.,
Wouters, B., and Wuite, J.: Mass balance of the Antarctic Ice Sheet from
1992 to 2018, Nature, 558, 219–222,
https://doi.org/10.1038/s41586-019-1855-2, 2018.
Siegert, M., Dowdeswell, J., Gorman, M., and McIntyre, N.: An inventory of
Antarctic sub-glacial lakes, Antarc. Sci., 8, 281–286,
https://doi.org/10.1017/S0954102096000405, 1996.
Siegfried, M. R. and Fricker, H. A.: Thirteen years of subglacial lake
activity in Antarctica from multi-mission satellite altimetry, Ann.
Glaciol., 59, 42–55, https://doi.org/10.1017/aog.2017.36, 2018.
Siegfried, M. R., Fricker, H. A., Carter, S. P., and Tulaczyk, S.: Episodic
ice velocity fluctuations triggered by a subglacial flood in West
Antarctica, Geophys. Res. Lett., 43, 2640–2648,
https://doi.org/10.1002/2016GL067758, 2016.
Smith, A. M., Woodward, J., Ross, N., Bentley, M. J., Hodgson, D. A.,
Siegert, M. J., and King, E. C.: Evidence for the long-term sedimentary
environment in an Antarctic subglacial lake, Earth Planet. Sci. Lett., 504,
139–151, https://doi.org/10.1016/j.epsl.2018.10.011, 2018.
Smith, B. E., Fricker, H. A., Joughin, I. R., and Tulaczyk, S.: An inventory
of active subglacial lakes in Antarctica detected by ICESat (2003–2008), J.
Glaciol., 55, 573–595, https://doi.org/10.3189/002214309789470879, 2009.
Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a
large East Antarctic outlet glacier caused by subglacial floods, Nat.
Geosci., 1, 827, https://doi.org/10.1038/ngeo356, 2008.
Tromp, J., Komatitsch, D., and Liu, Q.: Spectral-element and adjoint methods
in seismology, Commun. Comput. Phys., 3, 1–32, 2008.
Tulaczyk, S. M. and Foley, N. T.: The role of electrical conductivity in radar wave reflection from glacier beds, The Cryosphere, 14, 4495–4506, https://doi.org/10.5194/tc-14-4495-2020, 2020.
Vick-Majors, T. J., Mitchell, A. C., Achberger, A. M., Christner, B. C., Dore,
J. E., Michaud, A. B., Mikucki, J. A., Purcell, A. M., Skidmore, M. L., and
Priscu, J. C.: Physiological ecology of microorganisms in subglacial Lake
Whillans, Front. Microbiol., 7, 1705,
https://doi.org/10.3389/fmicb.2016.01705, 2016.
Welch, B. C. and Jacobel, R. W.: Analysis of deep-penetrating radar surveys
of West Antarctica, US-ITASE 2001, Geophys. Res. Lett., 30, 1444,
https://doi.org/10.1029/2003GL017210, 2003.
Willis, M., Herried, B., Bevis, M., and Bell, R.: Recharge of a subglacial
lake by surface meltwater in northeast Greenland, Nature, 518, 223–227,
https://doi.org/10.1038/nature14116, 2015.
Woodward, J., Smith, A. M., Ross, N., Thoma, M., Corr, H., King, E. C.,
King, M., Grosfeld, K., Tranter, M., and Siegert, M.: Location for direct
access to subglacial Lake Ellsworth: An assessment of geophysical data and
modeling, Geophys. Res. Lett., 37, L11501,
https://doi.org/10.1029/2010GL042884, 2010.
Wright, A. and Siegert, M.: A fourth inventory of Antarctic subglacial
lakes, Antarct. Sci., 24, 659–664, https://doi.org/10.1017/S095410201200048X, 2012.
Young, D. A., Schroeder, D. M., Blankenship, D. D., Kempf, S. D., and
Quartini, E.: The distribution of basal water between Antarctic subglacial
lakes from radar sounding, Philos. T. Roy. Soc. A., 374, 20140297,
https://doi.org/10.1098/rsta.2014.0297, 2016.
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
In the last decade, airborne radar surveys have revealed the presence of lakes below the...