Articles | Volume 15, issue 6
The Cryosphere, 15, 2569–2574, 2021
https://doi.org/10.5194/tc-15-2569-2021
The Cryosphere, 15, 2569–2574, 2021
https://doi.org/10.5194/tc-15-2569-2021

Brief communication 07 Jun 2021

Brief communication | 07 Jun 2021

Brief communication: An empirical relation between center frequency and measured thickness for radar sounding of temperate glaciers

Joseph A. MacGregor et al.

Related authors

Greenland Geothermal Heat Flow Database and Map (Version 1)
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Abbas Khan, and Anja Løkkegaard
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-290,https://doi.org/10.5194/essd-2021-290, 2021
Preprint under review for ESSD
Short summary
Intercomparison of snow depth retrievals over Arctic sea ice from radar data acquired by Operation IceBridge
Ron Kwok, Nathan T. Kurtz, Ludovic Brucker, Alvaro Ivanoff, Thomas Newman, Sinead L. Farrell, Joshua King, Stephen Howell, Melinda A. Webster, John Paden, Carl Leuschen, Joseph A. MacGregor, Jacqueline Richter-Menge, Jeremy Harbeck, and Mark Tschudi
The Cryosphere, 11, 2571–2593, https://doi.org/10.5194/tc-11-2571-2017,https://doi.org/10.5194/tc-11-2571-2017, 2017
Short summary
Annual Greenland accumulation rates (2009–2012) from airborne snow radar
Lora S. Koenig, Alvaro Ivanoff, Patrick M. Alexander, Joseph A. MacGregor, Xavier Fettweis, Ben Panzer, John D. Paden, Richard R. Forster, Indrani Das, Joesph R. McConnell, Marco Tedesco, Carl Leuschen, and Prasad Gogineni
The Cryosphere, 10, 1739–1752, https://doi.org/10.5194/tc-10-1739-2016,https://doi.org/10.5194/tc-10-1739-2016, 2016
Short summary

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery
Adina E. Racoviteanu, Lindsey Nicholson, and Neil F. Glasser
The Cryosphere, 15, 4557–4588, https://doi.org/10.5194/tc-15-4557-2021,https://doi.org/10.5194/tc-15-4557-2021, 2021
Short summary
Mapping seasonal glacier melt across the Hindu Kush Himalaya with time series synthetic aperture radar (SAR)
Corey Scher, Nicholas C. Steiner, and Kyle C. McDonald
The Cryosphere, 15, 4465–4482, https://doi.org/10.5194/tc-15-4465-2021,https://doi.org/10.5194/tc-15-4465-2021, 2021
Short summary
Estimating surface mass balance patterns from unoccupied aerial vehicle measurements in the ablation area of the Morteratsch–Pers glacier complex (Switzerland)
Lander Van Tricht, Philippe Huybrechts, Jonas Van Breedam, Alexander Vanhulle, Kristof Van Oost, and Harry Zekollari
The Cryosphere, 15, 4445–4464, https://doi.org/10.5194/tc-15-4445-2021,https://doi.org/10.5194/tc-15-4445-2021, 2021
Short summary
High-resolution topography of the Antarctic Peninsula combining the TanDEM-X DEM and Reference Elevation Model of Antarctica (REMA) mosaic
Yuting Dong, Ji Zhao, Dana Floricioiu, Lukas Krieger, Thomas Fritz, and Michael Eineder
The Cryosphere, 15, 4421–4443, https://doi.org/10.5194/tc-15-4421-2021,https://doi.org/10.5194/tc-15-4421-2021, 2021
Short summary
Measuring the state and temporal evolution of glaciers in Alaska and Yukon using synthetic-aperture-radar-derived (SAR-derived) 3D time series of glacier surface flow
Sergey Samsonov, Kristy Tiampo, and Ryan Cassotto
The Cryosphere, 15, 4221–4239, https://doi.org/10.5194/tc-15-4221-2021,https://doi.org/10.5194/tc-15-4221-2021, 2021
Short summary

Cited articles

Arnold, E., Rodriguez-Morales, F., Paden, J., Leuschen, C., Keshmiri, S., Yan, S., Ewing, M., Hale, R., Mahmood, A., Blevins, A., Mishra, A., Karidi, T., Miller, B., and Sonntag, J.: HF/VHF radar sounding of ice from manned and unmanned airborne platforms, Geosciences, 8, 182, https://doi.org/10.3390/geosciences8050182, 2018. 
Arnold, E., Leuschen, C., Rodriguez-Morales, F., Li, J., Paden, J., Hale, R., and Keshmiri, S.: CReSIS airborne radar and platforms for ice and snow sounding, Ann. Glaciol., 61, 58–67, https://doi.org/10.1017/aog.2019.37, 2020. 
Björnsson, H. and Pálsson, F.: Radio-echo soundings on Icelandic temperate glaciers: history of techniques and findings, Ann. Glaciol., 61, 25–34, https://doi.org/10.1017/aog.2020.10, 2020. 
Conway, H., Smith, B., Vaswani, P., Matsuoka, K., Rignot, E., and Claus, P.: A low-frequency ice-penetrating radar system adapted for use from an airplane: test results from Bering and Malaspina Glaciers, Alaska, USA, Ann. Glaciol., 50, 93–97, https://doi.org/10.3189/172756409789097487, 2009. 
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, and Pandit, A.: A consensus estimate for the ice thickness distribution of all glaciers on Earth, Na. Geosci., 12, 168–173, https://doi.org/10.1038/s41561-019-0300-3, 2019. 
Download
Short summary
We combine multiple recent global glacier datasets and extend one of them (GlaThiDa) to evaluate past performance of radar-sounding surveys of the thickness of Earth's temperate glaciers. An empirical envelope for radar performance as a function of center frequency is determined, its limitations are discussed and its relevance to future radar-sounder survey and system designs is considered.