Articles | Volume 14, issue 10
https://doi.org/10.5194/tc-14-3479-2020
https://doi.org/10.5194/tc-14-3479-2020
Brief communication
 | 
21 Oct 2020
Brief communication |  | 21 Oct 2020

Brief communication: Arctic sea ice thickness internal variability and its changes under historical and anthropogenic forcing

Guillian Van Achter, Leandro Ponsoni, François Massonnet, Thierry Fichefet, and Vincent Legat

Related authors

Influence of fast ice on future ice shelf melting in the Totten Glacier area, East Antarctica
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022,https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5
Charles Pelletier, Thierry Fichefet, Hugues Goosse, Konstanze Haubner, Samuel Helsen, Pierre-Vincent Huot, Christoph Kittel, François Klein, Sébastien Le clec'h, Nicole P. M. van Lipzig, Sylvain Marchi, François Massonnet, Pierre Mathiot, Ehsan Moravveji, Eduardo Moreno-Chamarro, Pablo Ortega, Frank Pattyn, Niels Souverijns, Guillian Van Achter, Sam Vanden Broucke, Alexander Vanhulle, Deborah Verfaillie, and Lars Zipf
Geosci. Model Dev., 15, 553–594, https://doi.org/10.5194/gmd-15-553-2022,https://doi.org/10.5194/gmd-15-553-2022, 2022
Short summary
Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations
Leandro Ponsoni, François Massonnet, David Docquier, Guillian Van Achter, and Thierry Fichefet
The Cryosphere, 14, 2409–2428, https://doi.org/10.5194/tc-14-2409-2020,https://doi.org/10.5194/tc-14-2409-2020, 2020
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Summer sea ice floe perimeter density in the Arctic: high-resolution optical satellite imagery and model evaluation
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere, 17, 3575–3591, https://doi.org/10.5194/tc-17-3575-2023,https://doi.org/10.5194/tc-17-3575-2023, 2023
Short summary
Patterns of wintertime Arctic sea-ice leads and their relation to winds and ocean currents
Sascha Willmes, Günther Heinemann, and Frank Schnaase
The Cryosphere, 17, 3291–3308, https://doi.org/10.5194/tc-17-3291-2023,https://doi.org/10.5194/tc-17-3291-2023, 2023
Short summary
A long-term proxy for sea ice thickness in the Canadian Arctic: 1996–2020
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023,https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Arctic sea ice radar freeboard retrieval from the European Remote-Sensing Satellite (ERS-2) using altimetry: toward sea ice thickness observation from 1995 to 2021
Marion Bocquet, Sara Fleury, Fanny Piras, Eero Rinne, Heidi Sallila, Florent Garnier, and Frédérique Rémy
The Cryosphere, 17, 3013–3039, https://doi.org/10.5194/tc-17-3013-2023,https://doi.org/10.5194/tc-17-3013-2023, 2023
Short summary
Rapid sea ice changes in the future Barents Sea
Ole Rieke, Marius Årthun, and Jakob Simon Dörr
The Cryosphere, 17, 1445–1456, https://doi.org/10.5194/tc-17-1445-2023,https://doi.org/10.5194/tc-17-1445-2023, 2023
Short summary

Cited articles

Barnhart, K. R., Miller, C. M., Overeem, I., and Kay, E.: Mapping the future expansion of Arctic open water, Nat. Clim. Change, 6, 280–285, https://doi.org/10.1038/NCLIMATE2848, 2016. 
Blanchard-Wrigglesworth, E., Bitz, C. M., and Holland, M. M.: Influence of Initial Conditions and Climate Forcing on Predicting Arctic Sea Ice, Geophys. Res. Lett., 38, L18503, https://doi.org/10.1029/2011GL048807, 2011. 
Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M., Large, W. G., Peacock, S., and Yeager, S. G.: The CCSM4 ocean component, J. Climate, 25, 1361–1389, https://doi.org/10.1175/JCLI-D-11-00091.1, 2012. 
Deser, C., Philips, A. S., Alexander, M. A., and Smoliak, B. V.: Projecting North American Climate over the Next 50 Years: Uncertainty due to Internal Variability, J. Climate, 27, 2271–2296, https://doi.org/10.1175/JCLI-D-13-00451.1, 2014. 
Deser, C., Philips, A., Bourdette, V., and Teng, H.: Uncertainty in climate change projections: the role of internal variability, Clim. Dynam., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x, 2012. 
Download
Short summary
We document the spatio-temporal internal variability of Arctic sea ice thickness and its changes under anthropogenic forcing, which is key to understanding, and eventually predicting, the evolution of sea ice in response to climate change. The patterns of sea ice thickness variability remain more or less stable during pre-industrial, historical and future periods, despite non-stationarity on short timescales. These patterns start to change once Arctic summer ice-free events occur, after 2050.